// // Audio.cpp // interface // // Created by Stephen Birarda on 1/22/13. // Copyright (c) 2013 High Fidelity, Inc. All rights reserved. // #include #include #ifdef __APPLE__ #include #endif #include #include #include #include #include #include #include #include #include #include #include "Application.h" #include "Audio.h" #include "Menu.h" #include "Util.h" static const float JITTER_BUFFER_LENGTH_MSECS = 12; static const short JITTER_BUFFER_SAMPLES = JITTER_BUFFER_LENGTH_MSECS * NUM_AUDIO_CHANNELS * (SAMPLE_RATE / 1000.0); static const float AUDIO_CALLBACK_MSECS = (float)BUFFER_LENGTH_SAMPLES_PER_CHANNEL / (float)SAMPLE_RATE * 1000.0; // Mute icon configration static const int ICON_SIZE = 24; static const int ICON_LEFT = 20; static const int BOTTOM_PADDING = 110; Audio::Audio(Oscilloscope* scope, int16_t initialJitterBufferSamples, QObject* parent) : QObject(parent), _audioInput(NULL), _desiredInputFormat(), _inputFormat(), _inputDevice(NULL), _inputBuffer(), _numInputCallbackBytes(0), _audioOutput(NULL), _desiredOutputFormat(), _outputFormat(), _outputDevice(NULL), _outputBuffer(), _numOutputCallbackBytes(0), _nextOutputSamples(NULL), _ringBuffer(true), _scope(scope), _averagedLatency(0.0), _measuredJitter(0), _jitterBufferSamples(initialJitterBufferSamples), _lastInputLoudness(0), _lastVelocity(0), _lastAcceleration(0), _totalPacketsReceived(0), _collisionSoundMagnitude(0.0f), _collisionSoundFrequency(0.0f), _collisionSoundNoise(0.0f), _collisionSoundDuration(0.0f), _proceduralEffectSample(0), _numFramesDisplayStarve(0), _muted(false) { } void Audio::init(QGLWidget *parent) { switchToResourcesParentIfRequired(); _micTextureId = parent->bindTexture(QImage("./resources/images/mic.svg")); _muteTextureId = parent->bindTexture(QImage("./resources/images/mute.svg")); } void Audio::reset() { _ringBuffer.reset(); } QAudioDeviceInfo defaultAudioDeviceForMode(QAudio::Mode mode) { #ifdef __APPLE__ if (QAudioDeviceInfo::availableDevices(mode).size() > 1) { AudioDeviceID defaultDeviceID = 0; uint32_t propertySize = sizeof(AudioDeviceID); AudioObjectPropertyAddress propertyAddress = { kAudioHardwarePropertyDefaultInputDevice, kAudioObjectPropertyScopeGlobal, kAudioObjectPropertyElementMaster }; if (mode == QAudio::AudioOutput) { propertyAddress.mSelector = kAudioHardwarePropertyDefaultOutputDevice; } OSStatus getPropertyError = AudioObjectGetPropertyData(kAudioObjectSystemObject, &propertyAddress, 0, NULL, &propertySize, &defaultDeviceID); if (!getPropertyError && propertySize) { CFStringRef deviceName = NULL; propertySize = sizeof(deviceName); propertyAddress.mSelector = kAudioDevicePropertyDeviceNameCFString; getPropertyError = AudioObjectGetPropertyData(defaultDeviceID, &propertyAddress, 0, NULL, &propertySize, &deviceName); if (!getPropertyError && propertySize) { // find a device in the list that matches the name we have and return it foreach(QAudioDeviceInfo audioDevice, QAudioDeviceInfo::availableDevices(mode)) { if (audioDevice.deviceName() == CFStringGetCStringPtr(deviceName, kCFStringEncodingMacRoman)) { return audioDevice; } } } } } #endif // fallback for failed lookup is the default device return (mode == QAudio::AudioInput) ? QAudioDeviceInfo::defaultInputDevice() : QAudioDeviceInfo::defaultOutputDevice(); } bool adjustedFormatForAudioDevice(const QAudioDeviceInfo& audioDevice, const QAudioFormat& desiredAudioFormat, QAudioFormat& adjustedAudioFormat) { if (!audioDevice.isFormatSupported(desiredAudioFormat)) { qDebug() << "The desired format for audio I/O is" << desiredAudioFormat << "\n"; qDebug() << "The desired audio format is not supported by this device.