Merge pull request #8626 from AndrewMeadows/oobe3

out of body experience: avatar follows HMD position using velocity motor instead of micro teleports
This commit is contained in:
Anthony Thibault 2016-09-20 16:00:17 -07:00 committed by GitHub
commit fdb6110c46
6 changed files with 249 additions and 233 deletions

View file

@ -1229,6 +1229,8 @@ void MyAvatar::rebuildCollisionShape() {
float scale = getUniformScale();
float radius = scale * _skeletonModel->getBoundingCapsuleRadius();
float height = scale * _skeletonModel->getBoundingCapsuleHeight() + 2.0f * radius;
const float CANONICAL_AVATAR_HEIGHT = 2.0f;
_canonicalScale = height / CANONICAL_AVATAR_HEIGHT;
glm::vec3 corner(-radius, -0.5f * height, -radius);
corner += scale * _skeletonModel->getBoundingCapsuleOffset();
glm::vec3 diagonal(2.0f * radius, height, 2.0f * radius);
@ -1384,9 +1386,7 @@ void MyAvatar::harvestResultsFromPhysicsSimulation(float deltaTime) {
//_bodySensorMatrix = deriveBodyFromHMDSensor();
if (_characterController.isEnabledAndReady()) {
setVelocity(_characterController.getLinearVelocity() + _characterController.getFollowVelocity());
} else {
setVelocity(getVelocity() + _characterController.getFollowVelocity());
setVelocity(_characterController.getLinearVelocity());
}
_follow.postPhysicsUpdate(*this);

View file

@ -500,6 +500,7 @@ private:
bool _hmdLeanRecenterEnabled = true;
bool _moveKinematically { false }; // KINEMATIC_CONTROLLER_HACK
float _canonicalScale { 1.0f };
float AVATAR_MOVEMENT_ENERGY_CONSTANT { 0.001f };
float AUDIO_ENERGY_CONSTANT { 0.000001f };

View file

@ -75,9 +75,6 @@ CharacterController::CharacterController() {
_takeoffToInAirStartTime = 0;
_jumpButtonDownStartTime = 0;
_jumpButtonDownCount = 0;
_followTime = 0.0f;
_followLinearDisplacement = btVector3(0, 0, 0);
_followAngularDisplacement = btQuaternion::getIdentity();
_hasSupport = false;
_pendingFlags = PENDING_FLAG_UPDATE_SHAPE;
@ -130,11 +127,12 @@ void CharacterController::setDynamicsWorld(btDynamicsWorld* world) {
// KINEMATIC_CONTROLLER_HACK
_ghost.setCollisionGroupAndMask(_collisionGroup, BULLET_COLLISION_MASK_MY_AVATAR & (~ _collisionGroup));
_ghost.setCollisionWorld(_dynamicsWorld);
_ghost.setDistanceToFeet(_radius + _halfHeight);
_ghost.setRadiusAndHalfHeight(_radius, _halfHeight);
_ghost.setMaxStepHeight(0.75f * (_radius + _halfHeight)); // HACK
_ghost.setMinWallAngle(PI / 4.0f); // HACK
_ghost.setUpDirection(_currentUp);
_ghost.setGravity(DEFAULT_CHARACTER_GRAVITY);
_ghost.setWorldTransform(_rigidBody->getWorldTransform());
}
if (_dynamicsWorld) {
if (_pendingFlags & PENDING_FLAG_UPDATE_SHAPE) {
@ -176,10 +174,10 @@ bool CharacterController::checkForSupport(btCollisionWorld* collisionWorld) cons
void CharacterController::preStep(btCollisionWorld* collisionWorld) {
// trace a ray straight down to see if we're standing on the ground
const btTransform& xform = _rigidBody->getWorldTransform();
const btTransform& transform = _rigidBody->getWorldTransform();
// rayStart is at center of bottom sphere
btVector3 rayStart = xform.getOrigin() - _halfHeight * _currentUp;
btVector3 rayStart = transform.getOrigin() - _halfHeight * _currentUp;
// rayEnd is some short distance outside bottom sphere
const btScalar FLOOR_PROXIMITY_THRESHOLD = 0.3f * _radius;
@ -202,6 +200,58 @@ const btScalar MIN_TARGET_SPEED_SQUARED = MIN_TARGET_SPEED * MIN_TARGET_SPEED;
void CharacterController::playerStep(btCollisionWorld* dynaWorld, btScalar dt) {
btVector3 velocity = _rigidBody->getLinearVelocity() - _parentVelocity;
if (_following) {
// linear part uses a motor
