// The MIT License (MIT) // Copyright (c) 2012-2015 Bryce Neal // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // Adapted for High Fidelity by James B. Pollack on 11/6/2015 loadEasyStar = function() { var ezStar = eStar(); return new ezStar.js() } var eStar = function() { var EasyStar = EasyStar || {}; /** * A simple Node that represents a single tile on the grid. * @param {Object} parent The parent node. * @param {Number} x The x position on the grid. * @param {Number} y The y position on the grid. * @param {Number} costSoFar How far this node is in moves*cost from the start. * @param {Number} simpleDistanceToTarget Manhatten distance to the end point. **/ EasyStar.Node = function(parent, x, y, costSoFar, simpleDistanceToTarget) { this.parent = parent; this.x = x; this.y = y; this.costSoFar = costSoFar; this.simpleDistanceToTarget = simpleDistanceToTarget; /** * @return {Number} Best guess distance of a cost using this node. **/ this.bestGuessDistance = function() { return this.costSoFar + this.simpleDistanceToTarget; } }; // Constants EasyStar.Node.OPEN_LIST = 0; EasyStar.Node.CLOSED_LIST = 1; /** * This is an improved Priority Queue data type implementation that can be used to sort any object type. * It uses a technique called a binary heap. * * For more on binary heaps see: http://en.wikipedia.org/wiki/Binary_heap * * @param {String} criteria The criteria by which to sort the objects. * This should be a property of the objects you're sorting. * * @param {Number} heapType either PriorityQueue.MAX_HEAP or PriorityQueue.MIN_HEAP. **/ EasyStar.PriorityQueue = function(criteria, heapType) { this.length = 0; //The current length of heap. var queue = []; var isMax = false; //Constructor if (heapType == EasyStar.PriorityQueue.MAX_HEAP) { isMax = true; } else if (heapType == EasyStar.PriorityQueue.MIN_HEAP) { isMax = false; } else { throw heapType + " not supported."; } /** * Inserts the value into the heap and sorts it. * * @param value The object to insert into the heap. **/ this.insert = function(value) { if (!value.hasOwnProperty(criteria)) { throw "Cannot insert " + value + " because it does not have a property by the name of " + criteria + "."; } queue.push(value); this.length++; bubbleUp(this.length - 1); } /** * Peeks at the highest priority element. * * @return the highest priority element **/ this.getHighestPriorityElement = function() { return queue[0]; } /** * Removes and returns the highest priority element from the queue. * * @return the highest priority element **/ this.shiftHighestPriorityElement = function() { if (this.length === 0) { throw ("There are no more elements in your priority queue."); } else if (this.length === 1) { var onlyValue = queue[0]; queue = []; this.length = 0; return onlyValue; } var oldRoot = queue[0]; var newRoot = queue.pop(); this.length--; queue[0] = newRoot; swapUntilQueueIsCorrect(0); return oldRoot; } var bubbleUp = function(index) { if (index === 0) { return; } var parent = getParentOf(index); if (evaluate(index, parent)) { swap(index, parent); bubbleUp(parent); } else { return; } } var swapUntilQueueIsCorrect = function(value) { var left = getLeftOf(value); var right = getRightOf(value); if (evaluate(left, value)) { swap(value, left); swapUntilQueueIsCorrect(left); } else if (evaluate(right, value)) { swap(value, right); swapUntilQueueIsCorrect(right); } else if (value == 0) { return; } else { swapUntilQueueIsCorrect(0); } } var swap = function(self, target) { var placeHolder = queue[self]; queue[self] = queue[target]; queue[target] = placeHolder; } var evaluate = function(self, target) { if (queue[target] === undefined || queue[self] === undefined) { return false; } var selfValue; var targetValue; // Check if the criteria should be the result of a function call. if (typeof queue[self][criteria] === 'function') { selfValue = queue[self][criteria](); targetValue = queue[target][criteria](); } else { selfValue = queue[self][criteria]; targetValue = queue[target][criteria]; } if (isMax) { if (selfValue > targetValue) { return true; } else { return false; } } else { if (selfValue < targetValue) { return true; } else { return false; } } } var getParentOf = function(index) { return Math.floor((index - 1) / 2); } var getLeftOf = function(index) { return index * 2 + 1; } var getRightOf = function(index) { return index * 2 + 2; } }; // Constants EasyStar.PriorityQueue.MAX_HEAP = 