// // util.cpp // interface // // Created by Philip Rosedale on 8/24/12. // Copyright (c) 2012 High Fidelity, Inc. All rights reserved. // #include #include #include #include #include #include #include #include #include #include "InterfaceConfig.h" #include "ui/TextRenderer.h" #include "VoxelConstants.h" #include "world.h" #include "Util.h" using namespace std; // no clue which versions are affected... #define WORKAROUND_BROKEN_GLUT_STROKES // see http://www.opengl.org/resources/libraries/glut/spec3/node78.html void eulerToOrthonormals(glm::vec3 * angles, glm::vec3 * front, glm::vec3 * right, glm::vec3 * up) { // // Converts from three euler angles to the associated orthonormal vectors // // Angles contains (pitch, yaw, roll) in radians // // First, create the quaternion associated with these euler angles glm::quat q(glm::vec3(angles->x, -(angles->y), angles->z)); // Next, create a rotation matrix from that quaternion glm::mat4 rotation; rotation = glm::mat4_cast(q); // Transform the original vectors by the rotation matrix to get the new vectors glm::vec4 qup(0,1,0,0); glm::vec4 qright(-1,0,0,0); glm::vec4 qfront(0,0,1,0); glm::vec4 upNew = qup*rotation; glm::vec4 rightNew = qright*rotation; glm::vec4 frontNew = qfront*rotation; // Copy the answers to output vectors up->x = upNew.x; up->y = upNew.y; up->z = upNew.z; right->x = rightNew.x; right->y = rightNew.y; right->z = rightNew.z; front->x = frontNew.x; front->y = frontNew.y; front->z = frontNew.z; } void printVector(glm::vec3 vec) { printf("%4.2f, %4.2f, %4.2f\n", vec.x, vec.y, vec.z); } // Return the azimuth angle in degrees between two points. float azimuth_to(glm::vec3 head_pos, glm::vec3 source_pos) { return atan2(head_pos.x - source_pos.x, head_pos.z - source_pos.z) * 180.0f / PIf; } // Return the angle in degrees between the head and an object in the scene. The value is zero if you are looking right at it. The angle is negative if the object is to your right. float angle_to(glm::vec3 head_pos, glm::vec3 source_pos, float render_yaw, float head_yaw) { return atan2(head_pos.x - source_pos.x, head_pos.z - source_pos.z) * 180.0f / PIf + render_yaw + head_yaw; } // Helper function returns the positive angle in degrees between two 3D vectors float angleBetween(const glm::vec3& v1, const glm::vec3& v2) { return acos((glm::dot(v1, v2)) / (glm::length(v1) * glm::length(v2))) * 180.f / PIf; } // Helper function return the rotation from the first vector onto the second glm::quat rotationBetween(const glm::vec3& v1, const glm::vec3& v2) { float angle = angleBetween(v1, v2); if (isnan(angle) || angle < EPSILON) { return glm::quat(); } glm::vec3 axis; if (angle > 179.99f) { // 180 degree rotation; must use another axis axis = glm::cross(v1, glm::vec3(1.0f, 0.0f, 0.0f)); float axisLength = glm::length(axis); if (axisLength < EPSILON) { // parallel to x; y will work axis = glm::normalize(glm::cross(v1, glm::vec3(0.0f, 1.0f, 0.0f))); } else { axis /= axisLength; } } else { axis = glm::normalize(glm::cross(v1, v2)); } return