// // Head.cpp // interface // // Created by Philip Rosedale on 9/11/12. // adapted by Jeffrey Ventrella // Copyright (c) 2012 Physical, Inc.. All rights reserved. // #include #include #include #include #include "Head.h" #include "Log.h" #include #include #include using namespace std; float skinColor[] = {1.0, 0.84, 0.66}; float lightBlue[] = { 0.7, 0.8, 1.0 }; float browColor[] = {210.0/255.0, 105.0/255.0, 30.0/255.0}; float mouthColor[] = {1, 0, 0}; float BrowRollAngle[5] = {0, 15, 30, -30, -15}; float BrowPitchAngle[3] = {-70, -60, -50}; float eyeColor[3] = {1,1,1}; float MouthWidthChoices[3] = {0.5, 0.77, 0.3}; float browWidth = 0.8; float browThickness = 0.16; bool usingBigSphereCollisionTest = false; const float DECAY = 0.1; const float THRUST_MAG = 10.0; const float YAW_MAG = 300.0; char iris_texture_file[] = "resources/images/green_eye.png"; vector iris_texture; unsigned int iris_texture_width = 512; unsigned int iris_texture_height = 256; Head::Head(bool isMine) { _avatar.orientation.setToIdentity(); _avatar.velocity = glm::vec3( 0.0, 0.0, 0.0 ); _avatar.thrust = glm::vec3( 0.0, 0.0, 0.0 ); _rotation = glm::quat( 0.0f, 0.0f, 0.0f, 0.0f ); _closestOtherAvatar = 0; _bodyYaw = -90.0; _bodyPitch = 0.0; _bodyRoll = 0.0; _bodyYawDelta = 0.0; _triggeringAction = false; _mode = AVATAR_MODE_STANDING; _isMine = isMine; initializeSkeleton(); _TEST_bigSphereRadius = 0.3f; _TEST_bigSpherePosition = glm::vec3( 0.0f, _TEST_bigSphereRadius, 2.0f ); for (int i = 0; i < MAX_DRIVE_KEYS; i++) _driveKeys[i] = false; _pupilSize = 0.10; _interPupilDistance = 0.6; _interBrowDistance = 0.75; _nominalPupilSize = 0.10; _headYaw = 0.0; _eyebrowPitch[0] = -30; _eyebrowPitch[1] = -30; _eyebrowRoll [0] = 20; _eyebrowRoll [1] = -20; _mouthPitch = 0; _mouthYaw = 0; _mouthWidth = 1.0; _mouthHeight = 0.2; _eyeballPitch[0] = 0; _eyeballPitch[1] = 0; _eyeballScaleX = 1.2; _eyeballScaleY = 1.5; _eyeballScaleZ = 1.0; _eyeballYaw[0] = 0; _eyeballYaw[1] = 0; _pitchTarget = 0; _yawTarget = 0; _noiseEnvelope = 1.0; _pupilConverge = 10.0; _leanForward = 0.0; _leanSideways = 0.0; _eyeContact = 1; _eyeContactTarget = LEFT_EYE; _scale = 1.0; _renderYaw = 0.0; _renderPitch = 0.0; _audioAttack = 0.0; _loudness = 0.0; _averageLoudness = 0.0; _lastLoudness = 0.0; _browAudioLift = 0.0; _noise = 0; _handBeingMoved = false; _previousHandBeingMoved = false; _movedHandOffset = glm::vec3( 0.0, 0.0, 0.0 ); _usingSprings = false; _springForce = 6.0f; _springVelocityDecay = 16.0f; _sphere = NULL; if (iris_texture.size() == 0) { switchToResourcesParentIfRequired(); unsigned error = lodepng::decode(iris_texture, iris_texture_width, iris_texture_height, iris_texture_file); if (error != 0) { printLog("error %u: %s\n", error, lodepng_error_text(error)); } } if (_isMine) { //-------------------------------------------------- // test... just slam them into random positions... //-------------------------------------------------- _DEBUG_otherAvatarListPosition[ 0 ] = glm::vec3( 0.0f, 0.3f, 2.0f ); _DEBUG_otherAvatarListPosition[ 1 ] = glm::vec3( 4.0f, 0.3f, 2.0f ); _DEBUG_otherAvatarListPosition[ 2 ] = glm::vec3( 2.0f, 0.3f, 2.0f ); _DEBUG_otherAvatarListPosition[ 3 ] = glm::vec3( 1.0f, 0.3f, -4.0f ); _DEBUG_otherAvatarListPosition[ 4 ] = glm::vec3( -2.0f, 0.3f, -2.0f ); } } Head::Head(const Head &otherHead) { _avatar.orientation.set( otherHead._avatar.orientation ); _avatar.velocity = otherHead._avatar.velocity; _avatar.thrust = otherHead._avatar.thrust; _rotation = otherHead._rotation; _closestOtherAvatar = otherHead._closestOtherAvatar; _bodyYaw = otherHead._bodyYaw; _bodyPitch = otherHead._bodyPitch; _bodyRoll = otherHead._bodyRoll; _bodyYawDelta = otherHead._bodyYawDelta; _triggeringAction = otherHead._triggeringAction; _mode = otherHead._mode; initializeSkeleton(); for (int i = 0; i < MAX_DRIVE_KEYS; i++) _driveKeys[i] = otherHead._driveKeys[i]; _pupilSize = otherHead._pupilSize; _interPupilDistance = otherHead._interPupilDistance; _interBrowDistance = otherHead._interBrowDistance; _nominalPupilSize = otherHead._nominalPupilSize; _headYaw = otherHead._headYaw; _eyebrowPitch[0] = otherHead._eyebrowPitch[0]; _eyebrowPitch[1] = otherHead._eyebrowPitch[1]; _eyebrowRoll [0] = otherHead._eyebrowRoll [0]; _eyebrowRoll [1] = otherHead._eyebrowRoll [1]; _mouthPitch = otherHead._mouthPitch; _mouthYaw = otherHead._mouthYaw; _mouthWidth = otherHead._mouthWidth; _mouthHeight = otherHead._mouthHeight; _eyeballPitch[0] = otherHead._eyeballPitch[0]; _eyeballPitch[1] = otherHead._eyeballPitch[1]; _eyeballScaleX = otherHead._eyeballScaleX; _eyeballScaleY = otherHead._eyeballScaleY; _eyeballScaleZ = otherHead._eyeballScaleZ; _eyeballYaw[0] = otherHead._eyeballYaw[0]; _eyeballYaw[1] = otherHead._eyeballYaw[1]; _pitchTarget = otherHead._pitchTarget; _yawTarget = otherHead._yawTarget; _noiseEnvelope = otherHead._noiseEnvelope; _pupilConverge = otherHead._pupilConverge; _leanForward = otherHead._leanForward; _leanSideways = otherHead._leanSideways; _eyeContact = otherHead._eyeContact; _eyeContactTarget = otherHead._eyeContactTarget; _scale = otherHead._scale; _renderYaw = otherHead._renderYaw; _renderPitch = otherHead._renderPitch; _audioAttack = otherHead._audioAttack; _loudness = otherHead._loudness; _averageLoudness = otherHead._averageLoudness; _lastLoudness = otherHead._lastLoudness; _browAudioLift = otherHead._browAudioLift; _noise = otherHead._noise; _sphere = NULL; } Head::~Head() { if (_sphere != NULL) { gluDeleteQuadric(_sphere); } } Head* Head::clone() const { return new Head(*this); } void Head::reset() { _headPitch = _headYaw = _headRoll = 0; _leanForward = _leanSideways = 0; } //this pertains to moving the head with the glasses //--------------------------------------------------- void Head::UpdateGyros(float frametime, SerialInterface * serialInterface, int head_mirror, glm::vec3 * gravity) // Using serial data, update avatar/render position and angles { const float PITCH_ACCEL_COUPLING = 0.5; const float ROLL_ACCEL_COUPLING = -1.0; float measured_pitch_rate = serialInterface->getRelativeValue(HEAD_PITCH_RATE); _headYawRate = serialInterface->getRelativeValue(HEAD_YAW_RATE); float measured_lateral_accel = serialInterface->getRelativeValue(ACCEL_X) - ROLL_ACCEL_COUPLING*serialInterface->getRelativeValue(HEAD_ROLL_RATE); float measured_fwd_accel = serialInterface->getRelativeValue(ACCEL_Z) - PITCH_ACCEL_COUPLING*serialInterface->getRelativeValue(HEAD_PITCH_RATE); float measured_roll_rate = serialInterface->getRelativeValue(HEAD_ROLL_RATE); //printLog("Pitch Rate: %d ACCEL_Z: %d\n", serialInterface->getRelativeValue(PITCH_RATE), // serialInterface->getRelativeValue(ACCEL_Z)); //printLog("Pitch Rate: %d ACCEL_X: %d\n", serialInterface->getRelativeValue(PITCH_RATE), // serialInterface->getRelativeValue(ACCEL_Z)); //printLog("Pitch: %f\n", Pitch); // Update avatar head position based on measured gyro rates const float HEAD_ROTATION_SCALE = 0.70; const float HEAD_ROLL_SCALE = 0.40; const float HEAD_LEAN_SCALE = 0.01; const float MAX_PITCH = 45; const float MIN_PITCH = -45; const float MAX_YAW = 85; const float MIN_YAW = -85; if ((_headPitch < MAX_PITCH) && (_headPitch > MIN_PITCH)) addPitch(measured_pitch_rate * -HEAD_ROTATION_SCALE * frametime); addRoll(-measured_roll_rate * HEAD_ROLL_SCALE * frametime); if (head_mirror) { if ((_headYaw < MAX_YAW) && (_headYaw > MIN_YAW)) addYaw(-_headYawRate * HEAD_ROTATION_SCALE * frametime); addLean(-measured_lateral_accel * frametime * HEAD_LEAN_SCALE, -measured_fwd_accel*frametime * HEAD_LEAN_SCALE); } else { if ((_headYaw < MAX_YAW) && (_headYaw > MIN_YAW)) addYaw(_headYawRate * -HEAD_ROTATION_SCALE * frametime); addLean(measured_lateral_accel * frametime * -HEAD_LEAN_SCALE, measured_fwd_accel*frametime * HEAD_LEAN_SCALE); } } void Head::addLean(float x, float z) { // Add Body lean as impulse _leanSideways += x; _leanForward += z; } void Head::setLeanForward(float dist){ _leanForward = dist; } void Head::setLeanSideways(float dist){ _leanSideways = dist; } void Head::setTriggeringAction( bool d ) { _triggeringAction = d; } void Head::simulate(float deltaTime) { //------------------------------------------------------------- // if the avatar being simulated is mine, then loop through // all the other avatars to get information about them... //------------------------------------------------------------- if ( _isMine ) { //------------------------------------- // DEBUG - other avatars... //------------------------------------- _closestOtherAvatar = -1; float closestDistance = 10000.0f; /* AgentList * agentList = AgentList::getInstance(); for(std::vector::iterator agent = agentList->getAgents().begin(); agent != agentList->getAgents().end(); agent++) { if (( agent->getLinkedData() != NULL && ( agent->getType() == AGENT_TYPE_INTERFACE ) )) { Head *otherAvatar = (Head *)agent->getLinkedData(); // when this is working, I will grab the position here... //glm::vec3 otherAvatarPosition = otherAvatar->getBodyPosition(); } } */ ///for testing only (prior to having real avs working) for (int o=0; o 0.2 ) { _mode = AVATAR_MODE_WALKING; } else { _mode = AVATAR_MODE_COMMUNICATING; } //---------------------------------------------------------- // update body yaw by body yaw delta //---------------------------------------------------------- if (_isMine) { _bodyYaw += _bodyYawDelta * deltaTime; } // we will be eventually getting head rotation from elsewhere. For now, just setting it to body rotation _headYaw = _bodyYaw; _headPitch = _bodyPitch; _headRoll = _bodyRoll; //---------------------------------------------------------- // decay body yaw delta //---------------------------------------------------------- const float TEST_YAW_DECAY = 5.0; _bodyYawDelta *= (1.0 - TEST_YAW_DECAY * deltaTime); //---------------------------------------------------------- // add thrust to velocity //---------------------------------------------------------- _avatar.velocity += glm::dvec3(_avatar.thrust * deltaTime); //---------------------------------------------------------- // update position by velocity //---------------------------------------------------------- _bodyPosition += (glm::vec3)_avatar.velocity * deltaTime; //---------------------------------------------------------- // decay velocity //---------------------------------------------------------- const float LIN_VEL_DECAY = 5.0; _avatar.velocity *= ( 1.0 - LIN_VEL_DECAY * deltaTime ); if (!_noise) { // Decay back toward center _headPitch *= (1.0f - DECAY*2*deltaTime); _headYaw *= (1.0f - DECAY*2*deltaTime); _headRoll *= (1.0f - DECAY*2*deltaTime); } else { // Move toward new target _headPitch += (_pitchTarget - _headPitch)*10*deltaTime; // (1.f - DECAY*deltaTime)*Pitch + ; _headYaw += (_yawTarget - _headYaw)*10*deltaTime; // (1.f - DECAY*deltaTime); _headRoll *= (1.f - DECAY*deltaTime); } _leanForward *= (1.f - DECAY*30.f*deltaTime); _leanSideways *= (1.f - DECAY*30.f*deltaTime); // Update where the avatar's eyes are // // First, decide if we are making eye contact or not if (randFloat() < 0.005) { _eyeContact = !