mirror of
https://github.com/overte-org/overte.git
synced 2025-04-20 04:44:11 +02:00
Merge branch 'master' into transmit-joint-translation
This commit is contained in:
commit
fc7b6dee84
33 changed files with 611 additions and 774 deletions
|
@ -233,8 +233,8 @@ void Agent::setIsAvatar(bool isAvatar) {
|
|||
}
|
||||
|
||||
if (_avatarBillboardTimer) {
|
||||
_avatarIdentityTimer->stop();
|
||||
delete _avatarIdentityTimer;
|
||||
_avatarBillboardTimer->stop();
|
||||
delete _avatarBillboardTimer;
|
||||
_avatarBillboardTimer = nullptr;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -66,7 +66,7 @@ var MSEC_PER_SEC = 1000.0;
|
|||
// these control how long an abandoned pointer line will hang around
|
||||
var startTime = Date.now();
|
||||
var LIFETIME = 10;
|
||||
var ACTION_LIFETIME = 120; // 2 minutes
|
||||
var ACTION_LIFETIME = 10; // seconds
|
||||
|
||||
// states for the state machine
|
||||
var STATE_OFF = 0;
|
||||
|
@ -242,8 +242,7 @@ function MyController(hand, triggerAction) {
|
|||
var intersection = Entities.findRayIntersection(pickRay, true);
|
||||
if (intersection.intersects &&
|
||||
intersection.properties.collisionsWillMove === 1 &&
|
||||
intersection.properties.locked === 0 &&
|
||||
!entityIsGrabbedByOther(intersection.entityID)) {
|
||||
intersection.properties.locked === 0) {
|
||||
// the ray is intersecting something we can move.
|
||||
var handControllerPosition = Controller.getSpatialControlPosition(this.palm);
|
||||
var intersectionDistance = Vec3.distance(handControllerPosition, intersection.intersection);
|
||||
|
@ -258,6 +257,10 @@ function MyController(hand, triggerAction) {
|
|||
this.state = STATE_NEAR_GRABBING;
|
||||
|
||||
} else {
|
||||
if (entityIsGrabbedByOther(intersection.entityID)) {
|
||||
// don't allow two people to distance grab the same object
|
||||
return;
|
||||
}
|
||||
// the hand is far from the intersected object. go into distance-holding mode
|
||||
this.state = STATE_DISTANCE_HOLDING;
|
||||
this.lineOn(pickRay.origin, Vec3.multiply(pickRay.direction, LINE_LENGTH), NO_INTERSECT_COLOR);
|
||||
|
@ -441,16 +444,13 @@ function MyController(hand, triggerAction) {
|
|||
var offsetPosition = Vec3.multiplyQbyV(Quat.inverse(Quat.multiply(handRotation, offsetRotation)), offset);
|
||||
|
||||
this.actionID = NULL_ACTION_ID;
|
||||
if (!entityIsGrabbedByOther(this.grabbedEntity)) {
|
||||
this.actionID = Entities.addAction("hold", this.grabbedEntity, {
|
||||
hand: this.hand === RIGHT_HAND ? "right" : "left",
|
||||
timeScale: NEAR_GRABBING_ACTION_TIMEFRAME,
|
||||
relativePosition: offsetPosition,
|
||||
relativeRotation: offsetRotation,
|
||||
tag: getTag(),
|
||||
lifetime: ACTION_LIFETIME
|
||||
});
|
||||
}
|
||||
this.actionID = Entities.addAction("hold", this.grabbedEntity, {
|
||||
hand: this.hand === RIGHT_HAND ? "right" : "left",
|
||||
timeScale: NEAR_GRABBING_ACTION_TIMEFRAME,
|
||||
relativePosition: offsetPosition,
|
||||
relativeRotation: offsetRotation,
|
||||
lifetime: ACTION_LIFETIME
|
||||
});
|
||||
if (this.actionID === NULL_ACTION_ID) {
|
||||
this.actionID = null;
|
||||
} else {
|
||||
|
|
197
examples/grab.js
197
examples/grab.js
|
@ -9,10 +9,42 @@
|
|||
// Distributed under the Apache License, Version 2.0.
|
||||
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
|
||||
//
|
||||
/*global print, Mouse, MyAvatar, Entities, AnimationCache, SoundCache, Scene, Camera, Overlays, Audio, HMD, AvatarList, AvatarManager, Controller, UndoStack, Window, Account, GlobalServices, Script, ScriptDiscoveryService, LODManager, Menu, Vec3, Quat, AudioDevice, Paths, Clipboard, Settings, XMLHttpRequest, randFloat, randInt, pointInExtents, vec3equal, setEntityCustomData, getEntityCustomData */
|
||||
|
||||
Script.include("libraries/utils.js");
|
||||
// objects that appear smaller than this can't be grabbed
|
||||
var MAX_SOLID_ANGLE = 0.01;
|
||||
|
||||
var ZERO_VEC3 = {
|
||||
x: 0,
|
||||
y: 0,
|
||||
z: 0
|
||||
};
|
||||
var IDENTITY_QUAT = {
|
||||
x: 0,
|
||||
y: 0,
|
||||
z: 0,
|
||||
w: 0
|
||||
};
|
||||
var GRABBABLE_DATA_KEY = "grabbableKey";
|
||||
|
||||
var defaultGrabbableData = {
|
||||
grabbable: true
|
||||
};
|
||||
|
||||
|
||||
var MAX_SOLID_ANGLE = 0.01; // objects that appear smaller than this can't be grabbed
|
||||
var ZERO_VEC3 = {x: 0, y: 0, z: 0};
|
||||
var IDENTITY_QUAT = {x: 0, y: 0, z: 0, w: 0};
|
||||
var ZERO_VEC3 = {
|
||||
x: 0,
|
||||
y: 0,
|
||||
z: 0
|
||||
};
|
||||
var IDENTITY_QUAT = {
|
||||
x: 0,
|
||||
y: 0,
|
||||
z: 0,
|
||||
w: 0
|
||||
};
|
||||
var ACTION_LIFETIME = 120; // 2 minutes
|
||||
|
||||
function getTag() {
|
||||
|
@ -21,14 +53,18 @@ function getTag() {
|
|||
|
||||
function entityIsGrabbedByOther(entityID) {
|
||||
var actionIDs = Entities.getActionIDs(entityID);
|
||||
for (var actionIndex = 0; actionIndex < actionIDs.length; actionIndex++) {
|
||||
var actionID = actionIDs[actionIndex];
|
||||
var actionArguments = Entities.getActionArguments(entityID, actionID);
|
||||
var tag = actionArguments["tag"];
|
||||
if (tag == getTag()) {
|
||||
var actionIndex;
|
||||
var actionID;
|
||||
var actionArguments;
|
||||
var tag;
|
||||
for (actionIndex = 0; actionIndex < actionIDs.length; actionIndex++) {
|
||||
actionID = actionIDs[actionIndex];
|
||||
actionArguments = Entities.getActionArguments(entityID, actionID);
|
||||
tag = actionArguments.tag;
|
||||
if (tag === getTag()) {
|
||||
continue;
|
||||
}
|
||||
if (tag.slice(0, 5) == "grab-") {
|
||||
if (tag.slice(0, 5) === "grab-") {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
@ -79,36 +115,72 @@ function mouseIntersectionWithPlane(pointOnPlane, planeNormal, event, maxDistanc
|
|||
|
||||
// Mouse class stores mouse click and drag info
|
||||
Mouse = function() {
|
||||
this.current = {x: 0, y: 0 };
|
||||
this.previous = {x: 0, y: 0 };
|
||||
this.rotateStart = {x: 0, y: 0 };
|
||||
this.cursorRestore = {x: 0, y: 0};
|
||||
this.current = {
|
||||
x: 0,
|
||||
y: 0
|
||||
};
|
||||
this.previous = {
|
||||
x: 0,
|
||||
y: 0
|
||||
};
|
||||
this.rotateStart = {
|
||||
x: 0,
|
||||
y: 0
|
||||
};
|
||||
this.cursorRestore = {
|
||||
x: 0,
|
||||
y: 0
|
||||
};
|
||||
}
|
||||
|
||||
Mouse.prototype.startDrag = function(position) {
|
||||
this.current = {x: position.x, y: position.y};
|
||||
this.current = {
|
||||
x: position.x,
|
||||
y: position.y
|
||||
};
|
||||
this.startRotateDrag();
|
||||
}
|
||||
|
||||
Mouse.prototype.updateDrag = function(position) {
|
||||
this.current = {x: position.x, y: position.y };
|
||||
this.current = {
|
||||
x: position.x,
|
||||
y: position.y
|
||||
};
|
||||
}
|
||||
|
||||
Mouse.prototype.startRotateDrag = function() {
|
||||
this.previous = {x: this.current.x, y: this.current.y};
|
||||
this.rotateStart = {x: this.current.x, y: this.current.y};
|
||||
this.cursorRestore = { x: Window.getCursorPositionX(), y: Window.getCursorPositionY() };
|
||||
this.previous = {
|
||||
x: this.current.x,
|
||||
y: this.current.y
|
||||
};
|
||||
this.rotateStart = {
|
||||
x: this.current.x,
|
||||
y: this.current.y
|
||||
};
|
||||
this.cursorRestore = {
|
||||
x: Window.getCursorPositionX(),
|
||||
y: Window.getCursorPositionY()
|
||||
};
|
||||
}
|
||||
|
||||
Mouse.prototype.getDrag = function() {
|
||||
var delta = {x: this.current.x - this.previous.x, y: this.current.y - this.previous.y};
|
||||
this.previous = {x: this.current.x, y: this.current.y};
|
||||
var delta = {
|
||||
x: this.current.x - this.previous.x,
|
||||
y: this.current.y - this.previous.y
|
||||
};
|
||||
this.previous = {
|
||||
x: this.current.x,
|
||||
y: this.current.y
|
||||
};
|
||||
return delta;
|
||||
}
|
||||
|
||||
Mouse.prototype.restoreRotateCursor = function() {
|
||||
Window.setCursorPosition(this.cursorRestore.x, this.cursorRestore.y);
|
||||
this.current = {x: this.rotateStart.x, y: this.rotateStart.y};
|
||||
this.current = {
|
||||
x: this.rotateStart.x,
|
||||
y: this.rotateStart.y
|
||||
};
|
||||
}
|
||||
|
||||
var mouse = new Mouse();
|
||||
|
@ -118,19 +190,27 @@ var mouse = new Mouse();
|
|||
Beacon = function() {
|
||||
this.height = 0.10;
|
||||
this.overlayID = Overlays.addOverlay("line3d", {
|
||||
color: {red: 200, green: 200, blue: 200},
|
||||
color: {
|
||||
red: 200,
|
||||
green: 200,
|
||||
blue: 200
|
||||
},
|
||||
alpha: 1,
|
||||
visible: false,
|
||||
lineWidth: 2
|
||||
lineWidth: 2
|
||||
});
|
||||
}
|
||||
|
||||
Beacon.prototype.enable = function() {
|
||||
Overlays.editOverlay(this.overlayID, { visible: true });
|
||||
Overlays.editOverlay(this.overlayID, {
|
||||
visible: true
|
||||
});
|
||||
}
|
||||
|
||||
Beacon.prototype.disable = function() {
|
||||
Overlays.editOverlay(this.overlayID, { visible: false });
|
||||
Overlays.editOverlay(this.overlayID, {
|
||||
visible: false
|
||||
});
|
||||
}
|
||||
|
||||
Beacon.prototype.updatePosition = function(position) {
|
||||
|
@ -178,13 +258,17 @@ Grabber = function() {
|
|||
// verticalCylinder (SHIFT)
|
||||
// rotate (CONTROL)
|
||||
this.mode = "xzplane";
|
||||
|
||||
|
||||
// offset allows the user to grab an object off-center. It points from the object's center
|
||||
// to the point where the ray intersects the grab plane (at the moment the grab is initiated).
|
||||
// Future target positions of the ray intersection are on the same plane, and the offset is subtracted
|
||||
// to compute the target position of the object's center.