\n"; if (desiredAudioFormat.channelCount() == 1) { adjustedAudioFormat = desiredAudioFormat; adjustedAudioFormat.setChannelCount(2); if (audioDevice.isFormatSupported(adjustedAudioFormat)) { return true; } else { adjustedAudioFormat.setChannelCount(1); } } if (audioDevice.supportedSampleRates().contains(SAMPLE_RATE * 2)) { // use 48, which is a sample downsample, upsample adjustedAudioFormat = desiredAudioFormat; adjustedAudioFormat.setSampleRate(SAMPLE_RATE * 2); // return the nearest in case it needs 2 channels adjustedAudioFormat = audioDevice.nearestFormat(adjustedAudioFormat); return true; } return false; } else { // set the adjustedAudioFormat to the desiredAudioFormat, since it will work adjustedAudioFormat = desiredAudioFormat; return true; } } void linearResampling(int16_t* sourceSamples, int16_t* destinationSamples, unsigned int numSourceSamples, unsigned int numDestinationSamples, const QAudioFormat& sourceAudioFormat, const QAudioFormat& destinationAudioFormat) { if (sourceAudioFormat == destinationAudioFormat) { memcpy(destinationSamples, sourceSamples, numSourceSamples * sizeof(int16_t)); } else { float sourceToDestinationFactor = numSourceSamples / (float) numDestinationSamples; // take into account the number of channels in source and destination // accomodate for the case where have an output with > 2 channels // this is the case with our HDMI capture if (sourceToDestinationFactor >= 2) { // we need to downsample from 48 to 24 // for now this only supports a mono output - this would be the case for audio input for (int i = 2; i < numSourceSamples; i += 4) { if (i + 2 >= numSourceSamples) { destinationSamples[(i - 2) / 4] = (sourceSamples[i - 2] / 2) + (sourceSamples[i] / 2); } else { destinationSamples[(i - 2) / 4] = (sourceSamples[i - 2] / 4) + (sourceSamples[i] / 2) + (sourceSamples[i + 2] / 4); } } } else { int numResultingDestinationSamples = numSourceSamples * (destinationAudioFormat.sampleRate() / sourceAudioFormat.sampleRate()) * (destinationAudioFormat.channelCount() / sourceAudioFormat.channelCount()); int sourceIndex = 0; // upsample from 24 to 48 for (int i = 0; i < numResultingDestinationSamples; i += destinationAudioFormat.channelCount()) { sourceIndex = i * sourceToDestinationFactor; destinationSamples[i] = sourceSamples[sourceIndex]; if (sourceAudioFormat.channelCount() == 1) { destinationSamples[i + 1] = sourceSamples[sourceIndex]; } else { destinationSamples[i + 1] = sourceSamples[(sourceIndex) + 1]; if (destinationAudioFormat.channelCount() > 2) { // fill the rest of the channels with silence for (int j = 2; j < destinationAudioFormat.channelCount(); j++) { destinationSamples[i] = 0; } } } if (numResultingDestinationSamples < numDestinationSamples && i + destinationAudioFormat.channelCount() >= numResultingDestinationSamples) { // make sure we don't leave a gap on the number of destination samples for (int k = numResultingDestinationSamples; k < numDestinationSamples; k++) { destinationSamples[k] = destinationSamples[k - destinationAudioFormat.channelCount()]; } } } } } } const int CALLBACK_ACCELERATOR_RATIO = 2; void Audio::start() { // set up the desired audio format _desiredInputFormat.setSampleRate(SAMPLE_RATE); _desiredInputFormat.setSampleSize(16); _desiredInputFormat.setCodec("audio/pcm"); _desiredInputFormat.setSampleType(QAudioFormat::SignedInt); _desiredInputFormat.setByteOrder(QAudioFormat::LittleEndian); _desiredInputFormat.setChannelCount(1); _desiredOutputFormat = _desiredInputFormat; _desiredOutputFormat.setChannelCount(2); QAudioDeviceInfo inputDeviceInfo = defaultAudioDeviceForMode(QAudio::AudioInput); qDebug() << "The audio input device is" << inputDeviceInfo.deviceName() << "\n"; if (adjustedFormatForAudioDevice(inputDeviceInfo, _desiredInputFormat, _inputFormat)) { qDebug() << "The format to be used for audio input is" << _inputFormat << "\n"; _audioInput = new QAudioInput(inputDeviceInfo, _inputFormat, this); _numInputCallbackBytes = BUFFER_LENGTH_BYTES_PER_CHANNEL * _inputFormat.channelCount() * (_inputFormat.sampleRate() / SAMPLE_RATE) / CALLBACK_ACCELERATOR_RATIO; _audioInput->setBufferSize(_numInputCallbackBytes); QAudioDeviceInfo outputDeviceInfo = defaultAudioDeviceForMode(QAudio::AudioOutput); qDebug() << "The audio output device is" << outputDeviceInfo.deviceName() << "\n"; if (adjustedFormatForAudioDevice(outputDeviceInfo, _desiredOutputFormat, _outputFormat)) { qDebug() << "The format to be used for audio output is" << _outputFormat << "\n"; _inputDevice = _audioInput->start(); connect(_inputDevice, SIGNAL(readyRead()), SLOT(handleAudioInput())); _audioOutput = new QAudioOutput(outputDeviceInfo, _outputFormat, this); _numOutputCallbackBytes = BUFFER_LENGTH_BYTES_PER_CHANNEL * _outputFormat.channelCount() * (_outputFormat.sampleRate() / SAMPLE_RATE) / CALLBACK_ACCELERATOR_RATIO; _audioOutput->setBufferSize(_numOutputCallbackBytes); _outputDevice = _audioOutput->start(); gettimeofday(&_lastReceiveTime, NULL); } return; } qDebug() << "Unable to set up audio I/O because of a problem with input or output formats.\n"; } void Audio::handleAudioInput() { static char monoAudioDataPacket[MAX_PACKET_SIZE]; static int numBytesPacketHeader = numBytesForPacketHeader((unsigned char*) &PACKET_TYPE_MICROPHONE_AUDIO_NO_ECHO); static int leadingBytes = numBytesPacketHeader + sizeof(glm::vec3) + sizeof(glm::quat) + NUM_BYTES_RFC4122_UUID; static int16_t* monoAudioSamples = (int16_t*) (monoAudioDataPacket + leadingBytes); static float inputToOutputRatio = _numOutputCallbackBytes / _numInputCallbackBytes; static float inputToNetworkInputRatio = _numInputCallbackBytes * CALLBACK_ACCELERATOR_RATIO / BUFFER_LENGTH_BYTES_PER_CHANNEL; QByteArray inputByteArray = _inputDevice->readAll(); int numResampledNetworkInputBytes = inputByteArray.size() / inputToNetworkInputRatio; int numResampledNetworkInputSamples = numResampledNetworkInputBytes / sizeof(int16_t); // zero out the monoAudioSamples array memset(monoAudioSamples, 0, numResampledNetworkInputBytes); if (Menu::getInstance()->isOptionChecked(MenuOption::EchoLocalAudio) && !_muted) { _outputBuffer.resize(inputByteArray.size()); // if local loopback enabled, copy input to output linearResampling((int16_t*) inputByteArray.data(), (int16_t*) _outputBuffer.data(), inputByteArray.size() / sizeof(int16_t), inputByteArray.size() * inputToOutputRatio / sizeof(int16_t), _inputFormat, _outputFormat); } else { _outputBuffer.fill(0, inputByteArray.size()); } // add input data just written to the scope // QMetaObject::invokeMethod(_scope, "addStereoSamples", Qt::QueuedConnection, // Q_ARG(QByteArray, inputByteArray), Q_ARG(bool, true)); // add procedural effects to the appropriate input samples // addProceduralSounds(monoAudioSamples + (_isBufferSendCallback // ? BUFFER_LENGTH_SAMPLES_PER_CHANNEL / CALLBACK_ACCELERATOR_RATIO : 0), // (int16_t*) stereoOutputBuffer.data(), // BUFFER_LENGTH_SAMPLES_PER_CHANNEL / CALLBACK_ACCELERATOR_RATIO); NodeList* nodeList = NodeList::getInstance(); Node* audioMixer = nodeList->soloNodeOfType(NODE_TYPE_AUDIO_MIXER); if (audioMixer) { if (audioMixer->getActiveSocket()) { MyAvatar* interfaceAvatar = Application::getInstance()->getAvatar(); glm::vec3 headPosition = interfaceAvatar->getHeadJointPosition(); glm::quat headOrientation = interfaceAvatar->getHead().getOrientation(); // we need the amount of bytes in the buffer + 1 for type // + 12 for 3 floats for position + float for bearing + 1 attenuation byte PACKET_TYPE packetType = Menu::getInstance()->isOptionChecked(MenuOption::EchoServerAudio) ? PACKET_TYPE_MICROPHONE_AUDIO_WITH_ECHO : PACKET_TYPE_MICROPHONE_AUDIO_NO_ECHO; char* currentPacketPtr = monoAudioDataPacket + populateTypeAndVersion((unsigned char*) monoAudioDataPacket, packetType); // pack Source Data QByteArray rfcUUID = NodeList::getInstance()->getOwnerUUID().toRfc4122(); memcpy(currentPacketPtr, rfcUUID.constData(), rfcUUID.size()); currentPacketPtr += rfcUUID.size(); // memcpy the three float positions memcpy(currentPacketPtr, &headPosition, sizeof(headPosition)); currentPacketPtr += (sizeof(headPosition)); // memcpy our orientation memcpy(currentPacketPtr, &headOrientation, sizeof(headOrientation)); currentPacketPtr += sizeof(headOrientation); if (!_muted) { float loudness = 0; // loudness /= BUFFER_LENGTH_SAMPLES_PER_CHANNEL; _lastInputLoudness = loudness; // we aren't muted - pull our input audio to send off to the mixer linearResampling((int16_t*) inputByteArray.data(), monoAudioSamples, inputByteArray.size() / sizeof(int16_t), numResampledNetworkInputSamples, _inputFormat, _desiredInputFormat); } else { _lastInputLoudness = 0; } nodeList->getNodeSocket().writeDatagram(monoAudioDataPacket, numResampledNetworkInputBytes + leadingBytes, audioMixer->getActiveSocket()->getAddress(), audioMixer->getActiveSocket()->getPort()); Application::getInstance()->getBandwidthMeter()->outputStream(BandwidthMeter::AUDIO) .updateValue(BUFFER_LENGTH_BYTES_PER_CHANNEL + leadingBytes); } else { nodeList->pingPublicAndLocalSocketsForInactiveNode(audioMixer); } } if (_outputDevice) { // if there is anything in the ring buffer, decide what to do if (_ringBuffer.getEndOfLastWrite()) { if (_ringBuffer.isStarved() && _ringBuffer.diffLastWriteNextOutput() < ((_outputBuffer.size() / sizeof(int16_t)) + _jitterBufferSamples * (_ringBuffer.isStereo() ? 2 : 1))) { // If not enough audio has arrived to start playback, keep waiting } else if (!_ringBuffer.isStarved() && _ringBuffer.diffLastWriteNextOutput() == 0) { // If we have started and now have run out of audio to send to the audio device, // this means we've starved and should restart. _ringBuffer.setIsStarved(true); // show a starve in the GUI for 10 frames _numFramesDisplayStarve = 10; } else { // We are either already playing back, or we have enough audio to start playing back. if (_ringBuffer.isStarved()) { _ringBuffer.setIsStarved(false); _ringBuffer.setHasStarted(true); } int numRequiredNetworkOutputBytes = numResampledNetworkInputBytes * 2; int numRequiredNetworkOutputSamples = numRequiredNetworkOutputBytes / sizeof(int16_t); int numResampledOutputBytes = inputByteArray.size() * inputToOutputRatio; if (_ringBuffer.getNextOutput() + numRequiredNetworkOutputSamples > _ringBuffer.getBuffer() + RING_BUFFER_LENGTH_SAMPLES) { numRequiredNetworkOutputSamples = (_ringBuffer.getBuffer() + RING_BUFFER_LENGTH_SAMPLES) - _ringBuffer.getNextOutput(); } // copy the packet from the RB to the output linearResampling(_ringBuffer.getNextOutput(), (int16_t*) _outputBuffer.data(), numRequiredNetworkOutputSamples, numResampledOutputBytes / sizeof(int16_t), _desiredOutputFormat, _outputFormat); _ringBuffer.setNextOutput(_ringBuffer.getNextOutput() + numRequiredNetworkOutputSamples); if (_ringBuffer.getNextOutput() >= _ringBuffer.getBuffer() + RING_BUFFER_LENGTH_SAMPLES) { _ringBuffer.setNextOutput(_ringBuffer.getBuffer()); } } } // add output (@speakers) data just written to the scope // QMetaObject::invokeMethod(_scope, "addStereoSamples", Qt::QueuedConnection, // Q_ARG(QByteArray, stereoOutputBuffer), Q_ARG(bool, false)); _outputDevice->write(_outputBuffer); } gettimeofday(&_lastCallbackTime, NULL); } void Audio::addReceivedAudioToBuffer(const QByteArray& audioByteArray) { const int NUM_INITIAL_PACKETS_DISCARD = 3; const int STANDARD_DEVIATION_SAMPLE_COUNT = 500; timeval currentReceiveTime; gettimeofday(¤tReceiveTime, NULL); _totalPacketsReceived++; double timeDiff = diffclock(&_lastReceiveTime, ¤tReceiveTime); // Discard first few received packets for computing jitter (often they pile up on start) if (_totalPacketsReceived > NUM_INITIAL_PACKETS_DISCARD) { _stdev.addValue(timeDiff); } if (_stdev.getSamples() > STANDARD_DEVIATION_SAMPLE_COUNT) { _measuredJitter = _stdev.getStDev(); _stdev.reset(); // Set jitter buffer to be a multiple of the measured standard deviation const int MAX_JITTER_BUFFER_SAMPLES = RING_BUFFER_LENGTH_SAMPLES / 2; const float NUM_STANDARD_DEVIATIONS = 3.f; if (Menu::getInstance()->getAudioJitterBufferSamples() == 0) { float newJitterBufferSamples = (NUM_STANDARD_DEVIATIONS * _measuredJitter) / 1000.f * SAMPLE_RATE; setJitterBufferSamples(glm::clamp((int)newJitterBufferSamples, 0, MAX_JITTER_BUFFER_SAMPLES)); } } // if (_ringBuffer.diffLastWriteNextOutput() + PACKET_LENGTH_SAMPLES > // PACKET_LENGTH_SAMPLES + (ceilf((float) (_jitterBufferSamples * 2) / PACKET_LENGTH_SAMPLES) * PACKET_LENGTH_SAMPLES)) { // // this packet would give us more than the required amount for play out // // discard the first packet in the buffer // // _ringBuffer.setNextOutput(_ringBuffer.getNextOutput() + PACKET_LENGTH_SAMPLES); // // if (_ringBuffer.getNextOutput() >= _ringBuffer.getBuffer() + RING_BUFFER_LENGTH_SAMPLES) { // _ringBuffer.setNextOutput(_ringBuffer.getBuffer()); // } // } _ringBuffer.parseData((unsigned char*) audioByteArray.data(), audioByteArray.size()); Application::getInstance()->getBandwidthMeter()->inputStream(BandwidthMeter::AUDIO).updateValue(PACKET_LENGTH_BYTES + sizeof(PACKET_TYPE)); _lastReceiveTime = currentReceiveTime; } bool Audio::mousePressEvent(int x, int y) { if (_iconBounds.contains(x, y)) { _muted = !_muted; return true; } return false; } void Audio::render(int screenWidth, int screenHeight) { if (_audioInput) { glLineWidth(2.0); glBegin(GL_LINES); glColor3f(1,1,1); int startX = 20.0; int currentX = startX; int topY = screenHeight - 40; int bottomY = screenHeight - 20; float frameWidth = 20.0; float halfY = topY + ((bottomY - topY) / 2.0); // draw the lines for the base of the ring buffer glVertex2f(currentX, topY); glVertex2f(currentX, bottomY); for (int i = 0; i < RING_BUFFER_LENGTH_FRAMES / 2; i++) { glVertex2f(currentX, halfY); glVertex2f(currentX + frameWidth, halfY); currentX += frameWidth; glVertex2f(currentX, topY); glVertex2f(currentX, bottomY); } glEnd(); // Show