glm::angleAxis(angle, axis); } // Safe version of glm::eulerAngles; uses the factorization method described in David Eberly's // http://www.geometrictools.com/Documentation/EulerAngles.pdf (via Clyde, // https://github.com/threerings/clyde/blob/master/src/main/java/com/threerings/math/Quaternion.java) glm::vec3 safeEulerAngles(const glm::quat& q) { float sy = 2.0f * (q.y * q.w - q.x * q.z); if (sy < 1.0f - EPSILON) { if (sy > -1.0f + EPSILON) { return glm::degrees(glm::vec3( atan2f(q.y * q.z + q.x * q.w, 0.5f - (q.x * q.x + q.y * q.y)), asinf(sy), atan2f(q.x * q.y + q.z * q.w, 0.5f - (q.y * q.y + q.z * q.z)))); } else { // not a unique solution; x + z = atan2(-m21, m11) return glm::degrees(glm::vec3( 0.0f, PIf * -0.5f, atan2f(q.x * q.w - q.y * q.z, 0.5f - (q.x * q.x + q.z * q.z)))); } } else { // not a unique solution; x - z = atan2(-m21, m11) return glm::degrees(glm::vec3( 0.0f, PIf * 0.5f, -atan2f(q.x * q.w - q.y * q.z, 0.5f - (q.x * q.x + q.z * q.z)))); } } // Safe version of glm::mix; based on the code in Nick Bobick's article, // http://www.gamasutra.com/features/19980703/quaternions_01.htm (via Clyde, // https://github.com/threerings/clyde/blob/master/src/main/java/com/threerings/math/Quaternion.java) glm::quat safeMix(const glm::quat& q1, const glm::quat& q2, float proportion) { float cosa = q1.x * q2.x + q1.y * q2.y + q1.z * q2.z + q1.w * q2.w; float ox = q2.x, oy = q2.y, oz = q2.z, ow = q2.w, s0, s1; // adjust signs if necessary if (cosa < 0.0f) { cosa = -cosa; ox = -ox; oy = -oy; oz = -oz; ow = -ow; } // calculate coefficients; if the angle is too close to zero, we must fall back // to linear interpolation if ((1.0f - cosa) > EPSILON) { float angle = acosf(cosa), sina = sinf(angle); s0 = sinf((1.0f - proportion) * angle) / sina; s1 = sinf(proportion * angle) / sina; } else { s0 = 1.0f - proportion; s1 = proportion; } return glm::normalize(glm::quat(s0 * q1.w + s1 * ow, s0 * q1.x + s1 * ox, s0 * q1.y + s1 * oy, s0 * q1.z + s1 * oz)); } glm::vec3 extractTranslation(const glm::mat4& matrix) { return glm::vec3(matrix[3][0], matrix[3][1], matrix[3][2]); } glm::quat extractRotation(const glm::mat4& matrix, bool assumeOrthogonal) { // uses the iterative polar decomposition algorithm described by Ken Shoemake at // http://www.cs.wisc.edu/graphics/Courses/838-s2002/Papers/polar-decomp.pdf // code adapted from Clyde, https://github.com/threerings/clyde/blob/master/src/main/java/com/threerings/math/Matrix4f.java // start with the contents of the upper 3x3 portion of the matrix glm::mat3 upper = glm::mat3(matrix); if (!assumeOrthogonal) { for (int i = 0; i < 10; i++) { // store the results of the previous iteration glm::mat3 previous = upper; // compute average of the matrix with its inverse transpose float sd00 = previous[1][1] * previous[2][2] - previous[2][1] * previous[1][2]; float sd10 = previous[0][1] * previous[2][2] - previous[2][1] * previous[0][2]; float sd20 = previous[0][1] * previous[1][2] - previous[1][1] * previous[0][2]; float det = previous[0][0] * sd00 + previous[2][0] * sd20 - previous[1][0] * sd10; if (fabs(det) == 0.0f) { // determinant is zero; matrix is not invertible break; } float hrdet = 0.5f / det; upper[0][0] = +sd00 * hrdet + previous[0][0] * 0.5f; upper[1][0] = -sd10 * hrdet + previous[1][0] * 0.5f; upper[2][0] = +sd20 * hrdet + previous[2][0] * 0.5f; upper[0][1] = -(previous[1][0] * previous[2][2] - previous[2][0] * previous[1][2]) * hrdet + previous[0][1] * 0.5f; upper[1][1] = +(previous[0][0] * previous[2][2] - previous[2][0] * previous[0][2]) * hrdet + previous[1][1] * 0.5f; upper[2][1] = -(previous[0][0] * previous[1][2] - previous[1][0] * previous[0][2]) * hrdet + previous[2][1] * 0.5f; upper[0][2] = +(previous[1][0] * previous[2][1] - previous[2][0] * previous[1][1]) * hrdet + previous[0][2] * 0.5f; upper[1][2] = -(previous[0][0] * previous[2][1] - previous[2][0] * previous[0][1]) * hrdet + previous[1][2] * 0.5f; upper[2][2] = +(previous[0][0] * previous[1][1] - previous[1][0] * previous[0][1]) * hrdet + previous[2][2] * 0.5f; // compute the difference; if it's small enough, we're done glm::mat3 diff = upper - previous; if (diff[0][0] * diff[0][0] + diff[1][0] * diff[1][0] + diff[2][0] * diff[2][0] + diff[0][1] * diff[0][1] + diff[1][1] * diff[1][1] + diff[2][1] * diff[2][1] + diff[0][2] * diff[0][2] + diff[1][2] * diff[1][2] + diff[2][2] * diff[2][2] < EPSILON) { break; } } } // now that we have a nice orthogonal matrix, we can extract the rotation quaternion // using the method described in http://en.wikipedia.org/wiki/Rotation_matrix#Conversions float x2 = fabs(1.0f + upper[0][0] - upper[1][1] - upper[2][2]); float y2 = fabs(1.0f - upper[0][0] + upper[1][1] - upper[2][2]); float z2 = fabs(1.0f - upper[0][0] - upper[1][1] + upper[2][2]); float w2 = fabs(1.0f + upper[0][0] + upper[1][1] + upper[2][2]); return glm::normalize(glm::quat(0.5f * sqrtf(w2), 0.5f * sqrtf(x2) * (upper[1][2] >= upper[2][1] ? 1.0f : -1.0f), 0.5f * sqrtf(y2) * (upper[2][0] >= upper[0][2] ? 1.0f : -1.0f), 0.5f * sqrtf(z2) * (upper[0][1] >= upper[1][0] ? 1.0f : -1.0f))); } // Draw a 3D vector floating in space void drawVector(glm::vec3 * vector) { glDisable(GL_LIGHTING); glEnable(GL_POINT_SMOOTH); glPointSize(3.0); glLineWidth(2.0); // Draw axes glBegin(GL_LINES); glColor3f(1,0,0); glVertex3f(0,0,0); glVertex3f(1,0,0); glColor3f(0,1,0); glVertex3f(0,0,0); glVertex3f(0, 1, 0); glColor3f(0,0,1); glVertex3f(0,0,0); glVertex3f(0, 0, 1); glEnd(); // Draw the vector itself glBegin(GL_LINES); glColor3f(1,1,1); glVertex3f(0,0,0); glVertex3f(vector->x, vector->y, vector->z); glEnd(); // Draw spheres for magnitude glPushMatrix(); glColor3f(1,0,0); glTranslatef(vector->x, 0, 0); glutSolidSphere(0.02, 10, 10); glColor3f(0,1,0); glTranslatef(-vector->x, vector->y, 0); glutSolidSphere(0.02, 10, 10); glColor3f(0,0,1); glTranslatef(0, -vector->y, vector->z); glutSolidSphere(0.02, 10, 10); glPopMatrix(); } // Render a 2D set of squares using perlin/fractal noise void noiseTest(int w, int h) { const float CELLS = 500; const