|
||||
this.offset = {x: 0, y: 0, z: 0 };
|
||||
|
||||
this.offset = {
|
||||
x: 0,
|
||||
y: 0,
|
||||
z: 0
|
||||
};
|
||||
|
||||
this.targetPosition;
|
||||
this.targetRotation;
|
||||
|
||||
|
@ -199,7 +283,11 @@ Grabber.prototype.computeNewGrabPlane = function() {
|
|||
|
||||
var modeWasRotate = (this.mode == "rotate");
|
||||
this.mode = "xzPlane";
|
||||
this.planeNormal = {x: 0, y: 1, z: 0 };
|
||||
this.planeNormal = {
|
||||
x: 0,
|
||||
y: 1,
|
||||
z: 0
|
||||
};
|
||||
if (this.rotateKey) {
|
||||
this.mode = "rotate";
|
||||
mouse.startRotateDrag();
|
||||
|
@ -212,7 +300,7 @@ Grabber.prototype.computeNewGrabPlane = function() {
|
|||
this.mode = "verticalCylinder";
|
||||
// NOTE: during verticalCylinder mode a new planeNormal will be computed each move
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
this.pointOnPlane = Vec3.sum(this.currentPosition, this.offset);
|
||||
var xzOffset = Vec3.subtract(this.pointOnPlane, Camera.getPosition());
|
||||
|
@ -237,6 +325,12 @@ Grabber.prototype.pressEvent = function(event) {
|
|||
return;
|
||||
}
|
||||
|
||||
|
||||
var grabbableData = getEntityCustomData(GRABBABLE_DATA_KEY, pickResults.entityID, defaultGrabbableData);
|
||||
if (grabbableData.grabbable === false) {
|
||||
return;
|
||||
}
|
||||
|
||||
mouse.startDrag(event);
|
||||
|
||||
var clickedEntity = pickResults.entityID;
|
||||
|
@ -253,13 +347,19 @@ Grabber.prototype.pressEvent = function(event) {
|
|||
return;
|
||||
}
|
||||
|
||||
Entities.editEntity(clickedEntity, { gravity: ZERO_VEC3 });
|
||||
Entities.editEntity(clickedEntity, {
|
||||
gravity: ZERO_VEC3
|
||||
});
|
||||
this.isGrabbing = true;
|
||||
|
||||
this.entityID = clickedEntity;
|
||||
this.currentPosition = entityProperties.position;
|
||||
this.originalGravity = entityProperties.gravity;
|
||||
this.targetPosition = {x: this.startPosition.x, y: this.startPosition.y, z: this.startPosition.z};
|
||||
this.targetPosition = {
|
||||
x: this.startPosition.x,
|
||||
y: this.startPosition.y,
|
||||
z: this.startPosition.z
|
||||
};
|
||||
|
||||
// compute the grab point
|
||||
var nearestPoint = Vec3.subtract(this.startPosition, cameraPosition);
|
||||
|
@ -281,7 +381,9 @@ Grabber.prototype.pressEvent = function(event) {
|
|||
Grabber.prototype.releaseEvent = function() {
|
||||
if (this.isGrabbing) {
|
||||
if (Vec3.length(this.originalGravity) != 0) {
|
||||
Entities.editEntity(this.entityID, { gravity: this.originalGravity});
|
||||
Entities.editEntity(this.entityID, {
|
||||
gravity: this.originalGravity
|
||||
});
|
||||
}
|
||||
|
||||
this.isGrabbing = false
|
||||
|
@ -308,7 +410,10 @@ Grabber.prototype.moveEvent = function(event) {
|
|||
}
|
||||
this.currentPosition = entityProperties.position;
|
||||
|
||||
var actionArgs = {tag: getTag(), lifetime: ACTION_LIFETIME};
|
||||
var actionArgs = {
|
||||
tag: getTag(),
|
||||
lifetime: ACTION_LIFETIME
|
||||
};
|
||||
|
||||
if (this.mode === "rotate") {
|
||||
var drag = mouse.getDrag();
|
||||
|
@ -323,7 +428,14 @@ Grabber.prototype.moveEvent = function(event) {
|
|||
// var qZero = entityProperties.rotation;
|
||||
//var qZero = this.lastRotation;
|
||||
this.lastRotation = Quat.multiply(deltaQ, this.lastRotation);
|
||||
actionArgs = {targetRotation: this.lastRotation, angularTimeScale: 0.1, tag: getTag(), lifetime: ACTION_LIFETIME};
|
||||
|
||||
actionArgs = {
|
||||
targetRotation: this.lastRotation,
|
||||
angularTimeScale: 0.1,
|
||||
tag: getTag(),
|
||||
lifetime: ACTION_LIFETIME
|
||||
};
|
||||
|
||||
} else {
|
||||
var newPointOnPlane;
|
||||
if (this.mode === "verticalCylinder") {
|
||||
|
@ -334,7 +446,11 @@ Grabber.prototype.moveEvent = function(event) {
|
|||
var pointOnCylinder = Vec3.multiply(planeNormal, this.xzDistanceToGrab);
|
||||
pointOnCylinder = Vec3.sum(Camera.getPosition(), pointOnCylinder);
|
||||
this.pointOnPlane = mouseIntersectionWithPlane(pointOnCylinder, planeNormal, mouse.current, this.maxDistance);
|
||||
newPointOnPlane = {x: this.pointOnPlane.x, y: this.pointOnPlane.y, z: this.pointOnPlane.z};
|
||||
newPointOnPlane = {
|
||||
x: this.pointOnPlane.x,
|
||||
y: this.pointOnPlane.y,
|
||||
z: this.pointOnPlane.z
|
||||
};
|
||||
} else {
|
||||
var cameraPosition = Camera.getPosition();
|
||||
newPointOnPlane = mouseIntersectionWithPlane(this.pointOnPlane, this.planeNormal, mouse.current, this.maxDistance);
|
||||
|
@ -347,7 +463,14 @@ Grabber.prototype.moveEvent = function(event) {
|
|||
}
|
||||
}
|
||||
this.targetPosition = Vec3.subtract(newPointOnPlane, this.offset);
|
||||
actionArgs = {targetPosition: this.targetPosition, linearTimeScale: 0.1, tag: getTag(), lifetime: ACTION_LIFETIME};
|
||||
|
||||
actionArgs = {
|
||||
targetPosition: this.targetPosition,
|
||||
linearTimeScale: 0.1,
|
||||
tag: getTag(),
|
||||
lifetime: ACTION_LIFETIME
|
||||
};
|
||||
|
||||
|
||||
beacon.updatePosition(this.targetPosition);
|
||||
}
|
||||
|
@ -407,4 +530,4 @@ Controller.mousePressEvent.connect(pressEvent);
|
|||
Controller.mouseMoveEvent.connect(moveEvent);
|
||||
Controller.mouseReleaseEvent.connect(releaseEvent);
|
||||
Controller.keyPressEvent.connect(keyPressEvent);
|
||||
Controller.keyReleaseEvent.connect(keyReleaseEvent);
|
||||
Controller.keyReleaseEvent.connect(keyReleaseEvent);
|
43
examples/toys/basketball_hoop/createHoop.js
Normal file
43
examples/toys/basketball_hoop/createHoop.js
Normal file
|
@ -0,0 +1,43 @@
|
|||
//
|
||||
// createHoop.js
|
||||
// examples/entityScripts
|
||||
//
|
||||
// Created by James B. Pollack on 9/29/2015
|
||||
// Copyright 2015 High Fidelity, Inc.
|
||||
//
|
||||
// This is a script that creates a persistent basketball hoop with a working collision hull. Feel free to move it.
|
||||
// Run basketball.js to make a basketball.
|
||||
//
|
||||
// Distributed under the Apache License, Version 2.0.
|
||||
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
|
||||
/*global MyAvatar, Entities, AnimationCache, SoundCache, Scene, Camera, Overlays, HMD, AvatarList, AvatarManager, Controller, UndoStack, Window, Account, GlobalServices, Script, ScriptDiscoveryService, LODManager, Menu, Vec3, Quat, AudioDevice, Paths, Clipboard, Settings, XMLHttpRequest, randFloat, randInt */
|
||||
|
||||
var hoopURL = "http://hifi-public.s3.amazonaws.com/models/basketball_hoop/basketball_hoop.fbx";
|
||||
var hoopCollisionHullURL = "http://hifi-public.s3.amazonaws.com/models/basketball_hoop/basketball_hoop_collision_hull.obj";
|
||||
|
||||
var hoopStartPosition =
|
||||
Vec3.sum(MyAvatar.position,
|
||||
Vec3.multiplyQbyV(MyAvatar.orientation, {
|
||||
x: 0,
|
||||
y: 0.0,
|
||||
z: -2
|
||||
}));
|
||||
|
||||
var hoop = Entities.addEntity({
|
||||
type: "Model",
|
||||
modelURL: hoopURL,
|
||||
position: hoopStartPosition,
|
||||
shapeType: 'compound',
|
||||
gravity: {
|
||||
x: 0,
|
||||
y: -9.8,
|
||||
z: 0
|
||||
},
|
||||
dimensions: {
|
||||
x: 1.89,
|
||||
y: 3.99,
|
||||
z: 3.79
|
||||
},
|
||||
compoundShapeURL: hoopCollisionHullURL
|
||||
});
|
||||
|
43
examples/toys/ping_pong_gun/createPingPongGun.js
Normal file
43
examples/toys/ping_pong_gun/createPingPongGun.js
Normal file
|
@ -0,0 +1,43 @@
|
|||
// createPingPongGun.js
|
||||
//
|
||||
// Script Type: Entity Spawner
|
||||
// Created by James B. Pollack on 9/30/2015
|
||||
// Copyright 2015 High Fidelity, Inc.
|
||||
//
|
||||
// This script creates a gun that shoots ping pong balls when you pull the trigger on a hand controller.
|
||||
// Distributed under the Apache License, Version 2.0.
|
||||
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
|
||||
//
|
||||
/*global MyAvatar, Entities, AnimationCache, SoundCache, Scene, Camera, Overlays, HMD, AvatarList, AvatarManager, Controller, UndoStack, Window, Account, GlobalServices, Script, ScriptDiscoveryService, LODManager, Menu, Vec3, Quat, AudioDevice, Paths, Clipboard, Settings, XMLHttpRequest, randFloat, randInt */
|
||||
Script.include("../../utilities.js");
|
||||
|
||||
var scriptURL = Script.resolvePath('pingPongGun.js');
|
||||
|
||||
var MODEL_URL = 'http://hifi-public.s3.amazonaws.com/models/ping_pong_gun/ping_pong_gun.fbx'
|
||||
var COLLISION_HULL_URL = 'http://hifi-public.s3.amazonaws.com/models/ping_pong_gun/ping_pong_gun_collision_hull.obj';
|
||||
|
||||
var center = Vec3.sum(Vec3.sum(MyAvatar.position, {
|
||||
x: 0,
|
||||
y: 0.5,
|
||||
z: 0
|
||||
}), Vec3.multiply(0.5, Quat.getFront(Camera.getOrientation())));
|
||||
|
||||
var pingPongGun = Entities.addEntity({
|
||||
type: "Model",
|
||||
modelURL: MODEL_URL,
|
||||
shapeType: 'compound',
|
||||
compoundShapeURL: COLLISION_HULL_URL,
|
||||
script: scriptURL,
|
||||
position: center,
|
||||
dimensions: {
|
||||
x:0.67,
|
||||
y: 0.14,
|
||||
z: 0.09
|
||||
},
|
||||
collisionsWillMove: true,
|
||||
});
|
||||
|
||||
function cleanUp() {
|
||||
Entities.deleteEntity(pingPongGun);
|
||||
}
|
||||
Script.scriptEnding.connect(cleanUp);
|
160
examples/toys/ping_pong_gun/pingPongGun.js
Normal file
160
examples/toys/ping_pong_gun/pingPongGun.js
Normal file
|
@ -0,0 +1,160 @@
|
|||
// pingPongGun.js
|
||||
//
|
||||
// Script Type: Entity
|
||||
// Created by James B. Pollack @imgntn on 9/21/2015
|
||||
// Copyright 2015 High Fidelity, Inc.
|
||||
//
|
||||
// This script shoots a ping pong ball.
|
||||
// Distributed under the Apache License, Version 2.0.
|
||||
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
|
||||
//
|
||||
/*global print, MyAvatar, Entities, AnimationCache, SoundCache, Scene, Camera, Overlays, Audio, HMD, AvatarList, AvatarManager, Controller, UndoStack, Window, Account, GlobalServices, Script, ScriptDiscoveryService, LODManager, Menu, Vec3, Quat, AudioDevice, Paths, Clipboard, Settings, XMLHttpRequest, randFloat, randInt */
|
||||
(function() {
|
||||
|
||||
Script.include("../../libraries/utils.js");
|
||||
|
||||
var SHOOTING_SOUND_URL = 'http://hifi-public.s3.amazonaws.com/sounds/ping_pong_gun/pong_sound.wav';
|
||||
|
||||
function PingPongGun() {
|
||||
return;
|
||||
}
|
||||
|
||||
//if the trigger value goes below this value, reload the gun.