_eyeContact; _eyeContact = 1; if (!_eyeContact) { // If we just stopped making eye contact,move the eyes markedly away _eyeballPitch[0] = _eyeballPitch[1] = _eyeballPitch[0] + 5.0 + (randFloat() - 0.5)*10; _eyeballYaw[0] = _eyeballYaw[1] = _eyeballYaw[0] + 5.0 + (randFloat()- 0.5)*5; } else { // If now making eye contact, turn head to look right at viewer SetNewHeadTarget(0,0); } } const float DEGREES_BETWEEN_VIEWER_EYES = 3; const float DEGREES_TO_VIEWER_MOUTH = 7; if (_eyeContact) { // Should we pick a new eye contact target? if (randFloat() < 0.01) { // Choose where to look next if (randFloat() < 0.1) { _eyeContactTarget = MOUTH; } else { if (randFloat() < 0.5) _eyeContactTarget = LEFT_EYE; else _eyeContactTarget = RIGHT_EYE; } } // Set eyeball pitch and yaw to make contact float eye_target_yaw_adjust = 0; float eye_target_pitch_adjust = 0; if (_eyeContactTarget == LEFT_EYE) eye_target_yaw_adjust = DEGREES_BETWEEN_VIEWER_EYES; if (_eyeContactTarget == RIGHT_EYE) eye_target_yaw_adjust = -DEGREES_BETWEEN_VIEWER_EYES; if (_eyeContactTarget == MOUTH) eye_target_pitch_adjust = DEGREES_TO_VIEWER_MOUTH; _eyeballPitch[0] = _eyeballPitch[1] = -_headPitch + eye_target_pitch_adjust; _eyeballYaw[0] = _eyeballYaw[1] = -_headYaw + eye_target_yaw_adjust; } if (_noise) { _headPitch += (randFloat() - 0.5)*0.2*_noiseEnvelope; _headYaw += (randFloat() - 0.5)*0.3*_noiseEnvelope; //PupilSize += (randFloat() - 0.5)*0.001*NoiseEnvelope; if (randFloat() < 0.005) _mouthWidth = MouthWidthChoices[rand()%3]; if (!_eyeContact) { if (randFloat() < 0.01) _eyeballPitch[0] = _eyeballPitch[1] = (randFloat() - 0.5)*20; if (randFloat() < 0.01) _eyeballYaw[0] = _eyeballYaw[1] = (randFloat()- 0.5)*10; } if ((randFloat() < 0.005) && (fabs(_pitchTarget - _headPitch) < 1.0) && (fabs(_yawTarget - _headYaw) < 1.0)) { SetNewHeadTarget((randFloat()-0.5)*20.0, (randFloat()-0.5)*45.0); } if (0) { // Pick new target _pitchTarget = (randFloat() - 0.5)*45; _yawTarget = (randFloat() - 0.5)*22; } if (randFloat() < 0.01) { _eyebrowPitch[0] = _eyebrowPitch[1] = BrowPitchAngle[rand()%3]; _eyebrowRoll[0] = _eyebrowRoll[1] = BrowRollAngle[rand()%5]; _eyebrowRoll[1]*=-1; } } } //-------------------------------------------------------------------------------- // This is a workspace for testing avatar body collision detection and response //-------------------------------------------------------------------------------- void Head::updateBigSphereCollisionTest( float deltaTime ) { float myBodyApproximateBoundingRadius = 1.0f; glm::vec3 vectorFromMyBodyToBigSphere(_bodyPosition - _TEST_bigSpherePosition); bool jointCollision = false; float distanceToBigSphere = glm::length(vectorFromMyBodyToBigSphere); if ( distanceToBigSphere < myBodyApproximateBoundingRadius + _TEST_bigSphereRadius) { for (int b=0; b 0.0) { float amp = 1.0 - (distanceToBigSphereCenter / combinedRadius); glm::vec3 collisionForce = vectorFromJointToBigSphere * amp; _bone[b].springyVelocity += collisionForce * 8.0f * deltaTime; _avatar.velocity += collisionForce * 18.0f * deltaTime; } } } if ( jointCollision ) { //---------------------------------------------------------- // add gravity to velocity //---------------------------------------------------------- _avatar.velocity += glm::dvec3( 0.0, -1.0, 0.0 ) * 0.05; //---------------------------------------------------------- // ground