// // Cube.cpp // interface // // Created by Philip on 12/31/12. // Copyright (c) 2012 High Fidelity, Inc. All rights reserved. // #include "VoxelSystem.h" bool onSphereShell(float radius, float scale, glm::vec3 * position) { float vRadius = glm::length(*position); return ((vRadius + scale/2.0 > radius) && (vRadius - scale/2.0 < radius)); } void VoxelSystem::init() { root = new Voxel; } // // Recursively initialize the voxel tree // int VoxelSystem::initVoxels(Voxel * voxel, float scale, glm::vec3 * position) { glm::vec3 averageColor(0,0,0); int childrenCreated = 0; int newVoxels = 0; if (voxel == NULL) voxel = root; averageColor[0] = averageColor[1] = averageColor[2] = 0.0; const float RADIUS = 3.9; // // First, randomly decide whether to stop here without recursing for children // if (onSphereShell(RADIUS, scale, position) && (scale < 0.25) && (randFloat() < 0.01)) { voxel->color.x = 0.1; voxel->color.y = 0.5 + randFloat()*0.5; voxel->color.z = 0.1; for (unsigned char i = 0; i < NUM_CHILDREN; i++) voxel->children[i] = NULL; return 0; } else { // Decide whether to make kids, recurse into them for (unsigned char i = 0; i < NUM_CHILDREN; i++) { if (scale > 0.01) { glm::vec3 shift(scale/2.0*((i&4)>>2)-scale/4.0, scale/2.0*((i&2)>>1)-scale/4.0, scale/2.0*(i&1)-scale/4.0); *position += shift; // Test to see whether the child is also on edge of sphere if (onSphereShell(RADIUS, scale/2.0, position)) { voxel->children[i] = new Voxel; newVoxels++; childrenCreated++; newVoxels += initVoxels(voxel->children[i], scale/2.0, position); averageColor += voxel->children[i]->color; } else voxel->children[i] = NULL; *position -= shift; } else { // No child made: Set pointer to null, nothing to see here. voxel->children[i] = NULL; } } if (childrenCreated > 0) { // If there were children created, the color of this voxel node is average of children averageColor *= 1.0/childrenCreated; voxel->color = averageColor; return newVoxels; } else { // Tested and didn't make any children, so choose my color as a leaf, return voxel->color.x = voxel->color.y = voxel->color.z = 0.5 + randFloat()*0.5; for (unsigned char i = 0; i < NUM_CHILDREN; i++) voxel->children[i] = NULL; return 0; } } } // // The Render Discard is the ratio of the size of the voxel to the distance from the camera // at which the voxel will no longer be shown. Smaller = show more detail. // const float RENDER_DISCARD = 0.04; //0.01; // // Returns the total number of voxels actually rendered // int VoxelSystem::render(Voxel * voxel, float scale, glm::vec3 * distance) { // If null passed in, start at root if (voxel == NULL) voxel = root; unsigned char i; bool renderedChildren = false; int vRendered = 0; // Recursively render children for (i = 0; i < NUM_CHILDREN; i++) { glm::vec3 shift(scale/2.0*((i&4)>>2)-scale/4.0, scale/2.0*((i&2)>>1)-scale/4.0, scale/2.0*(i&1)-scale/4.0); if ((voxel->children[i] != NULL) && (scale / glm::length(*distance) > RENDER_DISCARD)) { glTranslatef(shift.x, shift.y, shift.z); *distance += shift; vRendered += render(voxel->children[i], scale/2.0, distance); *distance -= shift; glTranslatef(-shift.x, -shift.y, -shift.z); renderedChildren = true; } } // Render this voxel if the children were not rendered if (!renderedChildren) { // This is the place where we need to copy this data to a VBO to make this FAST glColor4f(voxel->color.x, voxel->color.y, voxel->color.z, 1.0); glutSolidCube(scale); vRendered++; } return vRendered; } void VoxelSystem::simulate(float deltaTime) { }