|
||||
var RELOAD_THRESHOLD = 0.95;
|
||||
var GUN_TIP_FWD_OFFSET = 0.45;
|
||||
var GUN_TIP_UP_OFFSET = 0.040;
|
||||
var GUN_FORCE = 15;
|
||||
var BALL_RESTITUTION = 0.6;
|
||||
var BALL_LINEAR_DAMPING = 0.4;
|
||||
var BALL_GRAVITY = {
|
||||
x: 0,
|
||||
y: -9.8,
|
||||
z: 0
|
||||
};
|
||||
|
||||
var BALL_DIMENSIONS = {
|
||||
x: 0.04,
|
||||
y: 0.04,
|
||||
z: 0.04
|
||||
}
|
||||
|
||||
|
||||
var BALL_COLOR = {
|
||||
red: 255,
|
||||
green: 255,
|
||||
blue: 255
|
||||
}
|
||||
|
||||
PingPongGun.prototype = {
|
||||
hand: null,
|
||||
whichHand: null,
|
||||
gunTipPosition: null,
|
||||
canShoot: false,
|
||||
canShootTimeout: null,
|
||||
setRightHand: function() {
|
||||
this.hand = 'RIGHT';
|
||||
},
|
||||
|
||||
setLeftHand: function() {
|
||||
this.hand = 'LEFT';
|
||||
},
|
||||
|
||||
startNearGrab: function() {
|
||||
this.setWhichHand();
|
||||
},
|
||||
|
||||
setWhichHand: function() {
|
||||
this.whichHand = this.hand;
|
||||
},
|
||||
|
||||
continueNearGrab: function() {
|
||||
|
||||
if (this.whichHand === null) {
|
||||
//only set the active hand once -- if we always read the current hand, our 'holding' hand will get overwritten
|
||||
this.setWhichHand();
|
||||
} else {
|
||||
if (this.canShootTimeout !== null) {
|
||||
Script.clearTimeout(this.canShootTimeout);
|
||||
}
|
||||
this.checkTriggerPressure(this.whichHand);
|
||||
}
|
||||
},
|
||||
|
||||
releaseGrab: function() {
|
||||
var _t = this;
|
||||
this.canShootTimeout = Script.setTimeout(function() {
|
||||
_t.canShoot = false;
|
||||
}, 250)
|
||||
},
|
||||
|
||||
checkTriggerPressure: function(gunHand) {
|
||||
var handClickString = gunHand + "_HAND_CLICK";
|
||||
|
||||
var handClick = Controller.findAction(handClickString);
|
||||
|
||||
this.triggerValue = Controller.getActionValue(handClick);
|
||||
|
||||
if (this.triggerValue < RELOAD_THRESHOLD) {
|
||||
// print('RELOAD');
|
||||
this.canShoot = true;
|
||||
} else if (this.triggerValue >= RELOAD_THRESHOLD && this.canShoot === true) {
|
||||
var gunProperties = Entities.getEntityProperties(this.entityID, ["position", "rotation"]);
|
||||
this.shootBall(gunProperties);
|
||||
this.canShoot = false;
|
||||
}
|
||||
return;
|
||||
},
|
||||
|
||||
shootBall: function(gunProperties) {
|
||||
var forwardVec = Quat.getFront(Quat.multiply(gunProperties.rotation, Quat.fromPitchYawRollDegrees(0, -90, 0)));
|
||||
forwardVec = Vec3.normalize(forwardVec);
|
||||
forwardVec = Vec3.multiply(forwardVec, GUN_FORCE);
|
||||
var properties = {
|
||||
type: 'Sphere',
|
||||
color: BALL_COLOR,
|
||||
dimensions: BALL_DIMENSIONS,
|
||||
linearDamping: BALL_LINEAR_DAMPING,
|
||||
gravity: BALL_GRAVITY,
|
||||
restitution: BALL_RESTITUTION,
|
||||
collisionsWillMove: true,
|
||||
rotation: gunProperties.rotation,
|
||||
position: this.getGunTipPosition(gunProperties),
|
||||
velocity: forwardVec,
|
||||
lifetime: 10
|
||||
};
|
||||
|
||||
Entities.addEntity(properties);
|
||||
|
||||
this.playSoundAtCurrentPosition(gunProperties.position);
|
||||
},
|
||||
|
||||
playSoundAtCurrentPosition: function(position) {
|
||||
var audioProperties = {
|
||||
volume: 0.1,
|
||||
position: position
|
||||
};
|
||||
|
||||
Audio.playSound(this.SHOOTING_SOUND, audioProperties);
|
||||
},
|
||||
|
||||
getGunTipPosition: function(properties) {
|
||||
//the tip of the gun is going to be in a different place than the center, so we move in space relative to the model to find that position
|
||||
var frontVector = Quat.getRight(properties.rotation);
|
||||
var frontOffset = Vec3.multiply(frontVector, GUN_TIP_FWD_OFFSET);
|
||||
var upVector = Quat.getRight(properties.rotation);
|
||||
var upOffset = Vec3.multiply(upVector, GUN_TIP_UP_OFFSET);
|
||||
var gunTipPosition = Vec3.sum(properties.position, frontOffset);
|
||||
gunTipPosition = Vec3.sum(gunTipPosition, upOffset);
|
||||
return gunTipPosition;
|
||||
},
|
||||
|
||||
preload: function(entityID) {
|
||||
this.entityID = entityID;
|
||||
this.SHOOTING_SOUND = SoundCache.getSound(SHOOTING_SOUND_URL);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
// entity scripts always need to return a newly constructed object of our type
|
||||
return new PingPongGun();
|
||||
});
|
|
@ -10,22 +10,21 @@
|
|||
//
|
||||
|
||||
var array = [];
|
||||
var buffer = "\n\n\n\n\n======= JS API list =======";
|
||||
function listKeys(string, object) {
|
||||
if (string == "listKeys" || string == "array" || string == "buffer" || string == "i") {
|
||||
if (string === "listKeys" || string === "array" || string === "buffer" || string === "i") {
|
||||
return;
|
||||
}
|
||||
|
||||
if (typeof(object) != "object") {
|
||||
if (typeof(object) !== "object" || object === null) {
|
||||
array.push(string + " " + typeof(object));
|
||||
return;
|
||||
}
|
||||
|
||||
var keys = Object.keys(object);
|
||||
for (var i = 0; i < keys.length; ++i) {
|
||||
if (string == "") {
|
||||
if (string === "") {
|
||||
listKeys(keys[i], object[keys[i]]);
|
||||
} else {
|
||||
} else if (keys[i] !== "parent") {
|
||||
listKeys(string + "." + keys[i], object[keys[i]]);
|
||||
}
|
||||
}
|
||||
|
@ -34,9 +33,10 @@ function listKeys(string, object) {
|
|||
listKeys("", this);
|
||||
array.sort();
|
||||
|
||||
var buffer = "\n======= JS API list =======";
|
||||
for (var i = 0; i < array.length; ++i) {
|
||||
buffer = buffer + "\n" + array[i];
|
||||
buffer += "\n" + array[i];
|
||||
}
|
||||
buffer = buffer + "\n========= API END =========\n\n\n\n\n";
|
||||
buffer += "\n========= API END =========\n";
|
||||
|
||||
print(buffer);
|
||||
|
|
|
@ -26,13 +26,14 @@
|
|||
{
|
||||
"jointName": "Neck",
|
||||
"positionVar": "neckPosition",
|
||||
"rotationVar": "neckRotation"
|
||||
"rotationVar": "neckRotation",
|
||||
"typeVar": "headAndNeckType"
|
||||
},
|
||||
{
|
||||
"jointName": "Head",
|
||||
"positionVar": "headPosition",
|
||||
"rotationVar": "headRotation",
|
||||
"typeVar": "headType"
|
||||
"typeVar": "headAndNeckType"
|
||||
}
|
||||
]
|
||||
},
|
||||
|
|
|
@ -196,7 +196,6 @@ Hifi.VrMenu {
|
|||
|
||||
function insertItem(menu, beforeItem, newMenuItem) {
|
||||
for (var i = 0; i < menu.items.length; ++i) {
|
||||
console.log(menu.items[i]);
|
||||
if (menu.items[i] === beforeItem) {
|
||||
return menu.insertItem(i, newMenuItem);
|
||||
}
|
||||
|
|
|
@ -323,7 +323,7 @@ void SkeletonModel::applyHandPosition(int jointIndex, const glm::vec3& position)
|
|||
float sign = (jointIndex == geometry.rightHandJointIndex) ? 1.0f : -1.0f;
|
||||
_rig->applyJointRotationDelta(jointIndex,
|
||||
rotationBetween(handRotation * glm::vec3(-sign, 0.0f, 0.0f), forearmVector),
|
||||
true, PALM_PRIORITY);
|
||||
PALM_PRIORITY);
|
||||
}
|
||||
|
||||
void SkeletonModel::applyPalmData(int jointIndex, PalmData& palm) {
|
||||
|
|
|
@ -89,7 +89,7 @@ static int findRootJointInSkeleton(AnimSkeleton::ConstPointer skeleton, int inde
|
|||
return rootIndex;
|
||||
}
|
||||
|
||||
void AnimInverseKinematics::computeTargets(const AnimVariantMap& animVars, std::vector<IKTarget>& targets) {
|
||||
void AnimInverseKinematics::computeTargets(const AnimVariantMap& animVars, std::vector<IKTarget>& targets, const AnimPoseVec& underPoses) {
|
||||
// build a list of valid targets from _targetVarVec and animVars
|
||||
_maxTargetIndex = -1;
|
||||
bool removeUnfoundJoints = false;
|
||||
|
@ -107,7 +107,7 @@ void AnimInverseKinematics::computeTargets(const AnimVariantMap& animVars, std::
|
|||
}
|
||||
} else {
|
||||
IKTarget target;
|
||||
AnimPose defaultPose = _skeleton->getAbsolutePose(targetVar.jointIndex, _relativePoses);
|
||||
AnimPose defaultPose = _skeleton->getAbsolutePose(targetVar.jointIndex, underPoses);
|
||||
target.pose.trans = animVars.lookup(targetVar.positionVar, defaultPose.trans);
|
||||
target.pose.rot = animVars.lookup(targetVar.rotationVar, defaultPose.rot);
|
||||
target.setType(animVars.lookup(targetVar.typeVar, QString("")));
|
||||
|
@ -154,7 +154,6 @@ void AnimInverseKinematics::solveWithCyclicCoordinateDescent(const std::vector<I
|
|||
do {
|
||||
int lowestMovedIndex = _relativePoses.size();
|
||||
for (auto& target: targets) {
|
||||
int tipIndex = target.index;
|
||||
if (target.type == IKTarget::Type::RotationOnly) {
|
||||
// the final rotation will be enforced after the iterations
|
||||
continue;
|
||||
|
@ -162,6 +161,7 @@ void AnimInverseKinematics::solveWithCyclicCoordinateDescent(const std::vector<I
|
|||
AnimPose targetPose = target.pose;
|
||||
|
||||
// cache tip absolute transform
|
||||
int tipIndex = target.index;
|
||||
glm::vec3 tipPosition = absolutePoses[tipIndex].trans;
|
||||
glm::quat tipRotation = absolutePoses[tipIndex].rot;
|
||||
|
||||
|
@ -288,6 +288,17 @@ void AnimInverseKinematics::solveWithCyclicCoordinateDescent(const std::vector<I
|
|||
}
|
||||
} while (numLoops < MAX_IK_LOOPS);
|
||||
|
||||
/* KEEP: example code for measuring endeffector error of IK solution
|
||||
for (uint32_t i = 0; i < targets.size(); ++i) {
|
||||
auto& target = targets[i];
|
||||
if (target.type == IKTarget::Type::RotationOnly) {
|
||||
continue;
|
||||
}
|
||||
glm::vec3 tipPosition = absolutePoses[target.index].trans;
|
||||
std::cout << i << " IK error = " << glm::distance(tipPosition, target.pose.trans) << std::endl; // adebug
|
||||
}
|
||||
*/
|
||||
|
||||
// finally set the relative rotation of each tip to agree with absolute target rotation
|
||||
for (auto& target: targets) {
|
||||
int tipIndex = target.index;
|
||||
|
@ -312,27 +323,8 @@ void AnimInverseKinematics::solveWithCyclicCoordinateDescent(const std::vector<I
|
|||
|
||||
//virtual
|
||||
const AnimPoseVec& AnimInverseKinematics::evaluate(const AnimVariantMap& animVars, float dt, AnimNode::Triggers& triggersOut) {
|
||||
if (!_relativePoses.empty()) {
|
||||
// build a list of targets from _targetVarVec
|
||||
std::vector<IKTarget> targets;
|
||||
computeTargets(animVars, targets);
|
||||
|
||||
if (targets.empty()) {
|
||||
// no IK targets but still need to enforce constraints
|
||||
std::map<int, RotationConstraint*>::iterator constraintItr = _constraints.begin();
|
||||
while (constraintItr != _constraints.end()) {
|
||||
int index = constraintItr->first;
|
||||
|
||||
glm::quat rotation = _relativePoses[index].rot;
|
||||
constraintItr->second->apply(rotation);
|
||||
_relativePoses[index].rot = rotation;
|
||||
|
||||
++constraintItr;
|
||||
}
|
||||
} else {
|
||||
solveWithCyclicCoordinateDescent(targets);
|
||||
}
|
||||
}
|
||||
// don't call this function, call overlay() instead
|
||||
assert(false);
|
||||
return _relativePoses;
|
||||
}
|
||||
|
||||
|
@ -359,7 +351,27 @@ const AnimPoseVec& AnimInverseKinematics::overlay(const AnimVariantMap& animVars
|
|||
_relativePoses[i].trans = underPoses[i].trans;
|
||||
}
|
||||
}
|
||||
return evaluate(animVars, dt, triggersOut);
|
||||
|
||||
if (!_relativePoses.empty()) {
|
||||
// build a list of targets from _targetVarVec
|
||||
std::vector<IKTarget> targets;
|
||||
computeTargets(animVars, targets, underPoses);
|
||||
|
||||
if (targets.empty()) {
|
||||
// no IK targets but still need to enforce constraints
|
||||
std::map<int, RotationConstraint*>::iterator constraintItr = _constraints.begin();
|
||||
while (constraintItr != _constraints.end()) {
|
||||
int index = constraintItr->first;
|
||||
glm::quat rotation = _relativePoses[index].rot;
|
||||
constraintItr->second->apply(rotation);
|
||||
_relativePoses[index].rot = rotation;
|
||||
++constraintItr;
|
||||
}
|
||||
} else {
|
||||
solveWithCyclicCoordinateDescent(targets);
|
||||
}
|
||||
}
|
||||
return _relativePoses;
|
||||
}
|
||||
|
||||
RotationConstraint* AnimInverseKinematics::getConstraint(int index) {
|
||||
|
|
|
@ -50,7 +50,7 @@ protected:
|
|||
void setType(const QString& typeVar) { type = ((typeVar == "RotationOnly") ? Type::RotationOnly : Type::RotationAndPosition); }
|
||||
};
|
||||
|
||||
void computeTargets(const AnimVariantMap& animVars, std::vector<IKTarget>& targets);
|
||||
void computeTargets(const AnimVariantMap& animVars, std::vector<IKTarget>& targets, const AnimPoseVec& underPoses);
|
||||
void solveWithCyclicCoordinateDescent(const std::vector<IKTarget>& targets);
|
||||
virtual void setSkeletonInternal(AnimSkeleton::ConstPointer skeleton);
|
||||
|
||||
|
|
|
@ -184,6 +184,8 @@ public:
|
|||
case AnimVariant::Type::String:
|
||||
qCDebug(animation) << " " << pair.first << "=" << pair.second.getString();
|
||||
break;
|
||||
default:
|
||||
assert("AnimVariant::Type" == "valid");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -182,7 +182,6 @@ void AnimationHandle::applyFrame(float frameIndex) {
|
|||
ceilFrame.rotations.at(i),
|
||||
frameFraction),
|
||||
_priority,
|
||||
false,
|
||||
_mix);
|
||||
|
||||
// This isn't working.