a bar with the amount of audio remaining in ring buffer beyond current playback float remainingBuffer = 0; timeval currentTime; gettimeofday(¤tTime, NULL); float timeLeftInCurrentBuffer = 0; if (_lastCallbackTime.tv_usec > 0) { timeLeftInCurrentBuffer = AUDIO_CALLBACK_MSECS - diffclock(&_lastCallbackTime, ¤tTime); } if (_ringBuffer.getEndOfLastWrite() != NULL) remainingBuffer = _ringBuffer.diffLastWriteNextOutput() / PACKET_LENGTH_SAMPLES * AUDIO_CALLBACK_MSECS; if (_numFramesDisplayStarve == 0) { glColor3f(0, 1, 0); } else { glColor3f(0.5 + (_numFramesDisplayStarve / 20.0f), 0, 0); _numFramesDisplayStarve--; } glBegin(GL_QUADS); glVertex2f(startX, topY + 2); glVertex2f(startX + (remainingBuffer + timeLeftInCurrentBuffer) / AUDIO_CALLBACK_MSECS * frameWidth, topY + 2); glVertex2f(startX + (remainingBuffer + timeLeftInCurrentBuffer) / AUDIO_CALLBACK_MSECS * frameWidth, bottomY - 2); glVertex2f(startX, bottomY - 2); glEnd(); if (_averagedLatency == 0.0) { _averagedLatency = remainingBuffer + timeLeftInCurrentBuffer; } else { _averagedLatency = 0.99f * _averagedLatency + 0.01f * (remainingBuffer + timeLeftInCurrentBuffer); } // Show a yellow bar with the averaged msecs latency you are hearing (from time of packet receipt) glColor3f(1,1,0); glBegin(GL_QUADS); glVertex2f(startX + _averagedLatency / AUDIO_CALLBACK_MSECS * frameWidth - 2, topY - 2); glVertex2f(startX + _averagedLatency / AUDIO_CALLBACK_MSECS * frameWidth + 2, topY - 2); glVertex2f(startX + _averagedLatency / AUDIO_CALLBACK_MSECS * frameWidth + 2, bottomY + 2); glVertex2f(startX + _averagedLatency / AUDIO_CALLBACK_MSECS * frameWidth - 2, bottomY + 2); glEnd(); char out[40]; sprintf(out, "%3.0f\n", _averagedLatency); drawtext(startX + _averagedLatency / AUDIO_CALLBACK_MSECS * frameWidth - 10, topY - 9, 0.10, 0, 1, 0, out, 1,1,0); // Show a red bar with the 'start' point of one frame plus the jitter buffer glColor3f(1, 0, 0); int jitterBufferPels = (1.f + (float)getJitterBufferSamples() / (float) PACKET_LENGTH_SAMPLES_PER_CHANNEL) * frameWidth; sprintf(out, "%.0f\n", getJitterBufferSamples() / SAMPLE_RATE * 1000.f); drawtext(startX + jitterBufferPels - 5, topY - 9, 0.10, 0, 1, 0, out, 1, 0, 0); sprintf(out, "j %.1f\n", _measuredJitter); if (Menu::getInstance()->getAudioJitterBufferSamples() == 0) { drawtext(startX + jitterBufferPels - 5, bottomY + 12, 0.10, 0, 1, 0, out, 1, 0, 0); } else { drawtext(startX, bottomY + 12, 0.10, 0, 1, 0, out, 1, 0, 0); } glBegin(GL_QUADS); glVertex2f(startX + jitterBufferPels - 2, topY - 2); glVertex2f(startX + jitterBufferPels + 2, topY - 2); glVertex2f(startX + jitterBufferPels + 2, bottomY + 2); glVertex2f(startX + jitterBufferPels - 2, bottomY + 2); glEnd(); } renderToolIcon(screenHeight); } // Take a pointer to the acquired microphone input samples and add procedural sounds void Audio::addProceduralSounds(int16_t* monoInput, int16_t* stereoUpsampledOutput, int numSamples) { const float MAX_AUDIBLE_VELOCITY = 6.0; const float MIN_AUDIBLE_VELOCITY = 0.1; const int VOLUME_BASELINE = 400; const float SOUND_PITCH = 8.f; float speed = glm::length(_lastVelocity); float volume = VOLUME_BASELINE * (1.f - speed / MAX_AUDIBLE_VELOCITY); float sample; // Travelling noise // Add a noise-modulated sinewave with volume that tapers off with speed increasing if ((speed > MIN_AUDIBLE_VELOCITY) && (speed < MAX_AUDIBLE_VELOCITY)) { for (int i = 0; i < numSamples; i++) { monoInput[i] += (int16_t)(sinf((float) (_proceduralEffectSample + i) / SOUND_PITCH ) * volume * (1.f + randFloat() * 0.25f) * speed); } } const float COLLISION_SOUND_CUTOFF_LEVEL = 0.01f; const float COLLISION_SOUND_MAX_VOLUME = 1000.f; const float UP_MAJOR_FIFTH = powf(1.5f, 4.0f); const float DOWN_TWO_OCTAVES = 4.f; const float DOWN_FOUR_OCTAVES = 16.f; float t; if (_collisionSoundMagnitude > COLLISION_SOUND_CUTOFF_LEVEL) { for (int i = 0; i < numSamples; i++) { t = (float) _proceduralEffectSample + (float) i; sample = sinf(t * _collisionSoundFrequency) + sinf(t * _collisionSoundFrequency / DOWN_TWO_OCTAVES) + sinf(t * _collisionSoundFrequency / DOWN_FOUR_OCTAVES * UP_MAJOR_FIFTH); sample *= _collisionSoundMagnitude * COLLISION_SOUND_MAX_VOLUME; int16_t collisionSample = (int16_t) sample; monoInput[i] += collisionSample; for (int j = (i * 4); j < (i * 4) + 4; j++) { stereoUpsampledOutput[j] += collisionSample; } _collisionSoundMagnitude *= _collisionSoundDuration; } } _proceduralEffectSample += numSamples; // Add a drum sound const float MAX_VOLUME = 32000.f; const float MAX_DURATION = 2.f; const float MIN_AUDIBLE_VOLUME = 0.001f; const float NOISE_MAGNITUDE = 0.02f; float frequency = (_drumSoundFrequency / SAMPLE_RATE) * PI_TIMES_TWO; if (_drumSoundVolume > 0.f) { for (int i = 0; i < numSamples; i++) { t = (float) _drumSoundSample + (float) i; sample = sinf(t * frequency); sample += ((randFloat() - 0.5f) * NOISE_MAGNITUDE); sample *= _drumSoundVolume * MAX_VOLUME; int16_t collisionSample = (int16_t) sample; monoInput[i] += collisionSample; for (int j = (i * 4); j < (i * 4) + 4; j++) { stereoUpsampledOutput[j] += collisionSample; } _drumSoundVolume *= (1.f - _drumSoundDecay); } _drumSoundSample += numSamples; _drumSoundDuration = glm::clamp(_drumSoundDuration - (AUDIO_CALLBACK_MSECS / 1000.f), 0.f, MAX_DURATION); if (_drumSoundDuration == 0.f || (_drumSoundVolume < MIN_AUDIBLE_VOLUME)) { _drumSoundVolume = 0.f; } } } // Starts a collision sound. magnitude is 0-1, with 1 the loudest possible sound. void Audio::startCollisionSound(float magnitude, float frequency, float noise, float duration, bool flashScreen) { _collisionSoundMagnitude = magnitude; _collisionSoundFrequency = frequency; _collisionSoundNoise = noise; _collisionSoundDuration = duration; _collisionFlashesScreen = flashScreen; } void Audio::startDrumSound(float volume, float frequency, float duration, float decay) { _drumSoundVolume = volume; _drumSoundFrequency = frequency; _drumSoundDuration = duration; _drumSoundDecay = decay; _drumSoundSample = 0; } void Audio::renderToolIcon(int screenHeight) { _iconBounds = QRect(ICON_LEFT, screenHeight - BOTTOM_PADDING, ICON_SIZE, ICON_SIZE); glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, _micTextureId); glColor3f(1, 1, 1); glBegin(GL_QUADS); glTexCoord2f(1, 1); glVertex2f(_iconBounds.left(), _iconBounds.top()); glTexCoord2f(0, 1); glVertex2f(_iconBounds.right(), _iconBounds.top()); glTexCoord2f(0, 0); glVertex2f(_iconBounds.right(), _iconBounds.bottom()); glTexCoord2f(1, 0); glVertex2f(_iconBounds.left(), _iconBounds.bottom()); glEnd(); if (_muted) { glBindTexture(GL_TEXTURE_2D, _muteTextureId); glBegin(GL_QUADS); glTexCoord2f(1, 1); glVertex2f(_iconBounds.left(), _iconBounds.top()); glTexCoord2f(0, 1); glVertex2f(_iconBounds.right(), _iconBounds.top()); glTexCoord2f(0, 0); glVertex2f(_iconBounds.right(), _iconBounds.bottom()); glTexCoord2f(1, 0); glVertex2f(_iconBounds.left(), _iconBounds.bottom()); glEnd(); } glDisable(GL_TEXTURE_2D); }