0; EasyStar.PriorityQueue.MIN_HEAP = 1; /** * Represents a single instance of EasyStar. * A path that is in the queue to eventually be found. */ EasyStar.instance = function() { this.isDoneCalculating = true; this.pointsToAvoid = {}; this.startX; this.callback; this.startY; this.endX; this.endY; this.nodeHash = {}; this.openList; }; /** * EasyStar.js * github.com/prettymuchbryce/EasyStarJS * Licensed under the MIT license. * * Implementation By Bryce Neal (@prettymuchbryce) **/ EasyStar.js = function() { var STRAIGHT_COST = 1.0; var DIAGONAL_COST = 1.4; var syncEnabled = false; var pointsToAvoid = {}; var collisionGrid; var costMap = {}; var pointsToCost = {}; var allowCornerCutting = true; var iterationsSoFar; var instances = []; var iterationsPerCalculation = Number.MAX_VALUE; var acceptableTiles; var diagonalsEnabled = false; /** * Sets the collision grid that EasyStar uses. * * @param {Array|Number} tiles An array of numbers that represent * which tiles in your grid should be considered * acceptable, or "walkable". **/ this.setAcceptableTiles = function(tiles) { if (tiles instanceof Array) { // Array acceptableTiles = tiles; } else if (!isNaN(parseFloat(tiles)) && isFinite(tiles)) { // Number acceptableTiles = [tiles]; } }; /** * Enables sync mode for this EasyStar instance.. * if you're into that sort of thing. **/ this.enableSync = function() { syncEnabled = true; }; /** * Disables sync mode for this EasyStar instance. **/ this.disableSync = function() { syncEnabled = false; }; /** * Enable diagonal pathfinding. */ this.enableDiagonals = function() { diagonalsEnabled = true; } /** * Disable diagonal pathfinding. */ this.disableDiagonals = function() { diagonalsEnabled = false; } /** * Sets the collision grid that EasyStar uses. * * @param {Array} grid The collision grid that this EasyStar instance will read from. * This should be a 2D Array of Numbers. **/ this.setGrid = function(grid) { collisionGrid = grid; //Setup cost map for (var y = 0; y < collisionGrid.length; y++) { for (var x = 0; x < collisionGrid[0].length; x++) { if (!costMap[collisionGrid[y][x]]) { costMap[collisionGrid[y][x]] = 1 } } } }; /** * Sets the tile cost for a particular tile type. * * @param {Number} The tile type to set the cost for. * @param {Number} The multiplicative cost associated with the given tile. **/ this.setTileCost = function(tileType, cost) { costMap[tileType] = cost; }; /** * Sets the an additional cost for a particular point. * Overrides the cost from setTileCost. * * @param {Number} x The x value of the point to cost. * @param {Number} y The y value of the point to cost. * @param {Number} The multiplicative cost associated with the given point. **/ this.setAdditionalPointCost = function(x, y, cost) { pointsToCost[x + '_' + y] = cost; }; /** * Remove the additional cost for a particular point. * * @param {Number} x The x value of the point to stop costing. * @param {Number} y The y value of the point to stop costing. **/ this.removeAdditionalPointCost = function(x, y) { delete pointsToCost[x + '_' + y]; } /** * Remove all additional point costs. **/ this.removeAllAdditionalPointCosts = function() { pointsToCost = {}; } /** * Sets the number of search iterations per calculation. * A lower number provides a slower result, but more practical if you * have a large tile-map and don't want to block your thread while * finding a path. * * @param {Number} iterations The number of searches to prefrom per calculate() call. **/ this.setIterationsPerCalculation = function(iterations) { iterationsPerCalculation = iterations; }; /** * Avoid a particular point on the grid, * regardless of whether or not it is an acceptable tile. * * @param {Number} x The x value of the point to avoid. * @param {Number} y The y value of the point to avoid. **/ this.avoidAdditionalPoint = function(x, y) { pointsToAvoid[x + "_" + y] = 1; }; /** * Stop avoiding a particular point on the grid. * * @param {Number} x The x value of the point to stop avoiding. * @param {Number} y The y value of the point to stop avoiding. **/ this.stopAvoidingAdditionalPoint = function(x, y) { delete pointsToAvoid[x + "_" + y]; }; /** * Enables corner cutting in diagonal movement. **/ this.enableCornerCutting = function() { allowCornerCutting = true; }; /** * Disables corner cutting in diagonal movement. **/ this.disableCornerCutting = function() { allowCornerCutting = false; }; /** * Stop