|
||||
|
|
|
@ -13,16 +13,11 @@
|
|||
|
||||
#include <QThreadPool>
|
||||
|
||||
#include <AngularConstraint.h>
|
||||
#include <SharedUtil.h>
|
||||
|
||||
#include "JointState.h"
|
||||
|
||||
JointState::~JointState() {
|
||||
if (_constraint) {
|
||||
delete _constraint;
|
||||
_constraint = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
void JointState::copyState(const JointState& other) {
|
||||
|
@ -35,10 +30,6 @@ void JointState::copyState(const JointState& other) {
|
|||
_distanceToParent = other._distanceToParent;
|
||||
_animationPriority = other._animationPriority;
|
||||
|
||||
_visibleTransform = other._visibleTransform;
|
||||
_visibleRotation = extractRotation(_visibleTransform);
|
||||
_visibleRotationInConstrainedFrame = other._visibleRotationInConstrainedFrame;
|
||||
// DO NOT copy _constraint
|
||||
_name = other._name;
|
||||
_isFree = other._isFree;
|
||||
_parentIndex = other._parentIndex;
|
||||
|
@ -46,8 +37,6 @@ void JointState::copyState(const JointState& other) {
|
|||
_defaultTranslation = other._defaultTranslation;
|
||||
_inverseDefaultRotation = other._inverseDefaultRotation;
|
||||
_translation = other._translation;
|
||||
_rotationMin = other._rotationMin;
|
||||
_rotationMax = other._rotationMax;
|
||||
_preRotation = other._preRotation;
|
||||
_postRotation = other._postRotation;
|
||||
_preTransform = other._preTransform;
|
||||
|
@ -63,8 +52,6 @@ JointState::JointState(const FBXJoint& joint) {
|
|||
_defaultRotation = joint.rotation;
|
||||
_defaultTranslation = _translation;
|
||||
_inverseDefaultRotation = joint.inverseDefaultRotation;
|
||||
_rotationMin = joint.rotationMin;
|
||||
_rotationMax = joint.rotationMax;
|
||||
_preRotation = joint.preRotation;
|
||||
_postRotation = joint.postRotation;
|
||||
_preTransform = joint.preTransform;
|
||||
|
@ -73,15 +60,6 @@ JointState::JointState(const FBXJoint& joint) {
|
|||
}
|
||||
|
||||
void JointState::buildConstraint() {
|
||||
if (_constraint) {
|
||||
delete _constraint;
|
||||
_constraint = NULL;
|
||||
}
|
||||
if (glm::distance2(glm::vec3(-PI), _rotationMin) > EPSILON ||
|
||||
glm::distance2(glm::vec3(PI), _rotationMax) > EPSILON ) {
|
||||
// this joint has rotation constraints
|
||||
_constraint = AngularConstraint::newAngularConstraint(_rotationMin, _rotationMax);
|
||||
}
|
||||
}
|
||||
|
||||
glm::quat JointState::getRotation() const {
|
||||
|
@ -118,13 +96,6 @@ void JointState::computeTransform(const glm::mat4& parentTransform, bool parentT
|
|||
}
|
||||
}
|
||||
|
||||
void JointState::computeVisibleTransform(const glm::mat4& parentTransform) {
|
||||
glm::quat rotationInParentFrame = _preRotation * _visibleRotationInConstrainedFrame * _postRotation;
|
||||
glm::mat4 transformInParentFrame = _preTransform * glm::mat4_cast(rotationInParentFrame) * _postTransform;
|
||||
_visibleTransform = parentTransform * glm::translate(_translation) * transformInParentFrame;
|
||||
_visibleRotation = extractRotation(_visibleTransform);
|
||||
}
|
||||
|
||||
glm::quat JointState::getRotationInBindFrame() const {
|
||||
return getRotation() * _inverseBindRotation;
|
||||
}
|
||||
|
@ -133,10 +104,6 @@ glm::quat JointState::getRotationInParentFrame() const {
|
|||
return _preRotation * _rotationInConstrainedFrame * _postRotation;
|
||||
}
|
||||
|
||||
glm::quat JointState::getVisibleRotationInParentFrame() const {
|
||||
return _preRotation * _visibleRotationInConstrainedFrame * _postRotation;
|
||||
}
|
||||
|
||||
void JointState::restoreRotation(float fraction, float priority) {
|
||||
if (priority == _animationPriority || _animationPriority == 0.0f) {
|
||||
setRotationInConstrainedFrameInternal(safeMix(_rotationInConstrainedFrame, _defaultRotation, fraction));
|
||||
|
@ -151,19 +118,16 @@ void JointState::restoreTranslation(float fraction, float priority) {
|
|||
}
|
||||
}
|
||||
|
||||
void JointState::setRotationInBindFrame(const glm::quat& rotation, float priority, bool constrain) {
|
||||
void JointState::setRotationInBindFrame(const glm::quat& rotation, float priority) {
|
||||
// rotation is from bind- to model-frame
|
||||
if (priority >= _animationPriority) {
|
||||
glm::quat targetRotation = _rotationInConstrainedFrame * glm::inverse(getRotation()) * rotation * glm::inverse(_inverseBindRotation);
|
||||
if (constrain && _constraint) {
|
||||
_constraint->softClamp(targetRotation, _rotationInConstrainedFrame, 0.5f);
|
||||
}
|
||||
setRotationInConstrainedFrameInternal(targetRotation);
|
||||
_animationPriority = priority;
|
||||
}
|
||||
}
|
||||
|
||||
void JointState::setRotationInModelFrame(const glm::quat& rotationInModelFrame, float priority, bool constrain) {
|
||||
void JointState::setRotationInModelFrame(const glm::quat& rotationInModelFrame, float priority) {
|
||||
// rotation is from bind- to model-frame
|
||||
if (priority >= _animationPriority) {
|
||||
glm::quat parentRotation = computeParentRotation();
|
||||
|
@ -172,9 +136,6 @@ void JointState::setRotationInModelFrame(const glm::quat& rotationInModelFrame,
|
|||
// R' = Rp * Rpre * r' * Rpost
|
||||
// r' = (Rp * Rpre)^ * R' * Rpost^
|
||||
glm::quat targetRotation = glm::inverse(parentRotation * _preRotation) * rotationInModelFrame * glm::inverse(_postRotation);
|
||||
if (constrain && _constraint) {
|
||||
_constraint->softClamp(targetRotation, _rotationInConstrainedFrame, 0.5f);
|
||||
}
|
||||
_rotationInConstrainedFrame = glm::normalize(targetRotation);
|
||||
_transformChanged = true;
|
||||
_animationPriority = priority;
|
||||
|
@ -186,26 +147,15 @@ void JointState::clearTransformTranslation() {
|
|||
_transform[3][1] = 0.0f;
|
||||
_transform[3][2] = 0.0f;
|
||||
_transformChanged = true;
|
||||
_visibleTransform[3][0] = 0.0f;
|
||||
_visibleTransform[3][1] = 0.0f;
|
||||
_visibleTransform[3][2] = 0.0f;
|
||||
}
|
||||
|
||||
void JointState::applyRotationDelta(const glm::quat& delta, bool constrain, float priority) {
|
||||
void JointState::applyRotationDelta(const glm::quat& delta, float priority) {
|
||||
// NOTE: delta is in model-frame
|
||||
if (priority < _animationPriority || delta == glm::quat()) {
|
||||
return;
|
||||
}
|
||||
_animationPriority = priority;
|
||||
glm::quat targetRotation = _rotationInConstrainedFrame * glm::inverse(getRotation()) * delta * getRotation();
|
||||
if (!constrain || _constraint == NULL) {
|
||||
// no constraints
|
||||
_rotationInConstrainedFrame = targetRotation;
|
||||
_transformChanged = true;
|
||||
|
||||
_rotation = delta * getRotation();
|
||||
return;
|
||||
}
|
||||
setRotationInConstrainedFrameInternal(targetRotation);
|
||||
}
|
||||
|
||||
|
@ -221,36 +171,17 @@ void JointState::mixRotationDelta(const glm::quat& delta, float mixFactor, float
|
|||
if (mixFactor > 0.0f && mixFactor <= 1.0f) {
|
||||
targetRotation = safeMix(targetRotation, _defaultRotation, mixFactor);
|
||||
}
|
||||
if (_constraint) {
|
||||
_constraint->softClamp(targetRotation, _rotationInConstrainedFrame, 0.5f);
|
||||
}
|
||||
setRotationInConstrainedFrameInternal(targetRotation);
|
||||
}
|
||||
|
||||
void JointState::mixVisibleRotationDelta(const glm::quat& delta, float mixFactor) {
|
||||
// NOTE: delta is in model-frame
|
||||
glm::quat targetRotation = _visibleRotationInConstrainedFrame * glm::inverse(_visibleRotation) * delta * _visibleRotation;
|
||||
if (mixFactor > 0.0f && mixFactor <= 1.0f) {
|
||||
targetRotation = safeMix(targetRotation, _rotationInConstrainedFrame, mixFactor);
|
||||
}
|
||||
setVisibleRotationInConstrainedFrame(targetRotation);
|
||||
}
|
||||
|
||||
glm::quat JointState::computeParentRotation() const {
|
||||
// R = Rp * Rpre * r * Rpost
|
||||
// Rp = R * (Rpre * r * Rpost)^
|
||||
return getRotation() * glm::inverse(_preRotation * _rotationInConstrainedFrame * _postRotation);
|
||||
}
|
||||
|
||||
glm::quat JointState::computeVisibleParentRotation() const {
|
||||
return _visibleRotation * glm::inverse(_preRotation * _visibleRotationInConstrainedFrame * _postRotation);
|
||||
}
|
||||
|
||||
void JointState::setRotationInConstrainedFrame(glm::quat targetRotation, float priority, bool constrain, float mix) {
|
||||
void JointState::setRotationInConstrainedFrame(glm::quat targetRotation, float priority, float mix) {
|
||||
if (priority >= _animationPriority || _animationPriority == 0.0f) {
|
||||
if (constrain && _constraint) {
|
||||
_constraint->softClamp(targetRotation, _rotationInConstrainedFrame, 0.5f);
|
||||
}
|
||||
auto rotation = (mix == 1.0f) ? targetRotation : safeMix(getRotationInConstrainedFrame(), targetRotation, mix);
|
||||
setRotationInConstrainedFrameInternal(rotation);
|
||||
_animationPriority = priority;
|
||||
|
@ -275,12 +206,6 @@ void JointState::setRotationInConstrainedFrameInternal(const glm::quat& targetRo
|
|||
}
|
||||
}
|
||||
|
||||
void JointState::setVisibleRotationInConstrainedFrame(const glm::quat& targetRotation) {
|
||||
glm::quat parentRotation = computeVisibleParentRotation();
|
||||
_visibleRotationInConstrainedFrame = targetRotation;
|
||||
_visibleRotation = parentRotation * _preRotation * _visibleRotationInConstrainedFrame * _postRotation;
|
||||
}
|
||||
|
||||
bool JointState::rotationIsDefault(const glm::quat& rotation, float tolerance) const {
|
||||
glm::quat defaultRotation = _defaultRotation;
|
||||
return glm::abs(rotation.x - defaultRotation.x) < tolerance &&
|
||||
|
@ -301,9 +226,3 @@ glm::quat JointState::getDefaultRotationInParentFrame() const {
|
|||
glm::vec3 JointState::getDefaultTranslationInConstrainedFrame() const {
|
||||
return _defaultTranslation * _unitsScale;
|
||||
}
|
||||
|
||||
void JointState::slaveVisibleTransform() {
|
||||
_visibleTransform = _transform;
|
||||
_visibleRotation = getRotation();
|
||||
_visibleRotationInConstrainedFrame = _rotationInConstrainedFrame;
|
||||
}
|
||||
|
|
|
@ -22,8 +22,6 @@
|
|||
|
||||
const float DEFAULT_PRIORITY = 3.0f;
|
||||
|
||||
class AngularConstraint;
|
||||
|
||||
class JointState {
|
||||
public:
|
||||
JointState() {}
|
||||
|
@ -39,11 +37,6 @@ public:
|
|||
// but _rotation will be asynchronously extracted
|
||||
void computeTransform(const glm::mat4& parentTransform, bool parentTransformChanged = true, bool synchronousRotationCompute = false);
|
||||
|
||||
void computeVisibleTransform(const glm::mat4& parentTransform);
|
||||
const glm::mat4& getVisibleTransform() const { return _visibleTransform; }
|
||||
glm::quat getVisibleRotation() const { return _visibleRotation; }
|
||||
glm::vec3 getVisiblePosition() const { return extractTranslation(_visibleTransform); }
|
||||
|
||||
const glm::mat4& getTransform() const { return _transform; }
|
||||
void resetTransformChanged() { _transformChanged = false; }
|
||||
bool getTransformChanged() const { return _transformChanged; }
|
||||
|
@ -55,14 +48,13 @@ public:
|
|||
glm::quat getRotationInBindFrame() const;
|
||||
|
||||
glm::quat getRotationInParentFrame() const;
|
||||
glm::quat getVisibleRotationInParentFrame() const;
|
||||
const glm::vec3& getPositionInParentFrame() const { return _positionInParentFrame; }
|
||||
float getDistanceToParent() const { return _distanceToParent; }
|
||||
|
||||
int getParentIndex() const { return _parentIndex; }
|
||||
|
||||
/// \param delta is in the model-frame
|
||||
void applyRotationDelta(const glm::quat& delta, bool constrain = true, float priority = 1.0f);
|
||||
void applyRotationDelta(const glm::quat& delta, float priority = 1.0f);
|
||||
|
||||
/// Applies delta rotation to joint but mixes a little bit of the default pose as well.
|
||||
/// This helps keep an IK solution stable.
|
||||
|
@ -70,7 +62,6 @@ public:
|
|||
/// \param mixFactor fraction in range [0,1] of how much default pose to blend in (0 is none, 1 is all)
|
||||
/// \param priority priority level of this animation blend
|
||||
void mixRotationDelta(const glm::quat& delta, float mixFactor, float priority = 1.0f);
|
||||
void mixVisibleRotationDelta(const glm::quat& delta, float mixFactor);
|
||||
|
||||
/// Blends a fraciton of default pose into joint rotation.
|
||||
/// \param fraction fraction in range [0,1] of how much default pose to blend in (0 is none, 1 is all)
|
||||
|
@ -82,20 +73,18 @@ public:
|
|||
/// \param rotation is from bind- to model-frame
|
||||
/// computes and sets new _rotationInConstrainedFrame
|
||||
/// NOTE: the JointState's model-frame transform/rotation are NOT updated!
|
||||
void setRotationInBindFrame(const glm::quat& rotation, float priority, bool constrain = false);
|
||||
void setRotationInBindFrame(const glm::quat& rotation, float priority);
|
||||
|
||||
/// \param rotationInModelRame is in model-frame
|
||||
/// computes and sets new _rotationInConstrainedFrame to match rotationInModelFrame
|
||||
/// NOTE: the JointState's model-frame transform/rotation are NOT updated!