const float MAX_WALKING_SPEED = 2.5f; // TODO: scale this stuff with avatar size
const float MAX_WALKING_SPEED_DISTANCE = 1.0f;
const float NORMAL_WALKING_SPEED = 0.5f * MAX_WALKING_SPEED;
const float NORMAL_WALKING_SPEED_DISTANCE = 0.5f * MAX_WALKING_SPEED_DISTANCE;
const float FEW_SUBSTEPS = 4.0f * dt;
btTransform bodyTransform = _rigidBody->getWorldTransform();
btVector3 startPos = bodyTransform.getOrigin();
btVector3 deltaPos = _followDesiredBodyTransform.getOrigin() - startPos;
btScalar deltaDistance = deltaPos.length();
const float MIN_DELTA_DISTANCE = 0.01f; // TODO: scale by avatar size but cap at (NORMAL_WALKING_SPEED * FEW_SUBSTEPS)
if (deltaDistance > MIN_DELTA_DISTANCE) {
btVector3 vel = deltaPos;
if (deltaDistance > MAX_WALKING_SPEED_DISTANCE) {
// cap max speed
vel *= MAX_WALKING_SPEED / deltaDistance;
} else if (deltaDistance > NORMAL_WALKING_SPEED_DISTANCE) {
// linearly interpolate to NORMAL_WALKING_SPEED
btScalar alpha = (deltaDistance - NORMAL_WALKING_SPEED_DISTANCE) / (MAX_WALKING_SPEED_DISTANCE - NORMAL_WALKING_SPEED_DISTANCE);
vel *= NORMAL_WALKING_SPEED * (1.0f - alpha) + MAX_WALKING_SPEED * alpha;
} else {
// use exponential decay but cap at NORMAL_WALKING_SPEED
vel /= FEW_SUBSTEPS;
btScalar speed = vel.length();
if (speed > NORMAL_WALKING_SPEED) {
vel *= NORMAL_WALKING_SPEED / speed;
}
}
const float HORIZONTAL_FOLLOW_TIMESCALE = 0.1f;
const float VERTICAL_FOLLOW_TIMESCALE = (_state == State::Hover) ? HORIZONTAL_FOLLOW_TIMESCALE : 20.0f;
glm::quat worldFrameRotation; // identity
addMotor(bulletToGLM(vel), worldFrameRotation, HORIZONTAL_FOLLOW_TIMESCALE, VERTICAL_FOLLOW_TIMESCALE);
}
// angular part uses incremental teleports
const float ANGULAR_FOLLOW_TIMESCALE = 0.8f;
const float MAX_ANGULAR_SPEED = (PI / 2.0f) / ANGULAR_FOLLOW_TIMESCALE;
btQuaternion startRot = bodyTransform.getRotation();
glm::vec2 currentFacing = getFacingDir2D(bulletToGLM(startRot));
glm::vec2 currentRight(currentFacing.y, - currentFacing.x);
glm::vec2 desiredFacing = getFacingDir2D(bulletToGLM(_followDesiredBodyTransform.getRotation()));
float deltaAngle = acosf(glm::clamp(glm::dot(currentFacing, desiredFacing), -1.0f, 1.0f));
float angularSpeed = deltaAngle / FEW_SUBSTEPS;
if (angularSpeed > MAX_ANGULAR_SPEED) {
angularSpeed *= MAX_ANGULAR_SPEED / angularSpeed;
}
float sign = copysignf(1.0f, glm::dot(desiredFacing, currentRight));
btQuaternion angularDisplacement = btQuaternion(btVector3(0.0f, 1.0f, 0.0f), sign * angularSpeed * dt);
btQuaternion endRot = angularDisplacement * startRot;
_rigidBody->setWorldTransform(btTransform(endRot, startPos));
}
computeNewVelocity(dt, velocity);
if (_moveKinematically) {
@ -209,10 +259,11 @@ void CharacterController::playerStep(btCollisionWorld* dynaWorld, btScalar dt) {
btTransform transform = _rigidBody->getWorldTransform();
transform.setOrigin(_ghost.getWorldTransform().getOrigin());
_ghost.setWorldTransform(transform);
_ghost.setMotorVelocity(_simpleMotorVelocity);
_ghost.setMotorVelocity(_targetVelocity);
float overshoot = 1.0f * _radius;
_ghost.move(dt, overshoot);
_rigidBody->setWorldTransform(_ghost.getWorldTransform());
transform.setOrigin(_ghost.getWorldTransform().getOrigin());
_rigidBody->setWorldTransform(transform);
_rigidBody->setLinearVelocity(_ghost.getLinearVelocity());
} else {
// Dynamicaly compute a follow velocity to move this body toward the _followDesiredBodyTransform.
@ -220,50 +271,6 @@ void CharacterController::playerStep(btCollisionWorld* dynaWorld, btScalar dt) {
// This mirrors the computation done in MyAvatar::FollowHelper::postPhysicsUpdate().
