// // ObjectActionSpring.cpp // libraries/physics/src // // Created by Seth Alves 2015-6-5 // Copyright 2015 High Fidelity, Inc. // // Distributed under the Apache License, Version 2.0. // See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html // #include "QVariantGLM.h" #include "ObjectActionSpring.h" #include "PhysicsLogging.h" const float SPRING_MAX_SPEED = 10.0f; const float MAX_SPRING_TIMESCALE = 600.0f; // 10 min is a long time const uint16_t ObjectActionSpring::springVersion = 1; ObjectActionSpring::ObjectActionSpring(const QUuid& id, EntityItemPointer ownerEntity) : ObjectAction(DYNAMIC_TYPE_SPRING, id, ownerEntity), _positionalTarget(glm::vec3(0.0f)), _desiredPositionalTarget(glm::vec3(0.0f)), _linearTimeScale(FLT_MAX), _positionalTargetSet(true), _rotationalTarget(glm::quat()), _desiredRotationalTarget(glm::quat()), _angularTimeScale(FLT_MAX), _rotationalTargetSet(true) { #if WANT_DEBUG qCDebug(physics) << "ObjectActionSpring::ObjectActionSpring"; #endif } ObjectActionSpring::~ObjectActionSpring() { #if WANT_DEBUG qCDebug(physics) << "ObjectActionSpring::~ObjectActionSpring"; #endif } bool ObjectActionSpring::getTarget(float deltaTimeStep, glm::quat& rotation, glm::vec3& position, glm::vec3& linearVelocity, glm::vec3& angularVelocity, float& linearTimeScale, float& angularTimeScale) { SpatiallyNestablePointer other = getOther(); withReadLock([&]{ linearTimeScale = _linearTimeScale; angularTimeScale = _angularTimeScale; if (!_otherID.isNull()) { if (other) { rotation = _desiredRotationalTarget * other->getRotation(); position = other->getRotation() * _desiredPositionalTarget + other->getPosition(); } else { // we should have an "other" but can't find it, so disable the spring. linearTimeScale = FLT_MAX; angularTimeScale = FLT_MAX; } } else { rotation = _desiredRotationalTarget; position = _desiredPositionalTarget; } linearVelocity = glm::vec3(); angularVelocity = glm::vec3(); }); return true; } bool ObjectActionSpring::prepareForSpringUpdate(btScalar deltaTimeStep) { auto ownerEntity = _ownerEntity.lock(); if (!ownerEntity) { return false; } glm::quat rotation; glm::vec3 position; glm::vec3 linearVelocity; glm::vec3 angularVelocity; bool linearValid = false; int linearSpringCount = 0; bool angularValid = false; int angularSpringCount = 0; QList springDerivedActions; springDerivedActions.append(ownerEntity->getActionsOfType(DYNAMIC_TYPE_SPRING)); springDerivedActions.append(ownerEntity->getActionsOfType(DYNAMIC_TYPE_FAR_GRAB)); springDerivedActions.append(ownerEntity->getActionsOfType(DYNAMIC_TYPE_HOLD)); foreach (EntityDynamicPointer action, springDerivedActions) { std::shared_ptr springAction = std::static_pointer_cast(action); glm::quat rotationForAction; glm::vec3 positionForAction; glm::vec3 linearVelocityForAction; glm::vec3 angularVelocityForAction; float linearTimeScale; float angularTimeScale; bool success = springAction->getTarget(deltaTimeStep, rotationForAction, positionForAction, linearVelocityForAction, angularVelocityForAction, linearTimeScale, angularTimeScale); if (success) { if (angularTimeScale < MAX_SPRING_TIMESCALE) { angularValid = true; angularSpringCount++; angularVelocity += angularVelocityForAction; if (springAction.get() == this) { // only use the rotation for this action rotation = rotationForAction; } } if (linearTimeScale < MAX_SPRING_TIMESCALE) { linearValid = true; linearSpringCount++; position += positionForAction; linearVelocity += linearVelocityForAction; } } } if ((angularValid && angularSpringCount > 0) || (linearValid && linearSpringCount > 0)) { withWriteLock([&]{ if (linearValid && linearSpringCount > 0) { position /= linearSpringCount; linearVelocity /= linearSpringCount; _positionalTarget = position; _linearVelocityTarget = linearVelocity; _positionalTargetSet = true; _active = true; } if (angularValid && angularSpringCount > 0) { angularVelocity /= angularSpringCount; _rotationalTarget = rotation; _angularVelocityTarget = angularVelocity; _rotationalTargetSet = true; _active = true; } }); } return linearValid || angularValid; } void ObjectActionSpring::updateActionWorker(btScalar deltaTimeStep) { if (!prepareForSpringUpdate(deltaTimeStep)) { return; } withReadLock([&]{ auto ownerEntity = _ownerEntity.lock(); if (!ownerEntity) { return; } void* physicsInfo = ownerEntity->getPhysicsInfo(); if (!physicsInfo) { return; } ObjectMotionState* motionState = static_cast(physicsInfo); btRigidBody* rigidBody = motionState->getRigidBody(); if (!rigidBody) { qCDebug(physics) << "ObjectActionSpring::updateActionWorker no rigidBody"; return; } if (_linearTimeScale < MAX_SPRING_TIMESCALE) { btVector3 targetVelocity(0.0f, 0.0f, 0.0f); btVector3 offset = rigidBody->getCenterOfMassPosition() - glmToBullet(_positionalTarget); float offsetLength = offset.length(); if (offsetLength > FLT_EPSILON) { float speed = glm::min(offsetLength / _linearTimeScale, SPRING_MAX_SPEED); targetVelocity = (-speed / offsetLength) * offset; if (speed > rigidBody->getLinearSleepingThreshold()) { forceBodyNonStatic(); rigidBody->activate(); } } // this action is aggresively critically damped and defeats the current velocity rigidBody->setLinearVelocity(targetVelocity); } if (_angularTimeScale < MAX_SPRING_TIMESCALE) { btVector3 targetVelocity(0.0f, 0.0f, 0.0f); btQuaternion bodyRotation = rigidBody->getOrientation(); auto alignmentDot = bodyRotation.dot(glmToBullet(_rotationalTarget)); const float ALMOST_ONE = 0.99999f; if (glm::abs(alignmentDot) < ALMOST_ONE) { btQuaternion target = glmToBullet(_rotationalTarget); if (alignmentDot < 0.0f) { target = -target; } // if dQ is the incremental rotation that gets an object from Q0 to Q1 then: // // Q1 = dQ * Q0 // // solving for dQ gives: // // dQ = Q1 * Q0^ btQuaternion deltaQ = target * bodyRotation.inverse(); float speed = deltaQ.getAngle() / _angularTimeScale; targetVelocity = speed * deltaQ.getAxis(); if (speed > rigidBody->getAngularSleepingThreshold()) { rigidBody->activate(); } } // this action is aggresively critically damped and defeats the current velocity rigidBody->setAngularVelocity(targetVelocity); } }); } const float MIN_TIMESCALE = 0.1f; bool ObjectActionSpring::updateArguments(QVariantMap arguments) { glm::vec3 positionalTarget; float linearTimeScale; glm::quat rotationalTarget; float angularTimeScale; QUuid otherID; bool needUpdate = false; bool somethingChanged = ObjectDynamic::updateArguments(arguments); withReadLock([&]{ // targets are required, spring-constants are optional bool ok = true; positionalTarget = EntityDynamicInterface::extractVec3Argument("spring action", arguments, "targetPosition", ok, false); if (!ok) { positionalTarget = _desiredPositionalTarget; } ok = true; linearTimeScale = EntityDynamicInterface::extractFloatArgument("spring action", arguments, "linearTimeScale", ok, false); if (!ok || linearTimeScale <= 0.0f) { linearTimeScale = _linearTimeScale; } ok = true; rotationalTarget = EntityDynamicInterface::extractQuatArgument("spring action", arguments, "targetRotation", ok, false); if (!ok) { rotationalTarget = _desiredRotationalTarget; } ok = true; angularTimeScale = EntityDynamicInterface::extractFloatArgument("spring action", arguments, "angularTimeScale", ok, false); if (!ok) { angularTimeScale = _angularTimeScale; } ok = true; otherID = QUuid(EntityDynamicInterface::extractStringArgument("spring action", arguments, "otherID", ok, false)); if (!ok) { otherID = _otherID; } if (somethingChanged || positionalTarget != _desiredPositionalTarget || linearTimeScale != _linearTimeScale || rotationalTarget != _desiredRotationalTarget || angularTimeScale != _angularTimeScale || otherID != _otherID) { // something changed needUpdate = true; } }); if (needUpdate) { withWriteLock([&] { _desiredPositionalTarget = positionalTarget; _linearTimeScale = glm::max(MIN_TIMESCALE, glm::abs(linearTimeScale)); _desiredRotationalTarget = rotationalTarget; _angularTimeScale = glm::max(MIN_TIMESCALE, glm::abs(angularTimeScale)); _otherID = otherID; _active = true; auto ownerEntity = _ownerEntity.lock(); if (ownerEntity) { ownerEntity->setDynamicDataDirty(true); ownerEntity->setDynamicDataNeedsTransmit(true); } }); activateBody(); } return true; } QVariantMap ObjectActionSpring::getArguments() { QVariantMap arguments = ObjectDynamic::getArguments(); withReadLock([&] { arguments["linearTimeScale"] = _linearTimeScale; arguments["targetPosition"] = glmToQMap(_desiredPositionalTarget); arguments["targetRotation"] = glmToQMap(_desiredRotationalTarget); arguments["angularTimeScale"] = _angularTimeScale; arguments["otherID"] = _otherID; }); return arguments; } void ObjectActionSpring::serializeParameters(QDataStream& dataStream) const { withReadLock([&] { dataStream << _desiredPositionalTarget; dataStream << _linearTimeScale; dataStream << _positionalTargetSet; dataStream << _desiredRotationalTarget; dataStream << _angularTimeScale; dataStream << _rotationalTargetSet; dataStream << localTimeToServerTime(_expires); dataStream << _tag; dataStream << _otherID; }); } QByteArray ObjectActionSpring::serialize() const { QByteArray serializedActionArguments; QDataStream dataStream(&serializedActionArguments, QIODevice::WriteOnly); dataStream << DYNAMIC_TYPE_SPRING; dataStream << getID(); dataStream << ObjectActionSpring::springVersion; serializeParameters(dataStream); return serializedActionArguments; } void ObjectActionSpring::deserializeParameters(QByteArray serializedArguments, QDataStream& dataStream) { withWriteLock([&] { dataStream >> _desiredPositionalTarget; dataStream >> _linearTimeScale; dataStream >> _positionalTargetSet; dataStream >> _desiredRotationalTarget; dataStream >> _angularTimeScale; dataStream >> _rotationalTargetSet; quint64 serverExpires; dataStream >> serverExpires; _expires = serverTimeToLocalTime(serverExpires); dataStream >> _tag; dataStream >> _otherID; _active = true; }); } void ObjectActionSpring::deserialize(QByteArray serializedArguments) { QDataStream dataStream(serializedArguments); EntityDynamicType type; dataStream >> type; assert(type == getType()); QUuid id; dataStream >> id; assert(id == getID()); uint16_t serializationVersion; dataStream >> serializationVersion; if (serializationVersion != ObjectActionSpring::springVersion) { assert(false); return; } deserializeParameters(serializedArguments, dataStream); }