|
||||
void setRotationInModelFrame(const glm::quat& rotationInModelFrame, float priority, bool constrain);
|
||||
|
||||
void setRotationInConstrainedFrame(glm::quat targetRotation, float priority, bool constrain = false, float mix = 1.0f);
|
||||
void setRotationInModelFrame(const glm::quat& rotationInModelFrame, float priority);
|
||||
|
||||
void setTranslation(const glm::vec3& translation, float priority);
|
||||
|
||||
void setVisibleRotationInConstrainedFrame(const glm::quat& targetRotation);
|
||||
void setRotationInConstrainedFrame(glm::quat targetRotation, float priority, float mix = 1.0f);
|
||||
|
||||
const glm::quat& getRotationInConstrainedFrame() const { return _rotationInConstrainedFrame; }
|
||||
const glm::quat& getVisibleRotationInConstrainedFrame() const { return _visibleRotationInConstrainedFrame; }
|
||||
|
||||
bool rotationIsDefault(const glm::quat& rotation, float tolerance = EPSILON) const;
|
||||
bool translationIsDefault(const glm::vec3& translation, float tolerance = EPSILON) const;
|
||||
|
@ -106,15 +95,11 @@ public:
|
|||
|
||||
void clearTransformTranslation();
|
||||
|
||||
void slaveVisibleTransform();
|
||||
|
||||
/// \return parent model-frame rotation
|
||||
// (used to keep _rotation consistent when modifying _rotationInWorldFrame directly)
|
||||
glm::quat computeParentRotation() const;
|
||||
glm::quat computeVisibleParentRotation() const;
|
||||
|
||||
void setTransform(const glm::mat4& transform) { _transform = transform; }
|
||||
void setVisibleTransform(const glm::mat4& transform) { _visibleTransform = transform; }
|
||||
|
||||
glm::vec3 getTranslation() const { return _translation * _unitsScale; }
|
||||
const glm::mat4& getPreTransform() const { return _preTransform; }
|
||||
|
@ -139,16 +124,11 @@ private:
|
|||
glm::vec3 _positionInParentFrame {0.0f}; // only changes when the Model is scaled
|
||||
float _animationPriority {0.0f}; // the priority of the animation affecting this joint
|
||||
float _distanceToParent {0.0f};
|
||||
AngularConstraint* _constraint{nullptr}; // JointState owns its AngularConstraint
|
||||
|
||||
glm::mat4 _transform; // joint- to model-frame
|
||||
glm::quat _rotation; // joint- to model-frame
|
||||
glm::quat _rotationInConstrainedFrame; // rotation in frame where angular constraints would be applied
|
||||
|
||||
glm::mat4 _visibleTransform;
|
||||
glm::quat _visibleRotation;
|
||||
glm::quat _visibleRotationInConstrainedFrame;
|
||||
|
||||
glm::quat _defaultRotation; // Not necessarilly bind rotation. See FBXJoint transform/bindTransform
|
||||
glm::quat _inverseDefaultRotation;
|
||||
glm::vec3 _defaultTranslation;
|
||||
|
@ -156,8 +136,6 @@ private:
|
|||
QString _name;
|
||||
int _parentIndex;
|
||||
bool _isFree;
|
||||
glm::vec3 _rotationMin;
|
||||
glm::vec3 _rotationMax;
|
||||
glm::quat _preRotation;
|
||||
glm::quat _postRotation;
|
||||
glm::mat4 _preTransform;
|
||||
|
|
|
@ -224,14 +224,6 @@ void Rig::initJointStates(QVector<JointState> states, glm::mat4 rootTransform,
|
|||
_rightShoulderJointIndex = rightShoulderJointIndex;
|
||||
|
||||
initJointTransforms(rootTransform);
|
||||
|
||||
int numStates = _jointStates.size();
|
||||
for (int i = 0; i < numStates; ++i) {
|
||||
_jointStates[i].buildConstraint();
|
||||
}
|
||||
for (int i = 0; i < _jointStates.size(); i++) {
|
||||
_jointStates[i].slaveVisibleTransform();
|
||||
}
|
||||
}
|
||||
|
||||
// We could build and cache a dictionary, too....
|
||||
|
@ -303,16 +295,6 @@ bool Rig::getJointStateTranslation(int index, glm::vec3& translation) const {
|
|||
return !state.translationIsDefault(translation);
|
||||
}
|
||||
|
||||
|
||||
bool Rig::getVisibleJointState(int index, glm::quat& rotation) const {
|
||||
if (index == -1 || index >= _jointStates.size()) {
|
||||
return false;
|
||||
}
|
||||
const JointState& state = _jointStates.at(index);
|
||||
rotation = state.getVisibleRotationInConstrainedFrame();
|
||||
return !state.rotationIsDefault(rotation);
|
||||
}
|
||||
|
||||
void Rig::clearJointState(int index) {
|
||||
if (index != -1 && index < _jointStates.size()) {
|
||||
JointState& state = _jointStates[index];
|
||||
|
@ -418,25 +400,6 @@ bool Rig::getJointCombinedRotation(int jointIndex, glm::quat& result, const glm:
|
|||
return true;
|
||||
}
|
||||
|
||||
|
||||
bool Rig::getVisibleJointPositionInWorldFrame(int jointIndex, glm::vec3& position,
|
||||
glm::vec3 translation, glm::quat rotation) const {
|
||||
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
|
||||
return false;
|
||||
}
|
||||
// position is in world-frame
|
||||
position = translation + rotation * _jointStates[jointIndex].getVisiblePosition();
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Rig::getVisibleJointRotationInWorldFrame(int jointIndex, glm::quat& result, glm::quat rotation) const {
|
||||
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
|
||||
return false;
|
||||
}
|
||||
result = rotation * _jointStates[jointIndex].getVisibleRotation();
|
||||
return true;
|
||||
}
|
||||
|
||||
glm::mat4 Rig::getJointTransform(int jointIndex) const {
|
||||
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
|
||||
return glm::mat4();
|
||||
|
@ -444,13 +407,6 @@ glm::mat4 Rig::getJointTransform(int jointIndex) const {
|
|||
return _jointStates[jointIndex].getTransform();
|
||||
}
|
||||
|
||||
glm::mat4 Rig::getJointVisibleTransform(int jointIndex) const {
|
||||
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
|
||||
return glm::mat4();
|
||||
}
|
||||
return _jointStates[jointIndex].getVisibleTransform();
|
||||
}
|
||||
|
||||
void Rig::computeMotionAnimationState(float deltaTime, const glm::vec3& worldPosition, const glm::vec3& worldVelocity, const glm::quat& worldRotation) {
|
||||
|
||||
glm::vec3 front = worldRotation * IDENTITY_FRONT;
|
||||
|
@ -622,9 +578,7 @@ void Rig::updateAnimations(float deltaTime, glm::mat4 rootTransform) {
|
|||
// copy poses into jointStates
|
||||
const float PRIORITY = 1.0f;
|
||||
for (size_t i = 0; i < poses.size(); i++) {
|
||||
setJointRotationInConstrainedFrame((int)i, glm::inverse(_animSkeleton->getRelativeBindPose(i).rot) * poses[i].rot,
|
||||
PRIORITY, false, 1.0f);
|
||||
|
||||
setJointRotationInConstrainedFrame((int)i, glm::inverse(_animSkeleton->getRelativeBindPose(i).rot) * poses[i].rot, PRIORITY, 1.0f);
|
||||
setJointTranslation((int)i, true, poses[i].trans, PRIORITY);
|
||||
}
|
||||
|
||||
|
@ -748,7 +702,7 @@ bool Rig::setJointPosition(int jointIndex, const glm::vec3& position, const glm:
|
|||
1.0f / (combinedWeight + 1.0f));
|
||||
}
|
||||
}
|
||||
state.applyRotationDelta(combinedDelta, true, priority);
|
||||
state.applyRotationDelta(combinedDelta, priority);
|
||||
glm::quat actualDelta = state.getRotation() * glm::inverse(oldCombinedRotation);
|
||||
endPosition = actualDelta * jointVector + jointPosition;
|
||||
if (useRotation) {
|
||||
|
@ -867,11 +821,9 @@ void Rig::inverseKinematics(int endIndex, glm::vec3 targetPosition, const glm::q
|
|||
|
||||
// Apply the rotation delta.
|
||||
glm::quat oldNextRotation = nextState.getRotation();
|
||||
float mixFactor = 0.05f;
|
||||
nextState.applyRotationDelta(deltaRotation, mixFactor, priority);
|
||||
nextState.applyRotationDelta(deltaRotation, priority);
|
||||
|
||||
// measure the result of the rotation which may have been modified by
|
||||
// blending and constraints
|
||||
// measure the result of the rotation which may have been modified by blending
|
||||
glm::quat actualDelta = nextState.getRotation() * glm::inverse(oldNextRotation);
|
||||
endPosition = pivot + actualDelta * leverArm;
|
||||
}
|
||||
|
@ -890,7 +842,7 @@ void Rig::inverseKinematics(int endIndex, glm::vec3 targetPosition, const glm::q
|
|||
} while (numIterations < MAX_ITERATION_COUNT && distanceToGo > ACCEPTABLE_IK_ERROR);
|
||||
|
||||
// set final rotation of the end joint
|
||||
endState.setRotationInModelFrame(targetRotation, priority, true);
|
||||
endState.setRotationInModelFrame(targetRotation, priority);
|
||||
}
|
||||
|
||||
bool Rig::restoreJointPosition(int jointIndex, float fraction, float priority, const QVector<int>& freeLineage) {
|
||||
|
@ -919,13 +871,13 @@ float Rig::getLimbLength(int jointIndex, const QVector<int>& freeLineage,
|
|||
return length;
|
||||
}
|
||||
|
||||
glm::quat Rig::setJointRotationInBindFrame(int jointIndex, const glm::quat& rotation, float priority, bool constrain) {
|
||||
glm::quat Rig::setJointRotationInBindFrame(int jointIndex, const glm::quat& rotation, float priority) {
|
||||
glm::quat endRotation;
|
||||
if (jointIndex == -1 || _jointStates.isEmpty()) {
|
||||
return endRotation;
|
||||
}
|
||||
JointState& state = _jointStates[jointIndex];
|
||||
state.setRotationInBindFrame(rotation, priority, constrain);
|
||||
state.setRotationInBindFrame(rotation, priority);
|
||||
endRotation = state.getRotationInBindFrame();
|
||||
return endRotation;
|
||||
}
|
||||
|
@ -937,13 +889,13 @@ glm::vec3 Rig::getJointDefaultTranslationInConstrainedFrame(int jointIndex) {
|
|||
return _jointStates[jointIndex].getDefaultTranslationInConstrainedFrame();
|
||||
}
|
||||
|
||||
glm::quat Rig::setJointRotationInConstrainedFrame(int jointIndex, glm::quat targetRotation, float priority, bool constrain, float mix) {
|
||||
glm::quat Rig::setJointRotationInConstrainedFrame(int jointIndex, glm::quat targetRotation, float priority, float mix) {
|
||||
glm::quat endRotation;
|
||||
if (jointIndex == -1 || _jointStates.isEmpty()) {
|
||||
return endRotation;
|
||||
}
|
||||
JointState& state = _jointStates[jointIndex];
|
||||
state.setRotationInConstrainedFrame(targetRotation, priority, constrain, mix);
|
||||
state.setRotationInConstrainedFrame(targetRotation, priority, mix);
|
||||
endRotation = state.getRotationInConstrainedFrame();
|
||||
return endRotation;
|
||||
}
|
||||
|
@ -956,30 +908,17 @@ bool Rig::getJointRotationInConstrainedFrame(int jointIndex, glm::quat& quatOut)
|
|||
return true;
|
||||
}
|
||||
|
||||
void Rig::updateVisibleJointStates() {
|
||||
for (int i = 0; i < _jointStates.size(); i++) {
|
||||
_jointStates[i].slaveVisibleTransform();
|
||||
}
|
||||
}
|
||||
|
||||
void Rig::clearJointStatePriorities() {
|
||||
for (int i = 0; i < _jointStates.size(); i++) {
|
||||
_jointStates[i].setAnimationPriority(0.0f);
|
||||
}
|
||||
}
|
||||
|
||||
void Rig::setJointVisibleTransform(int jointIndex, glm::mat4 newTransform) {
|
||||
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
|
||||
return;
|
||||
}
|
||||
_jointStates[jointIndex].setVisibleTransform(newTransform);
|
||||
}
|
||||
|
||||
void Rig::applyJointRotationDelta(int jointIndex, const glm::quat& delta, bool constrain, float priority) {
|
||||
void Rig::applyJointRotationDelta(int jointIndex, const glm::quat& delta, float priority) {
|
||||
if (jointIndex == -1 || _jointStates.isEmpty()) {
|
||||
return;
|
||||
}
|
||||
_jointStates[jointIndex].applyRotationDelta(delta, constrain, priority);
|
||||
_jointStates[jointIndex].applyRotationDelta(delta, priority);
|
||||
}
|
||||
|
||||
glm::quat Rig::getJointDefaultRotationInParentFrame(int jointIndex) {
|
||||
|
@ -1118,7 +1057,7 @@ void Rig::updateNeckJoint(int index, const HeadParameters& params) {
|
|||
|
||||
_animVars.set("headPosition", headPos);
|
||||
_animVars.set("headRotation", headRot);
|
||||
_animVars.set("headType", QString("RotationAndPosition"));
|
||||
_animVars.set("headAndNeckType", QString("RotationAndPosition"));
|
||||
_animVars.set("neckPosition", neckPos);
|
||||
_animVars.set("neckRotation", neckRot);
|
||||
|
||||
|
@ -1131,7 +1070,7 @@ void Rig::updateNeckJoint(int index, const HeadParameters& params) {
|
|||
|
||||
_animVars.unset("headPosition");
|
||||
_animVars.set("headRotation", realLocalHeadOrientation);
|
||||
_animVars.set("headType", QString("RotationOnly"));
|
||||
_animVars.set("headAndNeckType", QString("RotationOnly"));
|
||||
_animVars.unset("neckPosition");
|
||||
_animVars.unset("neckRotation");
|
||||
}
|
||||
|
|
|
@ -130,7 +130,7 @@ public:
|
|||
void reset(const QVector<FBXJoint>& fbxJoints);
|
||||
bool getJointStateRotation(int index, glm::quat& rotation) const;
|
||||
bool getJointStateTranslation(int index, glm::vec3& translation) const;
|
||||
void applyJointRotationDelta(int jointIndex, const glm::quat& delta, bool constrain, float priority);
|
||||
void applyJointRotationDelta(int jointIndex, const glm::quat& delta, float priority);
|
||||
JointState getJointState(int jointIndex) const; // XXX
|
||||
bool getVisibleJointState(int index, glm::quat& rotation) const;
|
||||
void clearJointState(int index);
|
||||
|
@ -173,10 +173,10 @@ public:
|
|||
float getLimbLength(int jointIndex, const QVector<int>& freeLineage,
|
||||
const glm::vec3 scale, const QVector<FBXJoint>& fbxJoints) const;