_rigidBody->setLinearVelocity(velocity + _parentVelocity);
if (_following) {
// OUTOFBODY_HACK -- these consts were copied from elsewhere, and then tuned
const float NORMAL_WALKING_SPEED = 1.5f; // actual walk speed is 2.5 m/sec
const float FOLLOW_TIME = 0.8f;
const float FOLLOW_ROTATION_THRESHOLD = cosf(PI / 6.0f);
const float FOLLOW_FACTOR = 0.5f;
const float MAX_ANGULAR_SPEED = FOLLOW_ROTATION_THRESHOLD / FOLLOW_TIME;
btTransform bodyTransform = _rigidBody->getWorldTransform();
btVector3 startPos = bodyTransform.getOrigin();
btVector3 deltaPos = _followDesiredBodyTransform.getOrigin() - startPos;
btVector3 vel = deltaPos * (FOLLOW_FACTOR / dt);
btScalar speed = vel.length();
if (speed > NORMAL_WALKING_SPEED) {
vel *= NORMAL_WALKING_SPEED / speed;
}
btVector3 linearDisplacement = vel * dt;
btVector3 endPos = startPos + linearDisplacement;
btQuaternion startRot = bodyTransform.getRotation();
glm::vec2 currentFacing = getFacingDir2D(bulletToGLM(startRot));
glm::vec2 currentRight(currentFacing.y, -currentFacing.x);
glm::vec2 desiredFacing = getFacingDir2D(bulletToGLM(_followDesiredBodyTransform.getRotation()));
float deltaAngle = acosf(glm::clamp(glm::dot(currentFacing, desiredFacing), -1.0f, 1.0f));
float angularSpeed = 0.5f * deltaAngle / dt;
if (angularSpeed > MAX_ANGULAR_SPEED) {
angularSpeed *= MAX_ANGULAR_SPEED / angularSpeed;
}
float sign = copysignf(1.0f, glm::dot(desiredFacing, currentRight));
btQuaternion angularDisplacement = btQuaternion(btVector3(0.0f, 1.0f, 0.0f), sign * angularSpeed * dt);
btQuaternion endRot = angularDisplacement * startRot;
// in order to accumulate displacement of avatar position, we need to take _shapeLocalOffset into account.
btVector3 shapeLocalOffset = glmToBullet(_shapeLocalOffset);
btVector3 swingDisplacement = rotateVector(endRot, -shapeLocalOffset) - rotateVector(startRot, -shapeLocalOffset);
_followLinearDisplacement = linearDisplacement + swingDisplacement + _followLinearDisplacement;
_followAngularDisplacement = angularDisplacement * _followAngularDisplacement;
_rigidBody->setWorldTransform(btTransform(endRot, endPos));
}
_followTime += dt;
_ghost.setWorldTransform(_rigidBody->getWorldTransform());
}
}
@ -399,9 +406,8 @@ void CharacterController::setPositionAndOrientation(
// TODO: update gravity if up has changed
updateUpAxis(orientation);
btQuaternion bodyOrientation = glmToBullet(orientation);
btVector3 bodyPosition = glmToBullet(position + orientation * _shapeLocalOffset);
_characterBodyTransform = btTransform(bodyOrientation, bodyPosition);
_rotation = glmToBullet(orientation);
_position = glmToBullet(position + orientation * _shapeLocalOffset);
}
void CharacterController::getPositionAndOrientation(glm::vec3& position, glm::quat& rotation) const {
@ -421,22 +427,6 @@ void CharacterController::setFollowParameters(const glm::mat4& desiredWorldBodyM
_following = true;
}
glm::vec3 CharacterController::getFollowLinearDisplacement() const {
return bulletToGLM(_followLinearDisplacement);
}
glm::quat CharacterController::getFollowAngularDisplacement() const {
return bulletToGLM(_followAngularDisplacement);
}
glm::vec3 CharacterController::getFollowVelocity() const {
if (_followTime > 0.0f) {
return bulletToGLM(_followLinearDisplacement) / _followTime;
} else {
return glm::vec3();
}
}
glm::vec3 CharacterController::getLinearVelocity() const {
glm::vec3 velocity(0.0f);
if (_rigidBody) {
@ -484,10 +474,11 @@ void CharacterController::applyMotor(int index, btScalar dt, btVector3& worldVel
if (tau > 1.0f) {
tau = 1.0f;
}
velocity += (motor.velocity - velocity) * tau;
velocity += tau * (motor.velocity - velocity);
// rotate back into world-frame
velocity = velocity.rotate(axis, angle);
_targetVelocity += (tau * motor.velocity).rotate(axis, angle);
// store the velocity and weight
velocities.push_back(velocity);
@ -525,7 +516,7 @@ void CharacterController::applyMotor(int index, btScalar dt, btVector3& worldVel
// add components back together and rotate into world-frame
velocity = (hVelocity + vVelocity).rotate(axis, angle);
_simpleMotorVelocity += maxTau * (hTargetVelocity + vTargetVelocity).rotate(axis, angle);
