// // head.cpp // interface // // Created by Philip Rosedale on 9/11/12. // Copyright (c) 2012 Physical, Inc.. All rights reserved. // #include #include "head.h" #include "util.h" #include "glm/gtx/vector_angle.hpp" float skinColor[] = {1.0, 0.84, 0.66}; float browColor[] = {210.0/255.0, 105.0/255.0, 30.0/255.0}; float mouthColor[] = {1, 0, 0}; float BrowRollAngle[5] = {0, 15, 30, -30, -15}; float BrowPitchAngle[3] = {-70, -60, -50}; float eyeColor[3] = {1,1,1}; float MouthWidthChoices[3] = {0.5, 0.77, 0.3}; float browWidth = 0.8; float browThickness = 0.16; const float DECAY = 0.1; Head::Head() { PupilSize = 0.10; interPupilDistance = 0.6; interBrowDistance = 0.75; NominalPupilSize = 0.10; EyebrowPitch[0] = EyebrowPitch[1] = BrowPitchAngle[0]; EyebrowRoll[0] = 30; EyebrowRoll[1] = -30; MouthPitch = 0; MouthYaw = 0; MouthWidth = 1.0; MouthHeight = 0.2; EyeballPitch[0] = EyeballPitch[1] = 0; EyeballScaleX = 1.2; EyeballScaleY = 1.5; EyeballScaleZ = 1.0; EyeballYaw[0] = EyeballYaw[1] = 0; PitchTarget = YawTarget = 0; NoiseEnvelope = 1.0; PupilConverge = 5.0; leanForward = 0.0; leanSideways = 0.0; setNoise(0); } void Head::reset() { position = glm::vec3(0,0,0); Pitch = Yaw = Roll = 0; leanForward = leanSideways = 0; } void Head::UpdatePos(float frametime, int * adc_channels, float * avg_adc_channels, int head_mirror, glm::vec3 * gravity) // Using serial data, update avatar/render position and angles { float measured_pitch_rate = adc_channels[PITCH_RATE] - avg_adc_channels[PITCH_RATE]; float measured_yaw_rate = adc_channels[YAW_RATE] - avg_adc_channels[YAW_RATE]; float measured_lateral_accel = adc_channels[ACCEL_X] - avg_adc_channels[ACCEL_X]; float measured_fwd_accel = avg_adc_channels[ACCEL_Z] - adc_channels[ACCEL_Z]; float measured_roll_rate = adc_channels[ROLL_RATE] - avg_adc_channels[ROLL_RATE]; // Update avatar head position based on measured gyro rates const float HEAD_ROTATION_SCALE = 0.20; const float HEAD_ROLL_SCALE = 0.50; const float HEAD_LEAN_SCALE = 0.02; if (head_mirror) { addYaw(measured_yaw_rate * HEAD_ROTATION_SCALE * frametime); addPitch(measured_pitch_rate * -HEAD_ROTATION_SCALE * frametime); addRoll(measured_roll_rate * HEAD_ROLL_SCALE * frametime); addLean(measured_lateral_accel * frametime * HEAD_LEAN_SCALE, measured_fwd_accel*frametime * HEAD_LEAN_SCALE); } else { addYaw(measured_yaw_rate * -HEAD_ROTATION_SCALE * frametime); addPitch(measured_pitch_rate * -HEAD_ROTATION_SCALE * frametime); addRoll(measured_roll_rate * HEAD_ROLL_SCALE * frametime); addLean(measured_lateral_accel * frametime * -HEAD_LEAN_SCALE, measured_fwd_accel*frametime * HEAD_LEAN_SCALE); } // Try to measure absolute roll from sensors const float MIN_ROLL = 3.0; glm::vec3 v1(gravity->x, gravity->y, 0); glm::vec3 v2(adc_channels[ACCEL_X], adc_channels[ACCEL_Y], 0); float newRoll = acos(glm::dot(glm::normalize(v1), glm::normalize(v2))) ; if (newRoll != NAN) { newRoll *= 1000.0; if (newRoll > MIN_ROLL) { if (adc_channels[ACCEL_X] > gravity->x) newRoll *= -1.0; //SetRoll(newRoll); } } } void Head::addLean(float x, float z) { // Add Body lean as impulse leanSideways += x; leanForward += z; } void Head::setLeanForward(float dist){ leanForward = dist; } void Head::setLeanSideways(float dist){ leanSideways = dist; } // Simulate the head over time void Head::simulate(float deltaTime) { if (!noise) { // Decay back toward center Pitch *= (1.f - DECAY*deltaTime); Yaw *= (1.f - DECAY*deltaTime); Roll *= (1.f - DECAY*deltaTime); } else { // Move toward new target Pitch += (PitchTarget - Pitch)*22*deltaTime; // (1.f - DECAY*deltaTime)*Pitch + ; Yaw += (YawTarget - Yaw)*22*deltaTime; // (1.f - DECAY*deltaTime); Roll *= (1.f - DECAY*deltaTime); } leanForward *= (1.f - DECAY*30.f*deltaTime); leanSideways *= (1.f - DECAY*30.f*deltaTime); if (noise) { Pitch += (randFloat() - 0.5)*0.05*NoiseEnvelope; Yaw += (randFloat() - 0.5)*0.1*NoiseEnvelope; PupilSize += (randFloat() - 0.5)*0.001*NoiseEnvelope; if (randFloat() < 0.005) MouthWidth = MouthWidthChoices[rand()%3]; //if (randFloat() < 0.005) Pitch = (randFloat() - 0.5)*45; //if (randFloat() < 0.005) Yaw = (randFloat() - 0.5)*45; //if (randFloat() < 0.001) Roll = (randFloat() - 0.5)*45; //if (randFloat() < 0.003) PupilSize = ((randFloat() - 0.5)*0.25+1)*NominalPupilSize; if (randFloat() < 0.01) EyeballPitch[0] = EyeballPitch[1] = (randFloat() - 0.5)*20; if (randFloat() < 0.01) EyeballYaw[0] = EyeballYaw[1] = (randFloat()- 0.5)*10; if ((randFloat() < 0.005) && (fabs(PitchTarget - Pitch) < 1.0) && (fabs(YawTarget - Yaw) < 1.0)) { SetNewHeadTarget((randFloat()-0.5)*20.0, (randFloat()-0.5)*45.0); } if (0) { // Pick new target PitchTarget = (randFloat() - 0.5)*45; YawTarget = (randFloat() - 0.5)*22; } if (randFloat() < 0.01) { EyebrowPitch[0] = EyebrowPitch[1] = BrowPitchAngle[rand()%3]; EyebrowRoll[0] = EyebrowRoll[1] = BrowRollAngle[rand()%5]; EyebrowRoll[1]*=-1; } } } void Head::render() { int side = 0; glEnable(GL_DEPTH_TEST); glPushMatrix(); glLoadIdentity(); glTranslatef(0.f, 0.f, -7.f); glTranslatef(leanSideways, 0.f, leanForward); glRotatef(Yaw/2.0, 0, 1, 0); glRotatef(Pitch/2.0, 1, 0, 0); glRotatef(Roll/2.0, 0, 0, 1); // Overall scale of head glScalef(1.5, 2.0, 2.0); glColor3fv(skinColor); // Head glutSolidSphere(1, 30, 30); // Ears glPushMatrix(); glTranslatef(1, 0, 0); for(side = 0; side < 2; side++) { glPushMatrix(); glScalef(0.5, 0.75, 1.0); glutSolidSphere(0.5, 30, 30); glPopMatrix(); glTranslatef(-2, 0, 0); } glPopMatrix(); // Eyebrows glPushMatrix(); glTranslatef(-interBrowDistance/2.0,0.4,0.45); for(side = 0; side < 2; side++) { glColor3fv(browColor); glPushMatrix(); glTranslatef(0, 0.4, 0); glRotatef(EyebrowPitch[side]/2.0, 1, 0, 0); glRotatef(EyebrowRoll[side]/2.0, 0, 0, 1); glScalef(browWidth, browThickness, 1); glutSolidCube(0.5); glPopMatrix(); glTranslatef(interBrowDistance, 0, 0); } glPopMatrix(); // Mouth glPushMatrix(); glTranslatef(0,-0.3,0.75); glColor3fv(mouthColor); glRotatef(MouthPitch, 1, 0, 0); glRotatef(MouthYaw, 0, 0, 1); glScalef(MouthWidth, MouthHeight, 1); glutSolidCube(0.5); glPopMatrix(); glTranslatef(0, 1.0, 0); glTranslatef(-interPupilDistance/2.0,-0.68,0.7); // Right Eye glRotatef(-10, 1, 0, 0); glColor3fv(eyeColor); glPushMatrix(); { glTranslatef(interPupilDistance/10.0, 0, 0.05); glRotatef(20, 0, 0, 1); glScalef(EyeballScaleX, EyeballScaleY, EyeballScaleZ); glutSolidSphere(0.25, 30, 30); } glPopMatrix(); // Right Pupil glPushMatrix(); glRotatef(EyeballPitch[1], 1, 0, 0); glRotatef(EyeballYaw[1] + PupilConverge, 0, 1, 0); glTranslatef(0,0,.25); glColor3f(0,0,0); glutSolidSphere(PupilSize, 15, 15); glPopMatrix(); // Left Eye glColor3fv(eyeColor); glTranslatef(interPupilDistance, 0, 0); glPushMatrix(); { glTranslatef(-interPupilDistance/10.0, 0, .05); glRotatef(-20, 0, 0, 1); glScalef(EyeballScaleX, EyeballScaleY, EyeballScaleZ); glutSolidSphere(0.25, 30, 30); } glPopMatrix(); // Left Pupil glPushMatrix(); glRotatef(EyeballPitch[0], 1, 0, 0); glRotatef(EyeballYaw[0] - PupilConverge, 0, 1, 0); glTranslatef(0,0,.25); glColor3f(0,0,0); glutSolidSphere(PupilSize, 15, 15); glPopMatrix(); glPopMatrix(); } // Transmit data to agents requesting it int Head::transmit(char* data) { // Copy data for transmission to the buffer, return length of data sprintf(data, "%f6.2", Pitch); return strlen(data); } void Head::SetNewHeadTarget(float pitch, float yaw) { PitchTarget = pitch; YawTarget = yaw; }