|
||||
|
||||
glm::quat setJointRotationInBindFrame(int jointIndex, const glm::quat& rotation, float priority, bool constrain = false);
|
||||
glm::quat setJointRotationInBindFrame(int jointIndex, const glm::quat& rotation, float priority);
|
||||
glm::vec3 getJointDefaultTranslationInConstrainedFrame(int jointIndex);
|
||||
glm::quat setJointRotationInConstrainedFrame(int jointIndex, glm::quat targetRotation,
|
||||
float priority, bool constrain = false, float mix = 1.0f);
|
||||
float priority, float mix = 1.0f);
|
||||
bool getJointRotationInConstrainedFrame(int jointIndex, glm::quat& rotOut) const;
|
||||
glm::quat getJointDefaultRotationInParentFrame(int jointIndex);
|
||||
void updateVisibleJointStates();
|
||||
|
|
|
@ -594,25 +594,22 @@ QString ParticleEffectEntityItem::getAnimationSettings() const {
|
|||
}
|
||||
|
||||
void ParticleEffectEntityItem::updateRadius(quint32 index, float age) {
|
||||
_particleRadiuses[index] = Interpolate::cubicInterpolate3Points(_radiusStarts[index], _radiusMiddles[index],
|
||||
_particleRadiuses[index] = Interpolate::interpolate3Points(_radiusStarts[index], _radiusMiddles[index],
|
||||
_radiusFinishes[index], age);
|
||||
}
|
||||
|
||||
void ParticleEffectEntityItem::updateColor(quint32 index, float age) {
|
||||
_particleColors[index].red =
|
||||
(int)glm::clamp(Interpolate::cubicInterpolate3Points(_colorStarts[index].red, _colorMiddles[index].red,
|
||||
_colorFinishes[index].red, age), 0.0f, 255.0f);
|
||||
_particleColors[index].green =
|
||||
(int)glm::clamp(Interpolate::cubicInterpolate3Points(_colorStarts[index].green, _colorMiddles[index].green,
|
||||
_colorFinishes[index].green, age), 0.0f, 255.0f);
|
||||
_particleColors[index].blue =
|
||||
(int)glm::clamp(Interpolate::cubicInterpolate3Points(_colorStarts[index].blue, _colorMiddles[index].blue,
|
||||
_colorFinishes[index].blue, age), 0.0f, 255.0f);
|
||||
_particleColors[index].red = (int)Interpolate::interpolate3Points(_colorStarts[index].red, _colorMiddles[index].red,
|
||||
_colorFinishes[index].red, age);
|
||||
_particleColors[index].green = (int)Interpolate::interpolate3Points(_colorStarts[index].green, _colorMiddles[index].green,
|
||||
_colorFinishes[index].green, age);
|
||||
_particleColors[index].blue = (int)Interpolate::interpolate3Points(_colorStarts[index].blue, _colorMiddles[index].blue,
|
||||
_colorFinishes[index].blue, age);
|
||||
}
|
||||
|
||||
void ParticleEffectEntityItem::updateAlpha(quint32 index, float age) {
|
||||
_particleAlphas[index] = glm::clamp(Interpolate::cubicInterpolate3Points(_alphaStarts[index], _alphaMiddles[index],
|
||||
_alphaFinishes[index], age), 0.0f, 1.0f);
|
||||
_particleAlphas[index] = Interpolate::interpolate3Points(_alphaStarts[index], _alphaMiddles[index],
|
||||
_alphaFinishes[index], age);
|
||||
}
|
||||
|
||||
void ParticleEffectEntityItem::extendBounds(const glm::vec3& point) {
|
||||
|
|
|
@ -144,13 +144,12 @@ void FBXReader::consolidateFBXMaterials() {
|
|||
// FIXME: Do not use the Specular Factor yet as some FBX models have it set to 0
|
||||
// metallic *= material.specularFactor;
|
||||
material._material->setMetallic(metallic);
|
||||
material._material->setGloss(material.shininess);
|
||||
material._material->setGloss(material.shininess);
|
||||
|
||||
if (material.opacity <= 0.0f) {
|
||||
material._material->setOpacity(1.0f);
|
||||
material._material->setOpacity(1.0f);
|
||||
} else {
|
||||
material._material->setOpacity(material.opacity);
|
||||
material._material->setOpacity(material.opacity);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -539,14 +539,16 @@ FBXGeometry* OBJReader::readOBJ(QByteArray& model, const QVariantHash& mapping,
|
|||
|
||||
foreach (QString materialID, materials.keys()) {
|
||||
OBJMaterial& objMaterial = materials[materialID];
|
||||
geometry.materials[materialID] = FBXMaterial(objMaterial.diffuseColor, // glm::vec3(1.0f, 1.0f, 1.0f)
|
||||
objMaterial.specularColor, // glm::vec3(1.0f)
|
||||
glm::vec3(), // glm::vec3()
|
||||
glm::vec2(0.f, 1.0f), // glm::vec2(0.f, 1.0f)
|
||||
objMaterial.shininess, // 96.0f
|
||||
objMaterial.opacity); // 1.0f
|
||||
FBXMaterial& material = geometry.materials[materialID];
|
||||
material._material = std::make_shared<model::Material>();
|
||||
geometry.materials[materialID] = FBXMaterial(objMaterial.diffuseColor,
|
||||
objMaterial.specularColor,
|
||||
glm::vec3(0.0f),
|
||||
glm::vec2(0.0f, 1.0f),
|
||||
objMaterial.shininess,
|
||||
objMaterial.opacity);
|
||||
FBXMaterial& fbxMaterial = geometry.materials[materialID];
|
||||
fbxMaterial.materialID = materialID;
|
||||
fbxMaterial._material = std::make_shared<model::Material>();
|
||||
model::MaterialPointer modelMaterial = fbxMaterial._material;
|
||||
|
||||
if (!objMaterial.diffuseTextureFilename.isEmpty()) {
|
||||
FBXTexture texture;
|
||||
|
@ -554,21 +556,16 @@ FBXGeometry* OBJReader::readOBJ(QByteArray& model, const QVariantHash& mapping,
|
|||
// TODO -- something to get textures working again
|
||||
}
|
||||
|
||||
material._material->setEmissive(material.emissiveColor);
|
||||
if (glm::all(glm::equal(material.diffuseColor, glm::vec3(0.0f)))) {
|
||||
material._material->setDiffuse(material.diffuseColor);
|
||||
} else {
|
||||
material._material->setDiffuse(material.diffuseColor);
|
||||
}
|
||||
material._material->setMetallic(glm::length(material.specularColor));
|
||||
material._material->setGloss(material.shininess);
|
||||
modelMaterial->setEmissive(fbxMaterial.emissiveColor);
|
||||
modelMaterial->setDiffuse(fbxMaterial.diffuseColor);
|
||||
modelMaterial->setMetallic(glm::length(fbxMaterial.specularColor));
|
||||
modelMaterial->setGloss(fbxMaterial.shininess);
|
||||
|
||||
if (material.opacity <= 0.0f) {
|
||||
material._material->setOpacity(1.0f);
|
||||
if (fbxMaterial.opacity <= 0.0f) {
|
||||
modelMaterial->setOpacity(1.0f);
|
||||
} else {
|
||||
material._material->setOpacity(material.opacity);
|
||||
modelMaterial->setOpacity(fbxMaterial.opacity);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
return geometryPtr;
|
||||
|
|
|
@ -13,11 +13,12 @@
|
|||
|
||||
#include <QCoreApplication>
|
||||
|
||||
#include <PerfStat.h>
|
||||
#include <GLMHelpers.h>
|
||||
#include <NumericalConstants.h>
|
||||
#include <PerfStat.h>
|
||||
#include <plugins/PluginContainer.h>
|
||||
|
||||
#include "NumericalConstants.h"
|
||||
#include <plugins/PluginContainer.h>
|
||||
#include "SixenseManager.h"
|
||||
#include "UserActivityLogger.h"
|
||||
|
||||
|
@ -38,14 +39,9 @@ const unsigned int RIGHT_MASK = 1U << 1;
|
|||
|
||||
const int CALIBRATION_STATE_IDLE = 0;
|
||||
const int CALIBRATION_STATE_X = 1;
|
||||
const int CALIBRATION_STATE_Y = 2;
|
||||
const int CALIBRATION_STATE_Z = 3;
|
||||
const int CALIBRATION_STATE_COMPLETE = 4;
|
||||
const int CALIBRATION_STATE_COMPLETE = 2;
|
||||
|
||||
// default (expected) location of neck in sixense space
|
||||
const float NECK_X = 0.25f; // meters
|
||||
const float NECK_Y = 0.3f; // meters
|
||||
const float NECK_Z = 0.3f; // meters
|
||||
const glm::vec3 DEFAULT_AVATAR_POSITION(-0.25f, -0.35f, -0.3f); // in hydra frame
|
||||
|
||||
const float CONTROLLER_THRESHOLD = 0.35f;
|
||||
|
||||
|
@ -92,9 +88,7 @@ bool SixenseManager::isSupported() const {
|
|||
void SixenseManager::activate() {
|
||||
#ifdef HAVE_SIXENSE
|
||||
_calibrationState = CALIBRATION_STATE_IDLE;
|
||||
// By default we assume the _neckBase (in orb frame) is as high above the orb
|
||||
// as the "torso" is below it.
|
||||
_neckBase = glm::vec3(NECK_X, -NECK_Y, NECK_Z);
|
||||
_avatarPosition = DEFAULT_AVATAR_POSITION;
|
||||
|
||||
CONTAINER->addMenu(MENU_PATH);
|
||||
CONTAINER->addMenuItem(MENU_PATH, TOGGLE_SMOOTH,
|
||||
|
@ -258,11 +252,13 @@ void SixenseManager::update(float deltaTime, bool jointsCaptured) {
|
|||
#ifdef HAVE_SIXENSE
|
||||
|
||||
// the calibration sequence is:
|
||||
// (1) press BUTTON_FWD on both hands
|
||||
// (2) reach arm straight out to the side (X)
|
||||
// (3) lift arms staight up above head (Y)
|
||||
// (4) move arms a bit forward (Z)
|
||||
// (5) release BUTTON_FWD on both hands
|
||||
// (1) reach arm straight out to the sides (xAxis is to the left)
|
||||
// (2) press BUTTON_FWD on both hands and hold for one second
|
||||
// (3) release both BUTTON_FWDs
|
||||
//
|
||||
// The code will:
|
||||
// (4) assume that the orb is on a flat surface (yAxis is UP)
|
||||
// (5) compute the forward direction (zAxis = xAxis cross yAxis)
|
||||
|
||||
const float MINIMUM_ARM_REACH = 0.3f; // meters
|
||||
const float MAXIMUM_NOISE_LEVEL = 0.05f; // meters
|
||||
|
@ -279,21 +275,16 @@ void SixenseManager::updateCalibration(void* controllersX) {
|
|||
return;
|
||||
}
|
||||
switch (_calibrationState) {
|
||||
case CALIBRATION_STATE_Y:
|
||||
case CALIBRATION_STATE_Z:
|
||||
case CALIBRATION_STATE_COMPLETE:
|
||||
{
|
||||
// compute calibration results
|
||||
// ATM we only handle the case where the XAxis has been measured, and we assume the rest
|
||||
// (i.e. that the orb is on a level surface)
|
||||
// TODO: handle COMPLETE state where all three axes have been defined. This would allow us
|
||||
// to also handle the case where left and right controllers have been reversed.
|
||||
_neckBase = 0.5f * (_reachLeft + _reachRight); // neck is midway between right and left reaches
|
||||
_avatarPosition = - 0.5f * (_reachLeft + _reachRight); // neck is midway between right and left hands
|
||||
glm::vec3 xAxis = glm::normalize(_reachRight - _reachLeft);
|
||||
glm::vec3 yAxis(0.0f, 1.0f, 0.0f);
|
||||
glm::vec3 zAxis = glm::normalize(glm::cross(xAxis, yAxis));
|
||||
xAxis = glm::normalize(glm::cross(yAxis, zAxis));
|
||||
_orbRotation = glm::inverse(glm::quat_cast(glm::mat3(xAxis, yAxis, zAxis)));
|
||||
glm::vec3 zAxis = glm::normalize(glm::cross(xAxis, Vectors::UNIT_Y));
|
||||
xAxis = glm::normalize(glm::cross(Vectors::UNIT_Y, zAxis));
|
||||
_avatarRotation = glm::inverse(glm::quat_cast(glm::mat3(xAxis, Vectors::UNIT_Y, zAxis)));
|
||||
const float Y_OFFSET_CALIBRATED_HANDS_TO_AVATAR = -0.3f;
|
||||
_avatarPosition.y += Y_OFFSET_CALIBRATED_HANDS_TO_AVATAR;
|
||||
qCDebug(inputplugins, "succeess: sixense calibration");
|
||||
}
|
||||
break;
|
||||
|
@ -349,54 +340,10 @@ void SixenseManager::updateCalibration(void* controllersX) {
|
|||
_lockExpiry = now + LOCK_DURATION;
|
||||
_lastDistance = 0.0f;
|
||||
_reachUp = 0.5f * (_reachLeft + _reachRight);
|
||||
_calibrationState = CALIBRATION_STATE_Y;
|
||||
_calibrationState = CALIBRATION_STATE_COMPLETE;
|
||||
qCDebug(inputplugins, "success: sixense calibration: left");
|
||||
}
|
||||
}
|
||||
else if (_calibrationState == CALIBRATION_STATE_Y) {
|
||||
glm::vec3 torso = 0.5f * (_reachLeft + _reachRight);
|
||||
glm::vec3 averagePosition = 0.5f * (_averageLeft + _averageRight);
|
||||
float distance = (averagePosition - torso).y;
|
||||
if (fabsf(distance) > fabsf(_lastDistance) + MAXIMUM_NOISE_LEVEL) {
|
||||
// distance is increasing so acquire the data and push the expiry out
|
||||
_reachUp = averagePosition;
|
||||
_lastDistance = distance;
|
||||
_lockExpiry = now + LOCK_DURATION;
|
||||
} else if (now > _lockExpiry) {
|
||||
if (_lastDistance > MINIMUM_ARM_REACH) {
|
||||
// lock has expired so clamp the data and move on
|
||||
_reachForward = _reachUp;
|
||||
_lastDistance = 0.0f;
|
||||
_lockExpiry = now + LOCK_DURATION;
|
||||
_calibrationState = CALIBRATION_STATE_Z;
|
||||
qCDebug(inputplugins, "success: sixense calibration: up");
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (_calibrationState == CALIBRATION_STATE_Z) {
|
||||
glm::vec3 xAxis = glm::normalize(_reachRight - _reachLeft);
|
||||
glm::vec3 torso = 0.5f * (_reachLeft + _reachRight);
|
||||
//glm::vec3 yAxis = glm::normalize(_reachUp - torso);
|
||||
glm::vec3 yAxis(0.0f, 1.0f, 0.0f);
|
||||
glm::vec3 zAxis = glm::normalize(glm::cross(xAxis, yAxis));
|
||||
|
||||
glm::vec3 averagePosition = 0.5f * (_averageLeft + _averageRight);
|
||||
float distance = glm::dot((averagePosition - torso), zAxis);
|
||||
if (fabs(distance) > fabs(_lastDistance)) {
|
||||
// distance is increasing so acquire the data and push the expiry out
|
||||
_reachForward = averagePosition;
|
||||
_lastDistance = distance;
|
||||
_lockExpiry = now + LOCK_DURATION;
|
||||
} else if (now > _lockExpiry) {
|
||||
if (fabsf(_lastDistance) > 0.05f * MINIMUM_ARM_REACH) {
|
||||
// lock has expired so clamp the data and move on
|
||||
_calibrationState = CALIBRATION_STATE_COMPLETE;
|
||||
qCDebug(inputplugins, "success: sixense calibration: forward");
|
||||
// TODO: it is theoretically possible to detect that the controllers have been
|
||||
// accidentally switched (left hand is holding right controller) and to swap the order.