_targetVelocity += maxTau * (hTargetVelocity + vTargetVelocity).rotate(axis, angle);
// store velocity and weights
velocities.push_back(velocity);
@ -543,7 +534,7 @@ void CharacterController::computeNewVelocity(btScalar dt, btVector3& velocity) {
velocities.reserve(_motors.size());
std::vector<btScalar> weights;
weights.reserve(_motors.size());
_simpleMotorVelocity = btVector3(0.0f, 0.0f, 0.0f);
_targetVelocity = btVector3(0.0f, 0.0f, 0.0f);
for (int i = 0; i < (int)_motors.size(); ++i) {
applyMotor(i, dt, velocity, velocities, weights);
}
@ -559,15 +550,18 @@ void CharacterController::computeNewVelocity(btScalar dt, btVector3& velocity) {
for (size_t i = 0; i < velocities.size(); ++i) {
velocity += (weights[i] / totalWeight) * velocities[i];
}
_simpleMotorVelocity /= totalWeight;
_targetVelocity /= totalWeight;
}
if (velocity.length2() < MIN_TARGET_SPEED_SQUARED) {
velocity = btVector3(0.0f, 0.0f, 0.0f);
}
// 'thrust' is applied at the very end
_targetVelocity += dt * _linearAcceleration;
velocity += dt * _linearAcceleration;
_targetVelocity = velocity;
// Note the differences between these two variables:
// _targetVelocity = ideal final velocity according to input
// velocity = real final velocity after motors are applied to current velocity
}
void CharacterController::computeNewVelocity(btScalar dt, glm::vec3& velocity) {
@ -576,131 +570,131 @@ void CharacterController::computeNewVelocity(btScalar dt, glm::vec3& velocity) {
velocity = bulletToGLM(btVelocity);
}
void CharacterController::preSimulation() {
if (_dynamicsWorld) {
quint64 now = usecTimestampNow();
void CharacterController::updateState() {
const btScalar FLY_TO_GROUND_THRESHOLD = 0.1f * _radius;
const btScalar GROUND_TO_FLY_THRESHOLD = 0.8f * _radius + _halfHeight;
const quint64 TAKE_OFF_TO_IN_AIR_PERIOD = 250 * MSECS_PER_SECOND;
const btScalar MIN_HOVER_HEIGHT = 2.5f;
const quint64 JUMP_TO_HOVER_PERIOD = 1100 * MSECS_PER_SECOND;
// slam body to where it is supposed to be
_rigidBody->setWorldTransform(_characterBodyTransform);
btVector3 velocity = _rigidBody->getLinearVelocity();
_preSimulationVelocity = velocity;
// scan for distant floor
// rayStart is at center of bottom sphere
btVector3 rayStart = _position;
// scan for distant floor
// rayStart is at center of bottom sphere
btVector3 rayStart = _characterBodyTransform.getOrigin();
// rayEnd is straight down MAX_FALL_HEIGHT
btScalar rayLength = _radius + MAX_FALL_HEIGHT;
btVector3 rayEnd = rayStart - rayLength * _currentUp;
// rayEnd is straight down MAX_FALL_HEIGHT
btScalar rayLength = _radius + MAX_FALL_HEIGHT;
btVector3 rayEnd = rayStart - rayLength * _currentUp;
const btScalar FLY_TO_GROUND_THRESHOLD = 0.1f * _radius;
const btScalar GROUND_TO_FLY_THRESHOLD = 0.8f * _radius + _halfHeight;
const quint64 TAKE_OFF_TO_IN_AIR_PERIOD = 250 * MSECS_PER_SECOND;
const btScalar MIN_HOVER_HEIGHT = 2.5f;
const quint64 JUMP_TO_HOVER_PERIOD = 1100 * MSECS_PER_SECOND;
const btScalar MAX_WALKING_SPEED = 2.5f;
ClosestNotMe rayCallback(_rigidBody);
rayCallback.m_closestHitFraction = 1.0f;
_dynamicsWorld->rayTest(rayStart, rayEnd, rayCallback);
bool rayHasHit = rayCallback.hasHit();
quint64 now = usecTimestampNow();
if (rayHasHit) {
_rayHitStartTime = now;
_floorDistance = rayLength * rayCallback.m_closestHitFraction - (_radius + _halfHeight);
} else {
const quint64 RAY_HIT_START_PERIOD = 500 * MSECS_PER_SECOND;
ClosestNotMe rayCallback(_rigidBody);
rayCallback.m_closestHitFraction = 1.0f;
_dynamicsWorld->rayTest(rayStart, rayEnd, rayCallback);
bool rayHasHit = rayCallback.hasHit();
if (rayHasHit) {
_rayHitStartTime = now;
_floorDistance = rayLength * rayCallback.m_closestHitFraction - (_radius + _halfHeight);
} else if ((now - _rayHitStartTime) < RAY_HIT_START_PERIOD) {
if ((now - _rayHitStartTime) < RAY_HIT_START_PERIOD) {
rayHasHit = true;
} else {
_floorDistance = FLT_MAX;
}
}
// record a time stamp when the jump button was first pressed.
if ((_previousFlags & PENDING_FLAG_JUMP) != (_pendingFlags & PENDING_FLAG_JUMP)) {
if (_pendingFlags & PENDING_FLAG_JUMP) {
_jumpButtonDownStartTime = now;
_jumpButtonDownCount++;
}
// record a time stamp when the jump button was first pressed.