float NOISE_SCALE = 10.0; float xStep = (float) w / CELLS; float yStep = (float) h / CELLS; glBegin(GL_QUADS); for (float x = 0; x < (float)w; x += xStep) { for (float y = 0; y < (float)h; y += yStep) { // Generate a vector varying between 0-1 corresponding to the screen location glm::vec2 position(NOISE_SCALE * x / (float) w, NOISE_SCALE * y / (float) h); // Set the cell color using the noise value at that location float color = glm::perlin(position); glColor4f(color, color, color, 1.0); glVertex2f(x, y); glVertex2f(x + xStep, y); glVertex2f(x + xStep, y + yStep); glVertex2f(x, y + yStep); } } glEnd(); } void renderWorldBox() { // Show edge of world float red[] = {1, 0, 0}; float green[] = {0, 1, 0}; float blue[] = {0, 0, 1}; float gray[] = {0.5, 0.5, 0.5}; glDisable(GL_LIGHTING); glLineWidth(1.0); glBegin(GL_LINES); glColor3fv(red); glVertex3f(0, 0, 0); glVertex3f(TREE_SCALE, 0, 0); glColor3fv(green); glVertex3f(0, 0, 0); glVertex3f(0, TREE_SCALE, 0); glColor3fv(blue); glVertex3f(0, 0, 0); glVertex3f(0, 0, TREE_SCALE); glColor3fv(gray); glVertex3f(0, 0, TREE_SCALE); glVertex3f(TREE_SCALE, 0, TREE_SCALE); glVertex3f(TREE_SCALE, 0, TREE_SCALE); glVertex3f(TREE_SCALE, 0, 0); glEnd(); // Draw marker dots at very end glEnable(GL_LIGHTING); glPushMatrix(); glTranslatef(TREE_SCALE, 0, 0); glColor3fv(red); glutSolidSphere(0.125, 10, 10); glPopMatrix(); glPushMatrix(); glTranslatef(0, TREE_SCALE, 0); glColor3fv(green); glutSolidSphere(0.125, 10, 10); glPopMatrix(); glPushMatrix(); glTranslatef(0, 0, TREE_SCALE); glColor3fv(blue); glutSolidSphere(0.125, 10, 10); glPopMatrix(); glPushMatrix(); glColor3fv(gray); glTranslatef(TREE_SCALE, 0, TREE_SCALE); glutSolidSphere(0.125, 10, 10); glPopMatrix(); } double diffclock(timeval *clock1,timeval *clock2) { double diffms = (clock2->tv_sec - clock1->tv_sec) * 1000.0; diffms += (clock2->tv_usec - clock1->tv_usec) / 1000.0; // us to ms return diffms; } // Return a random vector of average length 1 const glm::vec3 randVector() { return glm::vec3(randFloat() - 0.5f, randFloat() - 0.5f, randFloat() - 0.5f) * 2.f; } static TextRenderer* textRenderer(int mono) { static TextRenderer* monoRenderer = new TextRenderer(MONO_FONT_FAMILY); static TextRenderer* proportionalRenderer = new TextRenderer(SANS_FONT_FAMILY, -1, -1, false, TextRenderer::SHADOW_EFFECT); return mono ? monoRenderer : proportionalRenderer; } int widthText(float scale, int mono, char const* string) { return textRenderer(mono)->computeWidth(string) * (scale / 0.10); } float widthChar(float scale, int mono, char ch) { return textRenderer(mono)->computeWidth(ch) * (scale / 0.10); } void drawtext(int x, int y, float scale, float rotate, float thick, int mono, char const* string, float r, float g, float b) { // // Draws text on screen as stroked so it can be resized // glPushMatrix(); glTranslatef(static_cast(x), static_cast(y), 0.0f); glColor3f(r,g,b); glRotated(rotate,0,0,1); // glLineWidth(thick); glScalef(scale / 0.10, scale / 0.10, 1.0); textRenderer(mono)->draw(0, 