collisions //---------------------------------------------------------- if ( _bodyPosition.y < 0.0 ) { _bodyPosition.y = 0.0; if ( _avatar.velocity.y < 0.0 ) { _avatar.velocity.y *= -0.7; } } } } } void Head::render(int faceToFace) { //--------------------------------------------------- // show avatar position //--------------------------------------------------- glColor4f( 0.5f, 0.5f, 0.5f, 0.6 ); glPushMatrix(); glTranslatef(_bodyPosition.x, _bodyPosition.y, _bodyPosition.z); glScalef( 0.03, 0.03, 0.03 ); glutSolidSphere( 1, 10, 10 ); glPopMatrix(); if ( usingBigSphereCollisionTest ) { //--------------------------------------------------- // show TEST big sphere //--------------------------------------------------- glColor4f( 0.5f, 0.6f, 0.8f, 0.7 ); glPushMatrix(); glTranslatef(_TEST_bigSpherePosition.x, _TEST_bigSpherePosition.y, _TEST_bigSpherePosition.z); glScalef( _TEST_bigSphereRadius, _TEST_bigSphereRadius, _TEST_bigSphereRadius ); glutSolidSphere( 1, 20, 20 ); glPopMatrix(); } //--------------------------------------------------- // show avatar orientation //--------------------------------------------------- renderOrientationDirections( _bone[ AVATAR_BONE_HEAD ].position, _bone[ AVATAR_BONE_HEAD ].orientation, 0.2f ); //--------------------------------------------------- // render body //--------------------------------------------------- renderBody(); //--------------------------------------------------- // render head //--------------------------------------------------- renderHead(faceToFace); //--------------------------------------------------------------------------- // if this is my avatar, then render my interactions with the other avatars //--------------------------------------------------------------------------- if ( _isMine ) { //--------------------------------------------------- // render other avatars (DEBUG TEST) //--------------------------------------------------- for (int o=0; o BROW_LIFT_THRESHOLD) _browAudioLift += sqrt(_audioAttack)/1000.0; _browAudioLift *= .90; glPushMatrix(); glTranslatef(-_interBrowDistance/2.0,0.4,0.45); for(side = 0; side < 2; side++) { glColor3fv(browColor); glPushMatrix(); glTranslatef(0, 0.35 + _browAudioLift, 0); glRotatef(_eyebrowPitch[side]/2.0, 1, 0, 0); glRotatef(_eyebrowRoll[side]/2.0, 0, 0, 1); glScalef(browWidth, browThickness, 1); glutSolidCube(0.5); glPopMatrix(); glTranslatef(_interBrowDistance, 0, 0); } glPopMatrix(); // Mouth glPushMatrix(); glTranslatef(0,-0.35,0.75); glColor3f(0,0,0); glRotatef(_mouthPitch, 1, 0, 0); glRotatef(_mouthYaw, 0, 0, 1); glScalef(_mouthWidth*(.7 + sqrt(_averageLoudness)/60.0), _mouthHeight*(1.0 + sqrt(_averageLoudness)/30.0), 1); glutSolidCube(0.5); glPopMatrix(); glTranslatef(0, 1.0, 0); glTranslatef(-_interPupilDistance/2.0,-0.68,0.7); // Right Eye glRotatef(-10, 1, 0, 0); glColor3fv(eyeColor); glPushMatrix(); { glTranslatef(_interPupilDistance/10.0, 0, 0.05); glRotatef(20, 0, 0, 1); glScalef(_eyeballScaleX, _eyeballScaleY, _eyeballScaleZ); glutSolidSphere(0.25, 30, 30); } glPopMatrix(); // Right Pupil if (_sphere == NULL) { _sphere = gluNewQuadric(); gluQuadricTexture(_sphere, GL_TRUE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); gluQuadricOrientation(_sphere, GLU_OUTSIDE); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, iris_texture_width, iris_texture_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, &iris_texture[0]); } glPushMatrix(); { glRotatef(_eyeballPitch[1], 1, 0, 0); glRotatef(_eyeballYaw[1] + _pupilConverge, 0, 1, 0); glTranslatef(0,0,.35); glRotatef(-75,1,0,0); glScalef(1.0, 0.4, 