bool jumpButtonHeld = _pendingFlags & PENDING_FLAG_JUMP;
if ((_previousFlags & PENDING_FLAG_JUMP) != (_pendingFlags & PENDING_FLAG_JUMP)) {
if (_pendingFlags & PENDING_FLAG_JUMP) {
_jumpButtonDownStartTime = now;
_jumpButtonDownCount++;
}
}
bool jumpButtonHeld = _pendingFlags & PENDING_FLAG_JUMP;
btVector3 velocity = _preSimulationVelocity;
btVector3 actualHorizVelocity = velocity - velocity.dot(_currentUp) * _currentUp;
bool flyingFast = _state == State::Hover && actualHorizVelocity.length() > (MAX_WALKING_SPEED * 0.75f);
// OUTOFBODY_HACK -- disable normal state transitions while collisionless
if (_collisionGroup == BULLET_COLLISION_GROUP_MY_AVATAR) {
switch (_state) {
case State::Ground:
if (!rayHasHit && !_hasSupport) {
SET_STATE(State::Hover, "no ground detected");
} else if (_pendingFlags & PENDING_FLAG_JUMP && _jumpButtonDownCount != _takeoffJumpButtonID) {
_takeoffJumpButtonID = _jumpButtonDownCount;
_takeoffToInAirStartTime = now;
SET_STATE(State::Takeoff, "jump pressed");
} else if (rayHasHit && !_hasSupport && _floorDistance > GROUND_TO_FLY_THRESHOLD) {
SET_STATE(State::InAir, "falling");
}
break;
case State::Takeoff:
if (!rayHasHit && !_hasSupport) {
SET_STATE(State::Hover, "no ground");
} else if ((now - _takeoffToInAirStartTime) > TAKE_OFF_TO_IN_AIR_PERIOD) {
SET_STATE(State::InAir, "takeoff done");
velocity += _jumpSpeed * _currentUp;
_rigidBody->setLinearVelocity(velocity);
}
break;
case State::InAir: {
if ((velocity.dot(_currentUp) <= (JUMP_SPEED / 2.0f)) && ((_floorDistance < FLY_TO_GROUND_THRESHOLD) || _hasSupport)) {
SET_STATE(State::Ground, "hit ground");
} else {
btVector3 desiredVelocity = _targetVelocity;
if (desiredVelocity.length2() < MIN_TARGET_SPEED_SQUARED) {
desiredVelocity = btVector3(0.0f, 0.0f, 0.0f);
}
bool vertTargetSpeedIsNonZero = desiredVelocity.dot(_currentUp) > MIN_TARGET_SPEED;
if ((jumpButtonHeld || vertTargetSpeedIsNonZero) && (_takeoffJumpButtonID != _jumpButtonDownCount)) {
SET_STATE(State::Hover, "double jump button");
} else if ((jumpButtonHeld || vertTargetSpeedIsNonZero) && (now - _jumpButtonDownStartTime) > JUMP_TO_HOVER_PERIOD) {
SET_STATE(State::Hover, "jump button held");
}
}
break;
// OUTOFBODY_HACK -- disable normal state transitions while collisionless
if (_collisionGroup == BULLET_COLLISION_GROUP_MY_AVATAR) {
switch (_state) {
case State::Ground:
if (!rayHasHit && !_hasSupport) {
SET_STATE(State::Hover, "no ground detected");
} else if (_pendingFlags & PENDING_FLAG_JUMP && _jumpButtonDownCount != _takeoffJumpButtonID) {
_takeoffJumpButtonID = _jumpButtonDownCount;
_takeoffToInAirStartTime = now;
SET_STATE(State::Takeoff, "jump pressed");
} else if (rayHasHit && !_hasSupport && _floorDistance > GROUND_TO_FLY_THRESHOLD) {
SET_STATE(State::InAir, "falling");
}
case State::Hover:
if ((_floorDistance < MIN_HOVER_HEIGHT) && !jumpButtonHeld && !flyingFast) {
SET_STATE(State::InAir, "near ground");
} else if (((_floorDistance < FLY_TO_GROUND_THRESHOLD) || _hasSupport) && !flyingFast) {
SET_STATE(State::Ground, "touching ground");
}
break;
break;
case State::Takeoff:
if (!rayHasHit && !_hasSupport) {
SET_STATE(State::Hover, "no ground");
} else if ((now - _takeoffToInAirStartTime) > TAKE_OFF_TO_IN_AIR_PERIOD) {
SET_STATE(State::InAir, "takeoff done");
velocity += _jumpSpeed * _currentUp;
_rigidBody->setLinearVelocity(velocity);
}
} else {
// OUTOFBODY_HACK -- in collisionless state switch between Ground and Hover states
if (rayHasHit) {
SET_STATE(State::Ground, "collisionless above ground");
break;
case State::InAir: {
if ((velocity.dot(_currentUp) <= (JUMP_SPEED / 2.0f)) && ((_floorDistance < FLY_TO_GROUND_THRESHOLD) || _hasSupport)) {
SET_STATE(State::Ground, "hit ground");
} else {
SET_STATE(State::Hover, "collisionless in air");
btVector3 desiredVelocity = _targetVelocity;
if (desiredVelocity.length2() < MIN_TARGET_SPEED_SQUARED) {
desiredVelocity = btVector3(0.0f, 0.0f, 0.0f);
}
bool vertTargetSpeedIsNonZero = desiredVelocity.dot(_currentUp) > MIN_TARGET_SPEED;
if ((jumpButtonHeld || vertTargetSpeedIsNonZero) && (_takeoffJumpButtonID != _jumpButtonDownCount)) {
SET_STATE(State::Hover, "double jump button");
} else if ((jumpButtonHeld || vertTargetSpeedIsNonZero) && (now - _jumpButtonDownStartTime) > JUMP_TO_HOVER_PERIOD) {
SET_STATE(State::Hover, "jump button held");
}
}
break;
}
case State::Hover:
btVector3 actualHorizVelocity = velocity - velocity.dot(_currentUp) * _currentUp;
const btScalar MAX_WALKING_SPEED = 2.5f;