0, string); glPopMatrix(); } void drawvec3(int x, int y, float scale, float rotate, float thick, int mono, glm::vec3 vec, float r, float g, float b) { // // Draws text on screen as stroked so it can be resized // char vectext[20]; sprintf(vectext,"%3.1f,%3.1f,%3.1f", vec.x, vec.y, vec.z); int len, i; glPushMatrix(); glTranslatef(static_cast(x), static_cast(y), 0); glColor3f(r,g,b); glRotated(180+rotate,0,0,1); glRotated(180,0,1,0); glLineWidth(thick); glScalef(scale, scale, 1.0); len = (int) strlen(vectext); for (i = 0; i < len; i++) { if (!mono) glutStrokeCharacter(GLUT_STROKE_ROMAN, int(vectext[i])); else glutStrokeCharacter(GLUT_STROKE_MONO_ROMAN, int(vectext[i])); } glPopMatrix(); } void renderCollisionOverlay(int width, int height, float magnitude) { const float MIN_VISIBLE_COLLISION = 0.01f; if (magnitude > MIN_VISIBLE_COLLISION) { glColor4f(0, 0, 0, magnitude); glBegin(GL_QUADS); glVertex2f(0, 0); glVertex2d(width, 0); glVertex2d(width, height); glVertex2d(0, height); glEnd(); } } void renderGroundPlaneGrid(float size, float impact) { float IMPACT_SOUND_MAGNITUDE_FOR_RECOLOR = 1.f; glLineWidth(2.0); glm::vec4 impactColor(1, 0, 0, 1); glm::vec3 lineColor(0.4, 0.5, 0.3); glm::vec4 surfaceColor(0.5, 0.5, 0.5, 0.4); glColor3fv(&lineColor.x); for (float x = 0; x <= size; x++) { glBegin(GL_LINES); glVertex3f(x, 0, 0); glVertex3f(x, 0, size); glVertex3f(0, 0, x); glVertex3f(size, 0, x); glEnd(); } // Draw the floor, colored for recent impact glm::vec4 floorColor; if (impact > IMPACT_SOUND_MAGNITUDE_FOR_RECOLOR) { floorColor = impact * impactColor + (1.f - impact) * surfaceColor; } else { floorColor = surfaceColor; } glColor4fv(&floorColor.x); glBegin(GL_QUADS); glVertex3f(0, 0, 0); glVertex3f(size, 0, 0); glVertex3f(size, 0, size); glVertex3f(0, 0, size); glEnd(); } void renderMouseVoxelGrid(const float& mouseVoxelX, const float& mouseVoxelY, const float& mouseVoxelZ, const float& mouseVoxelS) { glm::vec3 origin = glm::vec3(mouseVoxelX, mouseVoxelY, mouseVoxelZ); glLineWidth(3.0); const int HALF_GRID_DIMENSIONS = 4; glBegin(GL_LINES); glm::vec3 xColor(0.0, 0.6, 0.0); glColor3fv(&xColor.x); glVertex3f(origin.x + HALF_GRID_DIMENSIONS * mouseVoxelS, 0, origin.z); glVertex3f(origin.x - HALF_GRID_DIMENSIONS * mouseVoxelS, 0, origin.z); glm::vec3 zColor(0.0, 0.0, 0.6); glColor3fv(&zColor.x); glVertex3f(origin.x, 0, origin.z + HALF_GRID_DIMENSIONS * mouseVoxelS); glVertex3f(origin.x, 0, origin.z - HALF_GRID_DIMENSIONS * mouseVoxelS); glm::vec3 yColor(0.6, 0.0, 0.0); glColor3fv(&yColor.x); glVertex3f(origin.x, 0, origin.z); glVertex3f(origin.x, origin.y, origin.z); glEnd(); } void renderNudgeGrid(float voxelX, float voxelY, float voxelZ, float voxelS, float voxelPrecision) { glm::vec3 origin = glm::vec3(voxelX, voxelY, voxelZ); glLineWidth(1.0); const int GRID_DIMENSIONS = 4; const int GRID_SCALER = voxelS / voxelPrecision; const int GRID_SEGMENTS = GRID_DIMENSIONS * GRID_SCALER; glBegin(GL_LINES); for (int xz = - (GRID_SEGMENTS / 2); xz <= GRID_SEGMENTS / 2 + GRID_SCALER; xz++) { glm::vec3 xColor(0.0, 0.6, 0.0); glColor3fv(&xColor.x); glVertex3f(origin.x + GRID_DIMENSIONS * voxelS, 0, origin.z + xz * voxelPrecision); glVertex3f(origin.x - (GRID_DIMENSIONS - 1) * voxelS, 0, origin.z + xz * voxelPrecision); glm::vec3 zColor(0.0, 0.0, 0.6); glColor3fv(&zColor.x); glVertex3f(origin.x + xz * voxelPrecision, 0, origin.z + GRID_DIMENSIONS * voxelS); glVertex3f(origin.x + xz * voxelPrecision, 0, origin.z - (GRID_DIMENSIONS - 1) * voxelS); } glEnd(); glColor3f(1.0f,1.0f,1.0f); glBegin(GL_POLYGON);//begin drawing of square glVertex3f(voxelX, 0.0f, voxelZ);//first vertex glVertex3f(voxelX + voxelS, 0.0f, voxelZ);//second vertex glVertex3f(voxelX + voxelS, 0.0f, voxelZ + voxelS);//third vertex glVertex3f(voxelX, 0.0f, voxelZ + voxelS);//fourth vertex glEnd();//end drawing of polygon } void renderNudgeGuide(float voxelX, float voxelY, float voxelZ, float voxelS) { glm::vec3 origin = glm::vec3(voxelX, voxelY, voxelZ); glLineWidth(3.0); glBegin(GL_LINES); glm::vec3 guideColor(1.0, 1.0, 1.0); glColor3fv(&guideColor.x); glVertex3f(origin.x + voxelS, 0, origin.z); glVertex3f(origin.x, 0, origin.z); glVertex3f(origin.x, 0, origin.z); glVertex3f(origin.x, 0, origin.z + voxelS); glVertex3f(origin.x + voxelS, 0, origin.z); glVertex3f(origin.x + voxelS, 0, origin.z + voxelS); glVertex3f(origin.x, 0, origin.z + voxelS); glVertex3f(origin.x + voxelS, 0, origin.z + voxelS); glEnd(); } void renderDiskShadow(glm::vec3 position, glm::vec3 upDirection, float radius, float darkness) { glColor4f(0.0f, 0.0f, 0.0f, darkness); int num = 20; float y = 0.001f; float x2 = 0.0f; float z2 = radius; float x1; float z1; glBegin(GL_TRIANGLES); for (int i=1; ivalue(name, defaultValue).toFloat(); if (isnan(value)) { value = defaultValue; } return value; } bool rayIntersectsSphere(const glm::vec3& rayStarting, const glm::vec3& rayNormalizedDirection, const glm::vec3& sphereCenter, float sphereRadius, float& distance) { glm::vec3 relativeOrigin = rayStarting - sphereCenter; // compute the b, c terms of the quadratic equation (a is dot(direction, direction), which is one) float b = 2.0f * glm::dot(rayNormalizedDirection, relativeOrigin); float c = glm::dot(relativeOrigin, relativeOrigin) - sphereRadius * sphereRadius; // compute the radicand of the quadratic. if less than zero, there's no intersection float radicand = b * b - 4.0f * c; if (radicand < 0.0f) { return false; } // compute the first solution of the quadratic float root = sqrtf(radicand); float firstSolution = -b - root; if (firstSolution > 0.0f) { distance = firstSolution / 2.0f; return true; // origin is outside the sphere } // now try the second solution float secondSolution = -b + root; if (secondSolution > 0.0f) { distance = 0.0f; return true; // origin is inside the sphere } return false; } bool pointInSphere(glm::vec3& point, glm::vec3& sphereCenter, double sphereRadius) { glm::vec3 diff = point - sphereCenter; double mag = sqrt(glm::dot(diff, diff)); if (mag <= sphereRadius) { return true; } return false; }