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif // HAVE_SIXENSE
|
||||
|
@ -456,12 +403,9 @@ void SixenseManager::handlePoseEvent(glm::vec3 position, glm::quat rotation, int
|
|||
// z
|
||||
|
||||
// Transform the measured position into body frame.
|
||||
glm::vec3 neck = _neckBase;
|
||||
// Set y component of the "neck" to raise the measured position a little bit.
|
||||
neck.y = 0.5f;
|
||||
position = _orbRotation * (position - neck);
|
||||
position = _avatarRotation * (position + _avatarPosition);
|
||||
|
||||
// From ABOVE the hand canonical axes looks like this:
|
||||
// From ABOVE the hand canonical axes look like this:
|
||||
//
|
||||
// | | | | y | | | |
|
||||
// | | | | | | | | |
|
||||
|
@ -480,28 +424,25 @@ void SixenseManager::handlePoseEvent(glm::vec3 position, glm::quat rotation, int
|
|||
//
|
||||
// Qsh = angleAxis(PI, zAxis) * angleAxis(-PI/2, xAxis)
|
||||
//
|
||||
const glm::vec3 xAxis = glm::vec3(1.0f, 0.0f, 0.0f);
|
||||
const glm::vec3 yAxis = glm::vec3(0.0f, 1.0f, 0.0f);
|
||||
const glm::vec3 zAxis = glm::vec3(0.0f, 0.0f, 1.0f);
|
||||
const glm::quat sixenseToHand = glm::angleAxis(PI, zAxis) * glm::angleAxis(-PI/2.0f, xAxis);
|
||||
const glm::quat sixenseToHand = glm::angleAxis(PI, Vectors::UNIT_Z) * glm::angleAxis(-PI/2.0f, Vectors::UNIT_X);
|
||||
|
||||
// In addition to Qsh each hand has pre-offset introduced by the shape of the sixense controllers
|
||||
// and how they fit into the hand in their relaxed state. This offset is a quarter turn about
|
||||
// the sixense's z-axis, with its direction different for the two hands:
|
||||
float sign = (index == 0) ? 1.0f : -1.0f;
|
||||
const glm::quat preOffset = glm::angleAxis(sign * PI / 2.0f, zAxis);
|
||||
const glm::quat preOffset = glm::angleAxis(sign * PI / 2.0f, Vectors::UNIT_Z);
|
||||
|
||||
// Finally, there is a post-offset (same for both hands) to get the hand's rest orientation
|
||||
// (fingers forward, palm down) aligned properly in the avatar's model-frame,
|
||||
// and then a flip about the yAxis to get into model-frame.
|
||||
const glm::quat postOffset = glm::angleAxis(PI, yAxis) * glm::angleAxis(PI / 2.0f, xAxis);
|
||||
const glm::quat postOffset = glm::angleAxis(PI, Vectors::UNIT_Y) * glm::angleAxis(PI / 2.0f, Vectors::UNIT_X);
|
||||
|
||||
// The total rotation of the hand uses the formula:
|
||||
//
|
||||
// rotation = postOffset * Qsh^ * (measuredRotation * preOffset) * Qsh
|
||||
//
|
||||
// TODO: find a shortcut with fewer rotations.
|
||||
rotation = postOffset * glm::inverse(sixenseToHand) * rotation * preOffset * sixenseToHand;
|
||||
rotation = _avatarRotation * postOffset * glm::inverse(sixenseToHand) * rotation * preOffset * sixenseToHand;
|
||||
|
||||
_poseStateMap[makeInput(JointChannel(index)).getChannel()] = UserInputMapper::PoseValue(position, rotation);
|
||||
#endif // HAVE_SIXENSE
|
||||
|
|
|
@ -97,8 +97,8 @@ private:
|
|||
int _calibrationState;
|
||||
|
||||
// these are calibration results
|
||||
glm::vec3 _neckBase; // midpoint between controllers during X-axis calibration
|
||||
glm::quat _orbRotation; // rotates from orb frame into body frame
|
||||
glm::vec3 _avatarPosition; // in hydra-frame
|
||||
glm::quat _avatarRotation; // in hydra-frame
|
||||
float _armLength;
|
||||
|
||||
// these are measured values used to compute the calibration results
|
||||
|
|
|
@ -49,7 +49,8 @@ void ThreadedAssignment::setFinished(bool isFinished) {
|
|||
}
|
||||
|
||||
if (_statsTimer) {
|
||||
_statsTimer->stop();
|
||||
_statsTimer->deleteLater();
|
||||
_statsTimer = nullptr;
|
||||
}
|
||||
|
||||
// call our virtual aboutToFinish method - this gives the ThreadedAssignment subclass a chance to cleanup
|
||||
|
@ -105,7 +106,7 @@ void ThreadedAssignment::sendStatsPacket() {
|
|||
void ThreadedAssignment::startSendingStats() {
|
||||
// send the stats packet every 1s
|
||||
if (!_statsTimer) {
|
||||
_statsTimer = new QTimer();
|
||||
_statsTimer = new QTimer;
|
||||
connect(_statsTimer, &QTimer::timeout, this, &ThreadedAssignment::sendStatsPacket);
|
||||
}
|
||||
|
||||
|
|
|
@ -32,7 +32,7 @@ Connection::Connection(Socket* parentSocket, HifiSockAddr destination, std::uniq
|
|||
_destination(destination),
|
||||
_congestionControl(move(congestionControl))
|
||||
{
|
||||
Q_ASSERT_X(socket, "Connection::Connection", "Must be called with a valid Socket*");
|
||||
Q_ASSERT_X(parentSocket, "Connection::Connection", "Must be called with a valid Socket*");
|
||||
|
||||
Q_ASSERT_X(_congestionControl, "Connection::Connection", "Must be called with a valid CongestionControl object");
|
||||
_congestionControl->init();
|
||||
|
|
|
@ -28,7 +28,8 @@ class Packet;
|
|||
class PacketList : public QIODevice {
|
||||
Q_OBJECT
|
||||
public:
|
||||
static std::unique_ptr<PacketList> create(PacketType packetType, QByteArray extendedHeader = QByteArray(), bool isReliable = false, bool isOrdered = false);
|
||||
static std::unique_ptr<PacketList> create(PacketType packetType, QByteArray extendedHeader = QByteArray(),
|
||||
bool isReliable = false, bool isOrdered = false);
|
||||
static std::unique_ptr<PacketList> fromReceivedPackets(std::list<std::unique_ptr<Packet>>&& packets);
|
||||
|
||||
bool isReliable() const { return _isReliable; }
|
||||
|
|
|
@ -1,25 +0,0 @@
|
|||
//
|
||||
// Constraint.h
|
||||
// libraries/physics/src
|
||||
//
|
||||
// Created by Andrew Meadows 2014.07.24
|
||||
// Copyright 2014 High Fidelity, Inc.
|
||||
//
|
||||
// Distributed under the Apache License, Version 2.0.
|
||||
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
|
||||
//
|
||||
|
||||
#ifndef hifi_Constraint_h
|
||||
#define hifi_Constraint_h
|
||||
|
||||
class Constraint {
|
||||
public:
|
||||
Constraint() {}
|
||||
virtual ~Constraint() {}
|
||||
|
||||
/// Enforce contraint by moving relevant points.
|
||||
/// \return max distance of point movement
|
||||
virtual float enforce() = 0;
|
||||
};
|
||||
|
||||
#endif // hifi_Constraint_h
|
|
@ -68,7 +68,6 @@ Model::Model(RigPointer rig, QObject* parent) :
|
|||
_scaledToFit(false),
|
||||
_snapModelToRegistrationPoint(false),
|
||||
_snappedToRegistrationPoint(false),
|
||||
_showTrueJointTransforms(true),
|
||||
_cauterizeBones(false),
|
||||
_pupilDilation(0.0f),
|
||||
_url(HTTP_INVALID_COM),
|
||||
|
@ -998,10 +997,6 @@ bool Model::getJointState(int index, glm::quat& rotation) const {
|
|||
return _rig->getJointStateRotation(index, rotation);
|
||||
}
|
||||
|
||||
bool Model::getVisibleJointState(int index, glm::quat& rotation) const {
|
||||
return _rig->getVisibleJointState(index, rotation);
|
||||
}
|
||||
|
||||
void Model::clearJointState(int index) {
|
||||
_rig->clearJointState(index);
|
||||
}
|
||||
|
@ -1095,14 +1090,6 @@ bool Model::getJointCombinedRotation(int jointIndex, glm::quat& rotation) const
|
|||
return _rig->getJointCombinedRotation(jointIndex, rotation, _rotation);
|
||||
}
|
||||
|
||||
bool Model::getVisibleJointPositionInWorldFrame(int jointIndex, glm::vec3& position) const {
|
||||
return _rig->getVisibleJointPositionInWorldFrame(jointIndex, position, _translation, _rotation);
|
||||
}
|
||||
|
||||
bool Model::getVisibleJointRotationInWorldFrame(int jointIndex, glm::quat& rotation) const {
|
||||
return _rig->getVisibleJointRotationInWorldFrame(jointIndex, rotation, _rotation);
|
||||
}
|
||||
|
||||
QStringList Model::getJointNames() const {
|
||||
if (QThread::currentThread() != thread()) {
|
||||
QStringList result;
|
||||
|
@ -1306,33 +1293,17 @@ void Model::updateClusterMatrices() {
|
|||
for (int i = 0; i < _meshStates.size(); i++) {
|
||||
MeshState& state = _meshStates[i];
|
||||
const FBXMesh& mesh = geometry.meshes.at(i);
|
||||
if (_showTrueJointTransforms) {
|
||||
for (int j = 0; j < mesh.clusters.size(); j++) {
|
||||
const FBXCluster& cluster = mesh.clusters.at(j);
|
||||
auto jointMatrix = _rig->getJointTransform(cluster.jointIndex);
|
||||
state.clusterMatrices[j] = modelToWorld * jointMatrix * cluster.inverseBindMatrix;
|
||||
for (int j = 0; j < mesh.clusters.size(); j++) {
|
||||
const FBXCluster& cluster = mesh.clusters.at(j);
|
||||
auto jointMatrix = _rig->getJointTransform(cluster.jointIndex);
|
||||
state.clusterMatrices[j] = modelToWorld * jointMatrix * cluster.inverseBindMatrix;
|
||||
|
||||
// as an optimization, don't build cautrizedClusterMatrices if the boneSet is empty.
|
||||
if (!_cauterizeBoneSet.empty()) {
|
||||
if (_cauterizeBoneSet.find(cluster.jointIndex) != _cauterizeBoneSet.end()) {
|
||||
jointMatrix = cauterizeMatrix;
|
||||
}
|
||||
state.cauterizedClusterMatrices[j] = modelToWorld * jointMatrix * cluster.inverseBindMatrix;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (int j = 0; j < mesh.clusters.size(); j++) {
|
||||
const FBXCluster& cluster = mesh.clusters.at(j);
|
||||
auto jointMatrix = _rig->getJointVisibleTransform(cluster.jointIndex); // differs from above only in using get...VisibleTransform
|
||||
state.clusterMatrices[j] = modelToWorld * jointMatrix * cluster.inverseBindMatrix;
|
||||
|
||||
// as an optimization, don't build cautrizedClusterMatrices if the boneSet is empty.
|
||||
if (!_cauterizeBoneSet.empty()) {
|
||||
if (_cauterizeBoneSet.find(cluster.jointIndex) != _cauterizeBoneSet.end()) {
|
||||
jointMatrix = cauterizeMatrix;
|
||||
}
|
||||
state.cauterizedClusterMatrices[j] = modelToWorld * jointMatrix * cluster.inverseBindMatrix;
|
||||
// as an optimization, don't build cautrizedClusterMatrices if the boneSet is empty.
|
||||
if (!_cauterizeBoneSet.empty()) {
|
||||
if (_cauterizeBoneSet.find(cluster.jointIndex) != _cauterizeBoneSet.end()) {
|
||||
jointMatrix = cauterizeMatrix;
|
||||
}
|
||||
state.cauterizedClusterMatrices[j] = modelToWorld * jointMatrix * cluster.inverseBindMatrix;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1545,13 +1516,6 @@ void Model::renderPart(RenderArgs* args, int meshIndex, int partIndex, int shape
|
|||
pickPrograms(batch, mode, translucentMesh, alphaThreshold, hasLightmap, hasTangents, hasSpecular, isSkinned, wireframe,
|
||||
args, locations);
|
||||
|
||||
{
|
||||
if (!_showTrueJointTransforms) {
|
||||
PerformanceTimer perfTimer("_rig->updateVisibleJointStates()");
|
||||
_rig->updateVisibleJointStates();
|
||||
} // else no need to update visible transforms
|
||||
}
|
||||
|
||||
// if our index is ever out of range for either meshes or networkMeshes, then skip it, and set our _meshGroupsKnown
|
||||
// to false to rebuild out mesh groups.