bool flyingFast = _state == State::Hover && actualHorizVelocity.length() > (MAX_WALKING_SPEED * 0.75f);
if ((_floorDistance < MIN_HOVER_HEIGHT) && !jumpButtonHeld && !flyingFast) {
SET_STATE(State::InAir, "near ground");
} else if (((_floorDistance < FLY_TO_GROUND_THRESHOLD) || _hasSupport) && !flyingFast) {
SET_STATE(State::Ground, "touching ground");
}
break;
}
if (_moveKinematically && _ghost.isHovering()) {
SET_STATE(State::Hover, "kinematic motion"); // HACK
}
} else {
// OUTOFBODY_HACK -- in collisionless state switch only between Ground and Hover states
if (rayHasHit) {
SET_STATE(State::Ground, "collisionless above ground");
} else {
SET_STATE(State::Hover, "collisionless in air");
}
}
}
void CharacterController::preSimulation() {
if (_dynamicsWorld) {
// slam body transform and remember velocity
_rigidBody->setWorldTransform(btTransform(btTransform(_rotation, _position)));
_preSimulationVelocity = _rigidBody->getLinearVelocity();
updateState();
}
_previousFlags = _pendingFlags;
_pendingFlags &= ~PENDING_FLAG_JUMP;
_followTime = 0.0f;
_followLinearDisplacement = btVector3(0.0f, 0.0f, 0.0f);
_followAngularDisplacement = btQuaternion::getIdentity();
}
void CharacterController::postSimulation() {
// postSimulation() exists for symmetry and just in case we need to do something here later
btVector3 velocity = _rigidBody->getLinearVelocity();
_velocityChange = velocity - _preSimulationVelocity;
_velocityChange = _rigidBody->getLinearVelocity() - _preSimulationVelocity;
}
bool CharacterController::getRigidBodyLocation(glm::vec3& avatarRigidBodyPosition, glm::quat& avatarRigidBodyRotation) {
if (!_rigidBody) {
return false;

View file

@ -88,10 +88,6 @@ public:
void setParentVelocity(const glm::vec3& parentVelocity);
void setFollowParameters(const glm::mat4& desiredWorldBodyMatrix);
void disableFollow() { _following = false; }
float getFollowTime() const { return _followTime; }
glm::vec3 getFollowLinearDisplacement() const;
glm::quat getFollowAngularDisplacement() const;
glm::vec3 getFollowVelocity() const;
glm::vec3 getLinearVelocity() const;
glm::vec3 getVelocityChange() const;
@ -109,6 +105,7 @@ public:
};
State getState() const { return _state; }
void updateState();
void setLocalBoundingBox(const glm::vec3& minCorner, const glm::vec3& scale);
@ -152,9 +149,9 @@ protected:
btVector3 _parentVelocity;
btVector3 _preSimulationVelocity;
btVector3 _velocityChange;
btVector3 _simpleMotorVelocity; // KINEMATIC_CONTROLLER_HACK
btTransform _followDesiredBodyTransform;
btTransform _characterBodyTransform;
btVector3 _position;
btQuaternion _rotation;
glm::vec3 _shapeLocalOffset;
@ -175,9 +172,6 @@ protected:
btScalar _gravity;
btScalar _jumpSpeed;
btScalar _followTime;
btVector3 _followLinearDisplacement;
btQuaternion _followAngularDisplacement;
btVector3 _linearAcceleration;
bool _following { false };

View file

@ -14,6 +14,8 @@
#include <stdint.h>
#include <assert.h>
#include <PhysicsHelpers.h>
#include "CharacterGhostShape.h"
#include "CharacterRayResult.h"
@ -38,6 +40,10 @@ void CharacterGhostObject::getCollisionGroupAndMask(int16_t& group, int16_t& mas
mask = _collisionFilterMask;
}
void CharacterGhostObject::setRadiusAndHalfHeight(btScalar radius, btScalar halfHeight) {
_radius = radius;
_halfHeight = halfHeight;
}
void CharacterGhostObject::setUpDirection(const btVector3& up) {
btScalar length = up.length();
@ -99,10 +105,12 @@ void CharacterGhostObject::move(btScalar dt, btScalar overshoot) {
// TODO: figure out how to untrap character
}
btTransform startTransform = getWorldTransform();
btVector3 startPosition = startTransform.getOrigin();
if (_onFloor) {
// a floor was identified during resolvePenetration()
_hovering = false;
updateTraction();
// resolvePenetration() pushed the avatar out of a floor so
// we must updateTraction() before using _linearVelocity
updateTraction(startPosition);
}
btVector3 forwardSweep = dt * _linearVelocity;
@ -110,7 +118,7 @@ void CharacterGhostObject::move(btScalar dt, btScalar overshoot) {
btScalar MIN_SWEEP_DISTANCE = 0.0001f;
if (stepDistance < MIN_SWEEP_DISTANCE) {
// not moving, no need to sweep
updateHoverState(getWorldTransform());
updateTraction(startPosition);
return;
}
@ -128,22 +136,19 @@ void CharacterGhostObject::move(btScalar dt, btScalar overshoot) {
// step forward
CharacterSweepResult result(this);
btTransform startTransform = getWorldTransform();
btTransform transform = startTransform;
btTransform nextTransform = transform;
nextTransform.setOrigin(transform.getOrigin() + forwardSweep);