avoiding all additional points on the grid. **/ this.stopAvoidingAllAdditionalPoints = function() { pointsToAvoid = {}; }; /** * Find a path. * * @param {Number} startX The X position of the starting point. * @param {Number} startY The Y position of the starting point. * @param {Number} endX The X position of the ending point. * @param {Number} endY The Y position of the ending point. * @param {Function} callback A function that is called when your path * is found, or no path is found. * **/ this.findPath = function(startX, startY, endX, endY, callback) { // Wraps the callback for sync vs async logic var callbackWrapper = function(result) { if (syncEnabled) { callback(result); } else { Script.setTimeout(function() { callback(result); }, 1); } } // No acceptable tiles were set if (acceptableTiles === undefined) { throw new Error("You can't set a path without first calling setAcceptableTiles() on EasyStar."); } // No grid was set if (collisionGrid === undefined) { throw new Error("You can't set a path without first calling setGrid() on EasyStar."); } // Start or endpoint outside of scope. if (startX < 0 || startY < 0 || endX < 0 || endX < 0 || startX > collisionGrid[0].length - 1 || startY > collisionGrid.length - 1 || endX > collisionGrid[0].length - 1 || endY > collisionGrid.length - 1) { throw new Error("Your start or end point is outside the scope of your grid."); } // Start and end are the same tile. if (startX === endX && startY === endY) { callbackWrapper([]); return; } // End point is not an acceptable tile. var endTile = collisionGrid[endY][endX]; var isAcceptable = false; for (var i = 0; i < acceptableTiles.length; i++) { if (endTile === acceptableTiles[i]) { isAcceptable = true; break; } } if (isAcceptable === false) { callbackWrapper(null); return; } // Create the instance var instance = new EasyStar.instance(); instance.openList = new EasyStar.PriorityQueue("bestGuessDistance", EasyStar.PriorityQueue.MIN_HEAP); instance.isDoneCalculating = false; instance.nodeHash = {}; instance.startX = startX; instance.startY = startY; instance.endX = endX; instance.endY = endY; instance.callback = callbackWrapper; instance.openList.insert(coordinateToNode(instance, instance.startX, instance.startY, null, STRAIGHT_COST)); instances.push(instance); }; /** * This method steps through the A* Algorithm in an attempt to * find your path(s). It will search 4-8 tiles (depending on diagonals) for every calculation. * You can change the number of calculations done in a call by using * easystar.setIteratonsPerCalculation(). **/ this.calculate = function() { if (instances.length === 0 || collisionGrid === undefined || acceptableTiles === undefined) { return; } for (iterationsSoFar = 0; iterationsSoFar < iterationsPerCalculation; iterationsSoFar++) { if (instances.length === 0) { return; } if (syncEnabled) { // If this is a sync instance, we want to make sure that it calculates synchronously. iterationsSoFar = 0; } // Couldn't find a path. if (instances[0].openList.length === 0) { var ic = instances[0]; ic.callback(null); instances.shift(); continue; } var searchNode = instances[0].openList.shiftHighestPriorityElement(); var tilesToSearch = []; searchNode.list = EasyStar.Node.CLOSED_LIST; if (searchNode.y > 0) { tilesToSearch.push({ instance: instances[0], searchNode: searchNode, x: 0, y: -1, cost: STRAIGHT_COST * getTileCost(searchNode.x, searchNode.y - 1) }); } if (searchNode.x < collisionGrid[0].length - 1) { tilesToSearch.push({ instance: instances[0], searchNode: searchNode, x: 1, y: 0, cost: STRAIGHT_COST * getTileCost(searchNode.x + 1, searchNode.y) }); } if (searchNode.y < collisionGrid.length - 1) { tilesToSearch.push({ instance: instances[0], searchNode: searchNode, x: 0, y: 1, cost: STRAIGHT_COST * getTileCost(searchNode.x, searchNode.y + 1) }); } if (searchNode.x > 0) { tilesToSearch.push({ instance: instances[0], searchNode: searchNode, x: -1, y: 0, cost: STRAIGHT_COST * getTileCost(searchNode.x - 1, searchNode.y) }); } if (diagonalsEnabled) { if (searchNode.x > 0 && searchNode.y > 0) { if (allowCornerCutting || (isTileWalkable(collisionGrid, acceptableTiles, searchNode.x, searchNode.y - 1) && isTileWalkable(collisionGrid, acceptableTiles, searchNode.x - 1, searchNode.y))) { tilesToSearch.push({ instance: instances[0], searchNode: searchNode, x: -1, y: -1, cost: DIAGONAL_COST * getTileCost(searchNode.x - 1, searchNode.y - 1) }); } } if (searchNode.x < collisionGrid[0].length - 1 && searchNode.y < collisionGrid.length - 1) { if (allowCornerCutting || (isTileWalkable(collisionGrid, acceptableTiles, searchNode.x, searchNode.y + 1) && isTileWalkable(collisionGrid, acceptableTiles, searchNode.x + 1, searchNode.y))) { tilesToSearch.push({ instance: instances[0], searchNode: searchNode, x: 1, y: 1, cost: DIAGONAL_COST * getTileCost(searchNode.x + 1, searchNode.y + 1) }); } } if (searchNode.x < collisionGrid[0].length - 1 && searchNode.y > 0) { if (allowCornerCutting || (isTileWalkable(collisionGrid, acceptableTiles, searchNode.x, searchNode.y - 1) && isTileWalkable(collisionGrid, acceptableTiles, searchNode.x + 1, searchNode.y))) { tilesToSearch.push({ instance: instances[0], searchNode: searchNode, x: 1, y: -1, cost: DIAGONAL_COST * getTileCost(searchNode.x + 1, searchNode.y - 1) }); } } if (searchNode.x > 0 && searchNode.y < collisionGrid.length - 1) { if (allowCornerCutting || (isTileWalkable(collisionGrid, acceptableTiles, searchNode.x, searchNode.y + 1) && isTileWalkable(collisionGrid, acceptableTiles, searchNode.x - 1, searchNode.y))) { tilesToSearch.push({ instance: instances[0], searchNode: searchNode, x: -1, y: 1, cost: DIAGONAL_COST * getTileCost(searchNode.x - 1, searchNode.y + 1) }); } } } // First sort all of the potential nodes we could search by their cost + heuristic distance. tilesToSearch.sort(function(a, b) { var aCost = a.cost + getDistance(searchNode.x + a.x, searchNode.y + a.y, instances[0].endX, instances[0].endY) var bCost = b.cost + getDistance(searchNode.x + b.x, searchNode.y + b.y, instances[0].endX, instances[0].endY) if (aCost < bCost) { return -1; } else if (aCost === bCost) { return 0; } else { return 1; } }); var isDoneCalculating = false; // Search all of the surrounding nodes for (var i = 0; i < tilesToSearch.length; i++) { checkAdjacentNode(tilesToSearch[i].instance, tilesToSearch[i].searchNode, tilesToSearch[i].x, tilesToSearch[i].y, tilesToSearch[i].cost); if (tilesToSearch[i].instance.isDoneCalculating === true) { isDoneCalculating = true; break; } } if (isDoneCalculating) { instances.shift(); continue; } } }; // Private methods follow var checkAdjacentNode = function(instance, searchNode, x, y, cost) { var adjacentCoordinateX = searchNode.x + x; var adjacentCoordinateY = searchNode.y + y; if (pointsToAvoid[adjacentCoordinateX + "_" + adjacentCoordinateY] === undefined) { // Handles the case where we have found the destination if (instance.endX === adjacentCoordinateX && instance.endY === adjacentCoordinateY) { instance.isDoneCalculating = true; var path = []; var pathLen = 0; path[pathLen] = { x: adjacentCoordinateX, y: adjacentCoordinateY }; pathLen++; path[pathLen] = { x: searchNode.x, y: searchNode.y }; pathLen++; var parent = searchNode.parent; while (parent != null) { path[pathLen] = { x: parent.x, y: parent.y }; pathLen++; parent = parent.parent; } path.reverse(); var ic = instance; var ip = path; ic.callback(ip); return } if (isTileWalkable(collisionGrid, acceptableTiles, adjacentCoordinateX, adjacentCoordinateY)) { var node = coordinateToNode(instance, adjacentCoordinateX, adjacentCoordinateY, searchNode, cost); if (node.list === undefined) { node.list = EasyStar.Node.OPEN_LIST; instance.openList.insert(node); } else if (node.list === EasyStar.Node.OPEN_LIST) { if (searchNode.costSoFar + cost < node.costSoFar) { node.costSoFar = searchNode.costSoFar + cost; node.parent = searchNode; } } } } }; // Helpers var isTileWalkable = function(collisionGrid, acceptableTiles, x, y) { for (var i = 0; i < acceptableTiles.length; i++) { if (collisionGrid[y][x] === acceptableTiles[i]) { return true; } } return false; }; var getTileCost = function(x, y) { return pointsToCost[x + '_' + y] || costMap[collisionGrid[y][x]] }; var coordinateToNode = function(instance, x, y, parent, cost) { if (instance.nodeHash[x + "_" + y] !== undefined) { return instance.nodeHash[x + "_" + y]; } var simpleDistanceToTarget = getDistance(x, y, instance.endX, instance.endY); if (parent !== null) { var costSoFar = parent.costSoFar + cost; } else { costSoFar = simpleDistanceToTarget; } var node = new EasyStar.Node(parent, x, y, costSoFar, simpleDistanceToTarget); instance.nodeHash[x + "_" + y] = node; return node; }; var getDistance = function(x1, y1, x2, y2) { return Math.sqrt((x2 -= x1) * x2 + (y2 -= y1) * y2); }; } return EasyStar }