1.0); glEnable(GL_TEXTURE_2D); gluSphere(_sphere, _pupilSize, 15, 15); glDisable(GL_TEXTURE_2D); } glPopMatrix(); // Left Eye glColor3fv(eyeColor); glTranslatef(_interPupilDistance, 0, 0); glPushMatrix(); { glTranslatef(-_interPupilDistance/10.0, 0, .05); glRotatef(-20, 0, 0, 1); glScalef(_eyeballScaleX, _eyeballScaleY, _eyeballScaleZ); glutSolidSphere(0.25, 30, 30); } glPopMatrix(); // Left Pupil glPushMatrix(); { glRotatef(_eyeballPitch[0], 1, 0, 0); glRotatef(_eyeballYaw[0] - _pupilConverge, 0, 1, 0); glTranslatef(0, 0, .35); glRotatef(-75, 1, 0, 0); glScalef(1.0, 0.4, 1.0); glEnable(GL_TEXTURE_2D); gluSphere(_sphere, _pupilSize, 15, 15); glDisable(GL_TEXTURE_2D); } glPopMatrix(); glPopMatrix(); } void Head::setHandMovement( glm::vec3 handOffset ) { _handBeingMoved = true; _movedHandOffset = handOffset; } AvatarMode Head::getMode() { return _mode; } void Head::initializeSkeleton() { for (int b=0; b 0.0f ) { glm::vec3 springDirection = springVector / length; float force = ( length - _bone[b].length ) * _springForce * deltaTime; _bone[ b ].springyVelocity -= springDirection * force; if ( _bone[b].parent != AVATAR_BONE_NULL ) { _bone[ _bone[b].parent ].springyVelocity += springDirection * force; } } _bone[b].springyVelocity += ( _bone[b].position - _bone[b].springyPosition ) * _bone[b].springBodyTightness * deltaTime; float decay = 1.0 - _springVelocityDecay * deltaTime; if ( decay > 0.0 ) { _bone[b].springyVelocity *= decay; } else { _bone[b].springyVelocity = glm::vec3( 0.0f, 0.0f, 0.0f ); } _bone[b].springyPosition += _bone[b].springyVelocity; } } glm::vec3 Head::getHeadLookatDirection() { return glm::vec3 ( _avatar.orientation.getFront().x, _avatar.orientation.getFront().y, _avatar.orientation.getFront().z ); } glm::vec3 Head::getHeadLookatDirectionUp() { return glm::vec3 ( _avatar.orientation.getUp().x, _avatar.orientation.getUp().y, _avatar.orientation.getUp().z ); } glm::vec3 Head::getHeadLookatDirectionRight() { return glm::vec3 ( _avatar.orientation.getRight().x, _avatar.orientation.getRight().y, _avatar.orientation.getRight().z ); } glm::vec3 Head::getHeadPosition() { return glm::vec3 ( _bone[ AVATAR_BONE_HEAD ].position.x, _bone[ AVATAR_BONE_HEAD ].position.y, _bone[ AVATAR_BONE_HEAD ].position.z ); } void Head::updateHandMovement() { glm::vec3 transformedHandMovement; transformedHandMovement = _avatar.orientation.getRight() * _movedHandOffset.x + _avatar.orientation.getUp() * -_movedHandOffset.y * 0.5f + _avatar.orientation.getFront() * -_movedHandOffset.y; _bone[ AVATAR_BONE_RIGHT_HAND ].position += transformedHandMovement; //if holding hands, add a pull to the hand... if ( _usingSprings ) { if ( _closestOtherAvatar != -1 ) { if ( _triggeringAction ) { /* glm::vec3 handShakePull( DEBUG_otherAvatarListPosition[ closestOtherAvatar ]); handShakePull -= _bone[ AVATAR_BONE_RIGHT_HAND ].position; handShakePull *= 1.0; transformedHandMovement += handShakePull; */ _bone[ AVATAR_BONE_RIGHT_HAND ].position = _DEBUG_otherAvatarListPosition[ _closestOtherAvatar ]; } } } //------------------------------------------------------------------------------- // determine the arm vector //------------------------------------------------------------------------------- glm::vec3 armVector = _bone[ AVATAR_BONE_RIGHT_HAND ].position; armVector -= _bone[ AVATAR_BONE_RIGHT_SHOULDER ].position; //------------------------------------------------------------------------------- // test to see if right hand is being dragged beyond maximum arm length //------------------------------------------------------------------------------- float distance = glm::length( armVector ); //------------------------------------------------------------------------------- // if right hand is being dragged beyond maximum arm length... //------------------------------------------------------------------------------- if ( distance > _avatar.maxArmLength ) { //------------------------------------------------------------------------------- // reset right hand to be constrained to maximum arm length //------------------------------------------------------------------------------- _bone[ AVATAR_BONE_RIGHT_HAND ].position = _bone[ AVATAR_BONE_RIGHT_SHOULDER ].position; glm::vec3 armNormal = armVector / distance; armVector = armNormal * _avatar.maxArmLength; distance = _avatar.maxArmLength; glm::vec3 constrainedPosition = _bone[ AVATAR_BONE_RIGHT_SHOULDER ].position; constrainedPosition += armVector; _bone[ AVATAR_BONE_RIGHT_HAND ].position = constrainedPosition; } /* //------------------------------------------------------------------------------- // keep arm from going through av body... //------------------------------------------------------------------------------- glm::vec3 adjustedArmVector = _bone[ AVATAR_BONE_RIGHT_HAND ].position; adjustedArmVector -= _bone[ AVATAR_BONE_RIGHT_SHOULDER ].position; float rightComponent = glm::dot( adjustedArmVector, avatar.orientation.getRight() ); if ( rightComponent < 0.0 ) { _bone[ AVATAR_BONE_RIGHT_HAND ].position -= avatar.orientation.getRight() * rightComponent; } */ //----------------------------------------------------------------------------- // set elbow position //----------------------------------------------------------------------------- glm::vec3 newElbowPosition = _bone[ AVATAR_BONE_RIGHT_SHOULDER ].position; newElbowPosition += armVector * ONE_HALF; glm::vec3 perpendicular = glm::cross( _avatar.orientation.getFront(), armVector ); newElbowPosition += perpendicular * ( 1.0f - ( _avatar.maxArmLength / distance ) ) * ONE_HALF; _bone[ AVATAR_BONE_RIGHT_UPPER_ARM ].position = newElbowPosition; //----------------------------------------------------------------------------- // set wrist position //----------------------------------------------------------------------------- glm::vec3 vv( _bone[ AVATAR_BONE_RIGHT_HAND ].position ); vv -= _bone[ AVATAR_BONE_RIGHT_UPPER_ARM ].position; glm::vec3 newWristPosition = _bone[ AVATAR_BONE_RIGHT_UPPER_ARM ].position; newWristPosition += vv * 0.7f; _bone[ AVATAR_BONE_RIGHT_FOREARM ].position = newWristPosition; // Set the vector we send for hand position to other people to be our right hand setHandPosition(_bone[ AVATAR_BONE_RIGHT_HAND ].position); } void Head::renderBody() { //----------------------------------------- // Render bone positions as spheres //----------------------------------------- for (int b=0; b( (double)TRANSMITTER_COUNT/(msecsElapsed/1000.0) ); _transmitterTimer = now; } /* NOTE: PR: Will add back in when ready to animate avatar hand // Add rotational forces to the hand const float ANG_VEL_SENSITIVITY = 4.0; const float ANG_VEL_THRESHOLD = 0.0; float angVelScale = ANG_VEL_SENSITIVITY*(1.0f/getTransmitterHz()); addAngularVelocity(fabs(gyrX*angVelScale)>ANG_VEL_THRESHOLD?gyrX*angVelScale:0, fabs(gyrZ*angVelScale)>ANG_VEL_THRESHOLD?gyrZ*angVelScale:0, fabs(-gyrY*angVelScale)>ANG_VEL_THRESHOLD?-gyrY*angVelScale:0); // Add linear forces to the hand //const float LINEAR_VEL_SENSITIVITY = 50.0; const float LINEAR_VEL_SENSITIVITY = 5.0; float linVelScale = LINEAR_VEL_SENSITIVITY*(1.0f/getTransmitterHz()); glm::vec3 linVel(linX*linVelScale, linZ*linVelScale, -linY*linVelScale); addVelocity(linVel); */ }