sweepTest(convexShape, transform, nextTransform, result); // forward
btTransform nextTransform = startTransform;
nextTransform.setOrigin(startPosition + forwardSweep);
sweepTest(convexShape, startTransform, nextTransform, result); // forward
if (!result.hasHit()) {
nextTransform.setOrigin(transform.getOrigin() + (stepDistance / longSweepDistance) * forwardSweep);
nextTransform.setOrigin(startPosition + (stepDistance / longSweepDistance) * forwardSweep);
setWorldTransform(nextTransform);
updateHoverState(nextTransform);
updateTraction();
updateTraction(nextTransform.getOrigin());
return;
}
// check if this hit is obviously unsteppable
btVector3 hitFromBase = result.m_hitPointWorld - (transform.getOrigin() - (_distanceToFeet * _upDirection));
btVector3 hitFromBase = result.m_hitPointWorld - (startPosition - ((_radius + _halfHeight) * _upDirection));
btScalar hitHeight = hitFromBase.dot(_upDirection);
if (hitHeight > _maxStepHeight) {
// capsule can't step over the obstacle so move forward as much as possible before we bail
@ -152,8 +157,8 @@ void CharacterGhostObject::move(btScalar dt, btScalar overshoot) {
if (forwardDistance > stepDistance) {
forwardTranslation *= stepDistance / forwardDistance;
}
transform.setOrigin(transform.getOrigin() + forwardTranslation);
setWorldTransform(transform);
nextTransform.setOrigin(startPosition + forwardTranslation);
setWorldTransform(nextTransform);
return;
}
// if we get here then we hit something that might be steppable
@ -166,35 +171,37 @@ void CharacterGhostObject::move(btScalar dt, btScalar overshoot) {
// raise by availableStepHeight before sweeping forward
result.resetHitHistory();
transform.setOrigin(startTransform.getOrigin() + availableStepHeight * _upDirection);
nextTransform.setOrigin(transform.getOrigin() + forwardSweep);
sweepTest(convexShape, transform, nextTransform, result);
startTransform.setOrigin(startPosition + availableStepHeight * _upDirection);
nextTransform.setOrigin(startTransform.getOrigin() + forwardSweep);
sweepTest(convexShape, startTransform, nextTransform, result);
if (result.hasHit()) {
transform.setOrigin(transform.getOrigin() + result.m_closestHitFraction * forwardSweep);
startTransform.setOrigin(startTransform.getOrigin() + result.m_closestHitFraction * forwardSweep);
} else {
transform = nextTransform;
startTransform = nextTransform;
}
// sweep down in search of future landing spot
result.resetHitHistory();
btVector3 downSweep = (dt * _linearVelocity.dot(_upDirection) - availableStepHeight) * _upDirection;
nextTransform.setOrigin(transform.getOrigin() + downSweep);
sweepTest(convexShape, transform, nextTransform, result);
btVector3 downSweep = (- availableStepHeight) * _upDirection;
nextTransform.setOrigin(startTransform.getOrigin() + downSweep);
sweepTest(convexShape, startTransform, nextTransform, result);
if (result.hasHit() && result.m_hitNormalWorld.dot(_upDirection) > _maxWallNormalUpComponent) {
// can stand on future landing spot, so we interpolate toward it
_floorNormal = result.m_hitNormalWorld;
_floorContact = result.m_hitPointWorld;
_onFloor = true;
_hovering = false;
nextTransform.setOrigin(transform.getOrigin() + result.m_closestHitFraction * downSweep);
btVector3 totalStep = nextTransform.getOrigin() - startTransform.getOrigin();
transform.setOrigin(startTransform.getOrigin() + (stepDistance / totalStep.length()) * totalStep);
nextTransform.setOrigin(startTransform.getOrigin() + result.m_closestHitFraction * downSweep);
btVector3 totalStep = nextTransform.getOrigin() - startPosition;
nextTransform.setOrigin(startPosition + (stepDistance / totalStep.length()) * totalStep);
updateTraction(nextTransform.getOrigin());
} else {
// either there is no future landing spot, or there is but we can't stand on it
// in any case: we go forward as much as possible
transform.setOrigin(startTransform.getOrigin() + forwardSweepHitFraction * (stepDistance / longSweepDistance) * forwardSweep);
nextTransform.setOrigin(startPosition + forwardSweepHitFraction * (stepDistance / longSweepDistance) * forwardSweep);
updateTraction(nextTransform.getOrigin());
}
setWorldTransform(transform);
updateTraction();
setWorldTransform(nextTransform);
}
bool CharacterGhostObject::sweepTest(
@ -297,6 +304,11 @@ bool CharacterGhostObject::resolvePenetration(int numTries) {
if (normalDotUp > _maxWallNormalUpComponent) {
mostFloorPenetration = penetrationDepth;
_floorNormal = normal;
if (directionSign > 0.0f) {
_floorContact = pt.m_positionWorldOnA;
} else {
_floorContact = pt.m_positionWorldOnB;
