// // GLMHelpers.cpp // libraries/shared/src // // Created by Stephen Birarda on 2014-08-07. // Copyright 2014 High Fidelity, Inc. // // Distributed under the Apache License, Version 2.0. // See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html // #include "GLMHelpers.h" #include "NumericalConstants.h" // Safe version of glm::mix; based on the code in Nick Bobick's article, // http://www.gamasutra.com/features/19980703/quaternions_01.htm (via Clyde, // https://github.com/threerings/clyde/blob/master/src/main/java/com/threerings/math/Quaternion.java) glm::quat safeMix(const glm::quat& q1, const glm::quat& q2, float proportion) { float cosa = q1.x * q2.x + q1.y * q2.y + q1.z * q2.z + q1.w * q2.w; float ox = q2.x, oy = q2.y, oz = q2.z, ow = q2.w, s0, s1; // adjust signs if necessary if (cosa < 0.0f) { cosa = -cosa; ox = -ox; oy = -oy; oz = -oz; ow = -ow; } // calculate coefficients; if the angle is too close to zero, we must fall back // to linear interpolation if ((1.0f - cosa) > EPSILON) { float angle = acosf(cosa), sina = sinf(angle); s0 = sinf((1.0f - proportion) * angle) / sina; s1 = sinf(proportion * angle) / sina; } else { s0 = 1.0f - proportion; s1 = proportion; } return glm::normalize(glm::quat(s0 * q1.w + s1 * ow, s0 * q1.x + s1 * ox, s0 * q1.y + s1 * oy, s0 * q1.z + s1 * oz)); } // Allows sending of fixed-point numbers: radix 1 makes 15.1 number, radix 8 makes 8.8 number, etc int packFloatScalarToSignedTwoByteFixed(unsigned char* buffer, float scalar, int radix) { int16_t outVal = (int16_t)(scalar * (float)(1 << radix)); memcpy(buffer, &outVal, sizeof(uint16_t)); return sizeof(uint16_t); } int unpackFloatScalarFromSignedTwoByteFixed(const int16_t* byteFixedPointer, float* destinationPointer, int radix) { *destinationPointer = *byteFixedPointer / (float)(1 << radix); return sizeof(int16_t); } int packFloatVec3ToSignedTwoByteFixed(unsigned char* destBuffer, const glm::vec3& srcVector, int radix) { const unsigned char* startPosition = destBuffer; destBuffer += packFloatScalarToSignedTwoByteFixed(destBuffer, srcVector.x, radix); destBuffer += packFloatScalarToSignedTwoByteFixed(destBuffer, srcVector.y, radix); destBuffer += packFloatScalarToSignedTwoByteFixed(destBuffer, srcVector.z, radix); return destBuffer - startPosition; } int unpackFloatVec3FromSignedTwoByteFixed(const unsigned char* sourceBuffer, glm::vec3& destination, int radix) { const unsigned char* startPosition = sourceBuffer; sourceBuffer += unpackFloatScalarFromSignedTwoByteFixed((int16_t*) sourceBuffer, &(destination.x), radix); sourceBuffer += unpackFloatScalarFromSignedTwoByteFixed((int16_t*) sourceBuffer, &(destination.y), radix); sourceBuffer += unpackFloatScalarFromSignedTwoByteFixed((int16_t*) sourceBuffer, &(destination.z), radix); return sourceBuffer - startPosition; } int packFloatAngleToTwoByte(unsigned char* buffer, float degrees) { const float ANGLE_CONVERSION_RATIO = (std::numeric_limits::max() / 360.0f); uint16_t angleHolder = floorf((degrees + 180.0f) * ANGLE_CONVERSION_RATIO); memcpy(buffer, &angleHolder, sizeof(uint16_t)); return sizeof(uint16_t); } int unpackFloatAngleFromTwoByte(const uint16_t* byteAnglePointer, float* destinationPointer) { *destinationPointer = (*byteAnglePointer / (float) std::numeric_limits::max()) * 360.0f - 180.0f; return sizeof(uint16_t); } int packOrientationQuatToBytes(unsigned char* buffer, const glm::quat& quatInput) { glm::quat quatNormalized = glm::normalize(quatInput); const float QUAT_PART_CONVERSION_RATIO = (std::numeric_limits::max() / 2.0f); uint16_t quatParts[4]; quatParts[0] = floorf((quatNormalized.x + 1.0f) * QUAT_PART_CONVERSION_RATIO); quatParts[1] = floorf((quatNormalized.y + 1.0f) * QUAT_PART_CONVERSION_RATIO); quatParts[2] = floorf((quatNormalized.z + 1.0f) * QUAT_PART_CONVERSION_RATIO); quatParts[3] = floorf((quatNormalized.w + 1.0f) * QUAT_PART_CONVERSION_RATIO); memcpy(buffer, &quatParts, sizeof(quatParts)); return sizeof(quatParts); } int unpackOrientationQuatFromBytes(const unsigned char* buffer, glm::quat& quatOutput) { uint16_t quatParts[4]; memcpy(&quatParts, buffer, sizeof(quatParts)); quatOutput.x = ((quatParts[0] / (float) std::numeric_limits::max()) * 2.0f) - 1.0f; quatOutput.y = ((quatParts[1] / (float) std::numeric_limits::max()) * 2.0f) - 1.0f; quatOutput.z = ((quatParts[2] / (float) std::numeric_limits::max()) * 2.0f) - 1.0f; quatOutput.w = ((quatParts[3] / (float) std::numeric_limits::max()) * 2.0f) - 1.0f; return sizeof(quatParts); } // Safe version of glm::eulerAngles; uses the factorization method described in David Eberly's // http://www.geometrictools.com/Documentation/EulerAngles.pdf (via Clyde, // https://github.com/threerings/clyde/blob/master/src/main/java/com/threerings/math/Quaternion.java) glm::vec3 safeEulerAngles(const glm::quat& q) { float sy = 2.0f * (q.y * q.w - q.x * q.z); glm::vec3 eulers; if (sy < 1.0f - EPSILON) { if (sy > -1.0f + EPSILON) { eulers = glm::vec3( atan2f(q.y * q.z + q.x * q.w, 0.5f - (q.x * q.x + q.y * q.y)), asinf(sy), atan2f(q.x * q.y + q.z * q.w, 0.5f - (q.y * q.y + q.z * q.z))); } else { // not a unique solution; x + z = atan2(-m21, m11) eulers = glm::vec3( 0.0f, - PI_OVER_TWO, atan2f(q.x * q.w - q.y * q.z, 0.5f - (q.x * q.x + q.z * q.z))); } } else { // not a unique solution; x - z = atan2(-m21, m11) eulers = glm::vec3( 0.0f, PI_OVER_TWO, -atan2f(q.x * q.w - q.y * q.z, 0.5f - (q.x * q.x + q.z * q.z))); } // adjust so that z, rather than y, is in [-pi/2, pi/2] if (eulers.z < -PI_OVER_TWO) { if (eulers.x < 0.0f) { eulers.x += PI; } else { eulers.x -= PI; } eulers.y = -eulers.y; if (eulers.y < 0.0f) { eulers.y += PI; } else { eulers.y -= PI; } eulers.z += PI; } else if (eulers.z > PI_OVER_TWO) { if (eulers.x < 0.0f) { eulers.x += PI; } else { eulers.x -= PI; } eulers.y = -eulers.y; if (eulers.y < 0.0f) { eulers.y += PI; } else { eulers.y -= PI; } eulers.z -= PI; } return eulers; } // Helper function returns the positive angle (in radians) between two 3D vectors float angleBetween(const glm::vec3& v1, const glm::vec3& v2) { return acosf((glm::dot(v1, v2)) / (glm::length(v1) * glm::length(v2))); } // Helper function return the rotation from the first vector onto the second glm::quat rotationBetween(const glm::vec3& v1, const glm::vec3& v2) { float angle = angleBetween(v1, v2); if (glm::isnan(angle) || angle < EPSILON) { return glm::quat(); } glm::vec3 axis; if (angle > 179.99f * RADIANS_PER_DEGREE) { // 180 degree rotation; must use another axis axis = glm::cross(v1, glm::vec3(1.0f, 0.0f, 0.0f)); float axisLength = glm::length(axis); if (axisLength < EPSILON) { // parallel to x; y will work axis = glm::normalize(glm::cross(v1, glm::vec3(0.0f, 1.0f, 0.0f))); } else { axis /= axisLength; } } else { axis = glm::normalize(glm::cross(v1, v2)); // It is possible for axis to be nan even when angle is not less than EPSILON. // For example when angle is small but not tiny but v1 and v2 and have very short lengths. if (glm::isnan(glm::dot(axis, axis))) { // set angle and axis to values that will generate an identity rotation angle = 0.0f; axis = glm::vec3(1.0f, 0.0f, 0.0f); } } return glm::angleAxis(angle, axis); } bool isPointBehindTrianglesPlane(glm::vec3 point, glm::vec3 p0, glm::vec3 p1, glm::vec3 p2) { glm::vec3 v1 = p0 - p1, v2 = p2 - p1; // Non-collinear vectors contained in the plane glm::vec3 n = glm::cross(v1, v2); // Plane's normal vector, pointing out of the triangle float d = -glm::dot(n, p0); // Compute plane's equation constant return (glm::dot(n, point) + d) >= 0; } glm::vec3 extractTranslation(const glm::mat4& matrix) { return glm::vec3(matrix[3][0], matrix[3][1], matrix[3][2]); } void setTranslation(glm::mat4& matrix, const glm::vec3& translation) { matrix[3][0] = translation.x; matrix[3][1] = translation.y; matrix[3][2] = translation.z; } glm::quat extractRotation(const glm::mat4& matrix, bool assumeOrthogonal) { // uses the iterative polar decomposition algorithm described by Ken Shoemake at // http://www.cs.wisc.edu/graphics/Courses/838-s2002/Papers/polar-decomp.pdf // code adapted from Clyde, https://github.com/threerings/clyde/blob/master/core/src/main/java/com/threerings/math/Matrix4f.java // start with the contents of the upper 3x3 portion of the matrix glm::mat3 upper = glm::mat3(matrix); if (!assumeOrthogonal) { for (int i = 0; i < 10; i++) { // store the results of the previous iteration glm::mat3 previous = upper; // compute average of the matrix with its inverse transpose float sd00 = previous[1][1] * previous[2][2] - previous[2][1] * previous[1][2]; float sd10 = previous[0][1] * previous[2][2] - previous[2][1] * previous[0][2]; float sd20 = previous[0][1] * previous[1][2] - previous[1][1] * previous[0][2]; float det = previous[0][0] * sd00 + previous[2][0] * sd20 - previous[1][0] * sd10; if (fabsf(det) == 0.0f) { // determinant is zero; matrix is not invertible break; } float hrdet = 0.5f / det; upper[0][0] = +sd00 * hrdet + previous[0][0] * 0.5f; upper[1][0] = -sd10 * hrdet + previous[1][0] * 0.5f; upper[2][0] = +sd20 * hrdet + previous[2][0] * 0.5f; upper[0][1] = -(previous[1][0] * previous[2][2] - previous[2][0] * previous[1][2]) * hrdet + previous[0][1] * 0.5f; upper[1][1] = +(previous[0][0] * previous[2][2] - previous[2][0] * previous[0][2]) * hrdet + previous[1][1] * 0.5f; upper[2][1] = -(previous[0][0] * previous[1][2] - previous[1][0] * previous[0][2]) * hrdet + previous[2][1] * 0.5f; upper[0][2] = +(previous[1][0] * previous[2][1] - previous[2][0] * previous[1][1]) * hrdet + previous[0][2] * 0.5f; upper[1][2] = -(previous[0][0] * previous[2][1] - previous[2][0] * previous[0][1]) * hrdet + previous[1][2] * 0.5f; upper[2][2] = +(previous[0][0] * previous[1][1] - previous[1][0] * previous[0][1]) * hrdet + previous[2][2] * 0.5f; // compute the difference; if it's small enough, we're done glm::mat3 diff = upper - previous; if (diff[0][0] * diff[0][0] + diff[1][0] * diff[1][0] + diff[2][0] * diff[2][0] + diff[0][1] * diff[0][1] + diff[1][1] * diff[1][1] + diff[2][1] * diff[2][1] + diff[0][2] * diff[0][2] + diff[1][2] * diff[1][2] + diff[2][2] * diff[2][2] < EPSILON) { break; } } } // now that we have a nice orthogonal matrix, we can extract the rotation quaternion // using the method described in http://en.wikipedia.org/wiki/Rotation_matrix#Conversions float x2 = fabs(1.0f + upper[0][0] - upper[1][1] - upper[2][2]); float y2 = fabs(1.0f - upper[0][0] + upper[1][1] - upper[2][2]); float z2 = fabs(1.0f - upper[0][0] - upper[1][1] + upper[2][2]); float w2 = fabs(1.0f + upper[0][0] + upper[1][1] + upper[2][2]); return glm::normalize(glm::quat(0.5f * sqrtf(w2), 0.5f * sqrtf(x2) * (upper[1][2] >= upper[2][1] ? 1.0f : -1.0f), 0.5f * sqrtf(y2) * (upper[2][0] >= upper[0][2] ? 1.0f : -1.0f), 0.5f * sqrtf(z2) * (upper[0][1] >= upper[1][0] ? 1.0f : -1.0f))); } glm::vec3 extractScale(const glm::mat4& matrix) { return glm::vec3(glm::length(matrix[0]), glm::length(matrix[1]), glm::length(matrix[2])); } float extractUniformScale(const glm::mat4& matrix) { return extractUniformScale(extractScale(matrix)); } float extractUniformScale(const glm::vec3& scale) { return (scale.x + scale.y + scale.z) / 3.0f; } QByteArray createByteArray(const glm::vec3& vector) { return QByteArray::number(vector.x) + ',' + QByteArray::number(vector.y) + ',' + QByteArray::number(vector.z); } QByteArray createByteArray(const glm::quat& quat) { return QByteArray::number(quat.x) + ',' + QByteArray::number(quat.y) + "," + QByteArray::number(quat.z) + "," + QByteArray::number(quat.w); } bool isSimilarOrientation(const glm::quat& orientionA, const glm::quat& orientionB, float similarEnough) { // Compute the angular distance between the two orientations float angleOrientation = orientionA == orientionB ? 0.0f : glm::degrees(glm::angle(orientionA * glm::inverse(orientionB))); if (isNaN(angleOrientation)) { angleOrientation = 0.0f; } return (angleOrientation <= similarEnough); } bool isSimilarPosition(const glm::vec3& positionA, const glm::vec3& positionB, float similarEnough) { // Compute the distance between the two points float positionDistance = glm::distance(positionA, positionB); return (positionDistance <= similarEnough); } glm::uvec2 toGlm(const QSize & size) { return glm::uvec2(size.width(), size.height()); } glm::ivec2 toGlm(const QPoint & pt) { return glm::ivec2(pt.x(), pt.y()); } glm::vec2 toGlm(const QPointF & pt) { return glm::vec2(pt.x(), pt.y()); } glm::vec3 toGlm(const xColor & color) { static const float MAX_COLOR = 255.0f; return std::move(glm::vec3(color.red / MAX_COLOR, color.green / MAX_COLOR, color.blue / MAX_COLOR)); } glm::vec4 toGlm(const QColor & color) { return glm::vec4(color.redF(), color.greenF(), color.blueF(), color.alphaF()); } QMatrix4x4 fromGlm(const glm::mat4 & m) { return QMatrix4x4(&m[0][0]).transposed(); } QSize fromGlm(const glm::ivec2 & v) { return QSize(v.x, v.y); } QRectF glmToRect(const glm::vec2 & pos, const glm::vec2 & size) { QRectF result(pos.x, pos.y, size.x, size.y); return result; }