}
_onFloor = true;
}
}
@ -327,17 +339,36 @@ void CharacterGhostObject::refreshOverlappingPairCache() {
void CharacterGhostObject::updateVelocity(btScalar dt) {
if (_hovering) {
_linearVelocity *= 0.99f; // HACK damping
_linearVelocity *= 0.999f; // HACK damping
} else {
_linearVelocity += (dt * _gravity) * _upDirection;
}
}
void CharacterGhostObject::updateTraction() {
void CharacterGhostObject::updateHoverState(const btVector3& position) {
if (_onFloor) {
_hovering = false;
} else {
// cast a ray down looking for floor support
CharacterRayResult rayResult(this);
btScalar distanceToFeet = _radius + _halfHeight;
btScalar slop = 2.0f * getCollisionShape()->getMargin(); // slop to help ray start OUTSIDE the floor object
btVector3 startPos = position - ((distanceToFeet - slop) * _upDirection);
btVector3 endPos = startPos - (2.0f * distanceToFeet) * _upDirection;
rayTest(startPos, endPos, rayResult);
// we're hovering if the ray didn't hit anything or hit unstandable slope
_hovering = !rayResult.hasHit() || rayResult.m_hitNormalWorld.dot(_upDirection) < _maxWallNormalUpComponent;
}
}
void CharacterGhostObject::updateTraction(const btVector3& position) {
updateHoverState(position);
if (_hovering) {
_linearVelocity = _motorVelocity;
} else if (_onFloor) {
btVector3 pathDirection = _floorNormal.cross(_motorVelocity).cross(_floorNormal);
// compute a velocity that swings the capsule around the _floorContact
btVector3 leverArm = _floorContact - position;
btVector3 pathDirection = leverArm.cross(_motorVelocity.cross(leverArm));
btScalar pathLength = pathDirection.length();
if (pathLength > FLT_EPSILON) {
_linearVelocity = (_motorSpeed / pathLength) * pathDirection;
@ -360,13 +391,3 @@ btScalar CharacterGhostObject::measureAvailableStepHeight() const {
return result.m_closestHitFraction * _maxStepHeight;
}
void CharacterGhostObject::updateHoverState(const btTransform& transform) {
// cast a ray down looking for floor support
CharacterRayResult rayResult(this);
btVector3 startPos = transform.getOrigin() - ((_distanceToFeet - 0.1f) * _upDirection); // 0.1 HACK to make ray hit
btVector3 endPos = startPos - (2.0f * _distanceToFeet) * _upDirection;
rayTest(startPos, endPos, rayResult);
// we're hovering if the ray didn't hit an object we can stand on
_hovering = !(rayResult.hasHit() && rayResult.m_hitNormalWorld.dot(_upDirection) > _maxWallNormalUpComponent);
}

View file

@ -31,7 +31,7 @@ public:
void setCollisionGroupAndMask(int16_t group, int16_t mask);
void getCollisionGroupAndMask(int16_t& group, int16_t& mask) const;
void setDistanceToFeet(btScalar distance) { _distanceToFeet = distance; }
void setRadiusAndHalfHeight(btScalar radius, btScalar halfHeight);
void setUpDirection(const btVector3& up);
void setMotorVelocity(const btVector3& velocity);
void setGravity(btScalar gravity) { _gravity = gravity; } // NOTE: we expect _gravity to be negative (in _upDirection)
@ -50,6 +50,9 @@ public:
const btTransform& start,
const btTransform& end,
CharacterSweepResult& result) const;
bool isHovering() const { return _hovering; }
protected:
void removeFromWorld();
void addToWorld();
@ -61,17 +64,20 @@ protected:
bool resolvePenetration(int numTries);
void refreshOverlappingPairCache();
void updateVelocity(btScalar dt);
void updateTraction();
void updateTraction(const btVector3& position);
btScalar measureAvailableStepHeight() const;
void updateHoverState(const btTransform& transform);
void updateHoverState(const btVector3& position);
protected:
btVector3 _upDirection { 0.0f, 1.0f, 0.0f }; // input, up in world-frame
btVector3 _motorVelocity { 0.0f, 0.0f, 0.0f }; // input, velocity character is trying to achieve
btVector3 _linearVelocity { 0.0f, 0.0f, 0.0f }; // internal, actual character velocity
btVector3 _floorNormal { 0.0f, 0.0f, 0.0f }; // internal, probable floor normal
btVector3 _floorContact { 0.0f, 0.0f, 0.0f }; // internal, last floor contact point
btCollisionWorld* _world { nullptr }; // input, pointer to world
btScalar _distanceToFeet { 0.0f }; // input, distance from object center to lowest point on shape
//btScalar _distanceToFeet { 0.0f }; // input, distance from object center to lowest point on shape
btScalar _halfHeight { 0.0f };
btScalar _radius { 0.0f };
btScalar _motorSpeed { 0.0f }; // internal, cached for speed
btScalar _gravity { 0.0f }; // input, amplitude of gravity along _upDirection (should be negative)
btScalar _maxWallNormalUpComponent { 0.0f }; // input: max vertical component of wall normal