|
||||
if (meshIndex < 0 || meshIndex >= (int)networkMeshes.size() || meshIndex > geometry.meshes.size()) {
|
||||
|
|
|
@ -224,26 +224,17 @@ protected:
|
|||
/// \return whether or not the joint state is "valid" (that is, non-default)
|
||||
bool getJointState(int index, glm::quat& rotation) const;
|
||||
|
||||
/// Fetches the visible joint state at the specified index.
|
||||
/// \return whether or not the joint state is "valid" (that is, non-default)
|
||||
bool getVisibleJointState(int index, glm::quat& rotation) const;
|
||||
|
||||
/// Clear the joint states
|
||||
void clearJointState(int index);
|
||||
|
||||
/// Returns the index of the last free ancestor of the indexed joint, or -1 if not found.
|
||||
int getLastFreeJointIndex(int jointIndex) const;
|
||||
|
||||
bool getVisibleJointPositionInWorldFrame(int jointIndex, glm::vec3& position) const;
|
||||
bool getVisibleJointRotationInWorldFrame(int jointIndex, glm::quat& rotation) const;
|
||||
|
||||
/// \param jointIndex index of joint in model structure
|
||||
/// \param position[out] position of joint in model-frame
|
||||
/// \return true if joint exists
|
||||
bool getJointPosition(int jointIndex, glm::vec3& position) const;
|
||||
|
||||
void setShowTrueJointTransforms(bool show) { _showTrueJointTransforms = show; }
|
||||
|
||||
QSharedPointer<NetworkGeometry> _geometry;
|
||||
void setGeometry(const QSharedPointer<NetworkGeometry>& newGeometry);
|
||||
|
||||
|
@ -262,8 +253,6 @@ protected:
|
|||
bool _snappedToRegistrationPoint; /// are we currently snapped to a registration point
|
||||
glm::vec3 _registrationPoint = glm::vec3(0.5f); /// the point in model space our center is snapped to
|
||||
|
||||
bool _showTrueJointTransforms;
|
||||
|
||||
class MeshState {
|
||||
public:
|
||||
QVector<glm::mat4> clusterMatrices;
|
||||
|
|
|
@ -1,202 +0,0 @@
|
|||
//
|
||||
// AngularConstraint.cpp
|
||||
// interface/src/renderer
|
||||
//
|
||||
// Created by Andrew Meadows on 2014.05.30
|
||||
// Copyright 2014 High Fidelity, Inc.
|
||||
//
|
||||
// Distributed under the Apache License, Version 2.0.
|
||||
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
|
||||
//
|
||||
|
||||
#include <glm/gtx/norm.hpp>
|
||||
|
||||
#include "AngularConstraint.h"
|
||||
#include "GLMHelpers.h"
|
||||
#include "NumericalConstants.h"
|
||||
|
||||
// helper function
|
||||
/// \param angle radian angle to be clamped within angleMin and angleMax
|
||||
/// \param angleMin minimum value
|
||||
/// \param angleMax maximum value
|
||||
/// \return value between minAngle and maxAngle closest to angle
|
||||
float clampAngle(float angle, float angleMin, float angleMax) {
|
||||
float minDistance = angle - angleMin;
|
||||
float maxDistance = angle - angleMax;
|
||||
if (maxDistance > 0.0f) {
|
||||
minDistance = glm::min(minDistance, angleMin + TWO_PI - angle);
|
||||
angle = (minDistance < maxDistance) ? angleMin : angleMax;
|
||||
} else if (minDistance < 0.0f) {
|
||||
maxDistance = glm::max(maxDistance, angleMax - TWO_PI - angle);
|
||||
angle = (minDistance > maxDistance) ? angleMin : angleMax;
|
||||
}
|
||||
return angle;
|
||||
}
|
||||
|
||||
// static
|
||||
AngularConstraint* AngularConstraint::newAngularConstraint(const glm::vec3& minAngles, const glm::vec3& maxAngles) {
|
||||
float minDistance2 = glm::distance2(minAngles, glm::vec3(-PI, -PI, -PI));
|
||||
float maxDistance2 = glm::distance2(maxAngles, glm::vec3(PI, PI, PI));
|
||||
if (minDistance2 < EPSILON && maxDistance2 < EPSILON) {
|
||||
// no constraint
|
||||
return NULL;
|
||||
}
|
||||
// count the zero length elements
|
||||
glm::vec3 rangeAngles = maxAngles - minAngles;
|
||||
int pivotIndex = -1;
|
||||
int numZeroes = 0;
|
||||
for (int i = 0; i < 3; ++i) {
|
||||
if (rangeAngles[i] < EPSILON) {
|
||||
++numZeroes;
|
||||
} else {
|
||||
pivotIndex = i;
|
||||
}
|
||||
}
|
||||
if (numZeroes == 2) {
|
||||
// this is a hinge
|
||||
int forwardIndex = (pivotIndex + 1) % 3;
|
||||
glm::vec3 forwardAxis(0.0f);
|
||||
forwardAxis[forwardIndex] = 1.0f;
|
||||
glm::vec3 rotationAxis(0.0f);
|
||||
rotationAxis[pivotIndex] = 1.0f;
|
||||
return new HingeConstraint(forwardAxis, rotationAxis, minAngles[pivotIndex], maxAngles[pivotIndex]);
|
||||
} else if (numZeroes == 0) {
|
||||
// approximate the angular limits with a cone roller
|
||||
// we assume the roll is about z
|
||||
glm::vec3 middleAngles = 0.5f * (maxAngles + minAngles);
|
||||
glm::quat yaw = glm::angleAxis(middleAngles[1], glm::vec3(0.0f, 1.0f, 0.0f));
|
||||
glm::quat pitch = glm::angleAxis(middleAngles[0], glm::vec3(1.0f, 0.0f, 0.0f));
|
||||
glm::vec3 coneAxis = pitch * yaw * glm::vec3(0.0f, 0.0f, 1.0f);
|
||||
// the coneAngle is half the average range of the two non-roll rotations
|
||||
glm::vec3 range = maxAngles - minAngles;
|
||||
float coneAngle = 0.25f * (range[0] + range[1]);
|
||||
return new ConeRollerConstraint(coneAngle, coneAxis, minAngles.z, maxAngles.z);
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
bool AngularConstraint::softClamp(glm::quat& targetRotation, const glm::quat& oldRotation, float mixFraction) {
|
||||
glm::quat clampedTarget = targetRotation;
|
||||
bool clamped = clamp(clampedTarget);
|
||||
if (clamped) {
|
||||
// check if oldRotation is also clamped
|
||||
glm::quat clampedOld = oldRotation;
|
||||
bool clamped2 = clamp(clampedOld);
|
||||
if (clamped2) {
|
||||
// oldRotation is already beyond the constraint
|
||||
// we clamp again midway between targetRotation and clamped oldPosition
|
||||
clampedTarget = glm::shortMix(clampedOld, targetRotation, mixFraction);
|
||||
// and then clamp that
|
||||
clamp(clampedTarget);
|
||||
}
|
||||
// finally we mix targetRotation with the clampedTarget
|
||||
targetRotation = glm::shortMix(clampedTarget, targetRotation, mixFraction);
|
||||
}
|
||||
return clamped;
|
||||
}
|
||||
|
||||
HingeConstraint::HingeConstraint(const glm::vec3& forwardAxis, const glm::vec3& rotationAxis, float minAngle, float maxAngle)
|
||||
: _minAngle(minAngle), _maxAngle(maxAngle) {
|
||||
assert(_minAngle < _maxAngle);
|
||||
// we accept the rotationAxis direction
|
||||
assert(glm::length(rotationAxis) > EPSILON);
|
||||
_rotationAxis = glm::normalize(rotationAxis);
|
||||
// but we compute the final _forwardAxis
|
||||
glm::vec3 otherAxis = glm::cross(_rotationAxis, forwardAxis);
|
||||
assert(glm::length(otherAxis) > EPSILON);
|
||||
_forwardAxis = glm::normalize(glm::cross(otherAxis, _rotationAxis));
|
||||
}
|
||||
|
||||
// virtual
|
||||
bool HingeConstraint::clamp(glm::quat& rotation) const {
|
||||
glm::vec3 forward = rotation * _forwardAxis;
|
||||
forward -= glm::dot(forward, _rotationAxis) * _rotationAxis;
|
||||
float length = glm::length(forward);
|
||||
if (length < EPSILON) {
|
||||
// infinite number of solutions ==> choose the middle of the contrained range
|
||||
rotation = glm::angleAxis(0.5f * (_minAngle + _maxAngle), _rotationAxis);
|
||||
return true;
|
||||
}
|
||||
forward /= length;
|
||||
float sign = (glm::dot(glm::cross(_forwardAxis, forward), _rotationAxis) > 0.0f ? 1.0f : -1.0f);
|
||||
//float angle = sign * acos(glm::dot(forward, _forwardAxis) / length);
|
||||
float angle = sign * acosf(glm::dot(forward, _forwardAxis));
|
||||
glm::quat newRotation = glm::angleAxis(clampAngle(angle, _minAngle, _maxAngle), _rotationAxis);
|
||||
if (fabsf(1.0f - glm::dot(newRotation, rotation)) > EPSILON * EPSILON) {
|
||||
rotation = newRotation;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool HingeConstraint::softClamp(glm::quat& targetRotation, const glm::quat& oldRotation, float mixFraction) {
|
||||
// the hinge works best without a soft clamp
|
||||
return clamp(targetRotation);
|
||||
}
|
||||
|
||||
ConeRollerConstraint::ConeRollerConstraint(float coneAngle, const glm::vec3& coneAxis, float minRoll, float maxRoll)
|
||||
: _coneAngle(coneAngle), _minRoll(minRoll), _maxRoll(maxRoll) {
|
||||
assert(_maxRoll >= _minRoll);
|
||||
float axisLength = glm::length(coneAxis);
|
||||
assert(axisLength > EPSILON);
|
||||
_coneAxis = coneAxis / axisLength;
|
||||
}
|
||||
|
||||
// virtual
|
||||
bool ConeRollerConstraint::clamp(glm::quat& rotation) const {
|
||||
bool applied = false;
|
||||
glm::vec3 rotatedAxis = rotation * _coneAxis;
|
||||
glm::vec3 perpAxis = glm::cross(rotatedAxis, _coneAxis);
|
||||
float perpAxisLength = glm::length(perpAxis);
|
||||
if (perpAxisLength > EPSILON) {
|
||||
perpAxis /= perpAxisLength;
|
||||
// enforce the cone
|
||||
float angle = acosf(glm::dot(rotatedAxis, _coneAxis));
|
||||
if (angle > _coneAngle) {
|
||||
rotation = glm::angleAxis(angle - _coneAngle, perpAxis) * rotation;
|
||||
rotatedAxis = rotation * _coneAxis;
|
||||
applied = true;
|
||||
}
|
||||
} else {
|
||||
// the rotation is 100% roll
|
||||
// there is no obvious perp axis so we must pick one
|
||||
perpAxis = rotatedAxis;
|
||||
// find the first non-zero element:
|
||||
float iValue = 0.0f;
|
||||
int i = 0;
|
||||
for (i = 0; i < 3; ++i) {
|
||||
if (fabsf(perpAxis[i]) > EPSILON) {
|
||||
iValue = perpAxis[i];
|
||||
break;
|
||||
}
|
||||
}
|
||||
assert(i != 3);
|
||||
// swap or negate the next element
|
||||
int j = (i + 1) % 3;
|
||||
float jValue = perpAxis[j];
|
||||
if (fabsf(jValue - iValue) > EPSILON) {
|
||||
perpAxis[i] = jValue;
|
||||
perpAxis[j] = iValue;
|
||||
} else {
|
||||
perpAxis[i] = -iValue;
|
||||
}
|
||||
perpAxis = glm::cross(perpAxis, rotatedAxis);
|
||||
perpAxisLength = glm::length(perpAxis);
|
||||
assert(perpAxisLength > EPSILON);
|
||||
perpAxis /= perpAxisLength;
|
||||
}
|
||||
// measure the roll
|
||||
// NOTE: perpAxis is perpendicular to both _coneAxis and rotatedConeAxis, so we can
|
||||
// rotate it again and we'll end up with an something that has only been rolled.
|
||||
glm::vec3 rolledPerpAxis = rotation * perpAxis;
|
||||
float sign = glm::dot(rotatedAxis, glm::cross(perpAxis, rolledPerpAxis)) > 0.0f ? 1.0f : -1.0f;
|
||||
float roll = sign * angleBetween(rolledPerpAxis, perpAxis);
|
||||
if (roll < _minRoll || roll > _maxRoll) {
|
||||
float clampedRoll = clampAngle(roll, _minRoll, _maxRoll);
|
||||
rotation = glm::normalize(glm::angleAxis(clampedRoll - roll, rotatedAxis) * rotation);
|
||||
applied = true;
|
||||
}
|
||||
return applied;
|
||||
}
|
||||
|
||||
|
|
@ -1,54 +0,0 @@
|
|||
//
|
||||
// AngularConstraint.h
|
||||
// interface/src/renderer
|
||||
//
|
||||
// Created by Andrew Meadows on 2014.05.30
|
||||
// Copyright 2013 High Fidelity, Inc.
|
||||
//
|
||||
// Distributed under the Apache License, Version 2.0.
|
||||
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
|
||||
//
|
||||
|
||||
#ifndef hifi_AngularConstraint_h
|
||||
#define hifi_AngularConstraint_h
|
||||
|
||||
#include <glm/glm.hpp>
|
||||
|
||||
class AngularConstraint {
|
||||
public:
|
||||
/// \param minAngles minumum euler angles for the constraint
|
||||
/// \param maxAngles minumum euler angles for the constraint
|
||||
/// \return pointer to new AngularConstraint of the right type or NULL if none could be made
|
||||
static AngularConstraint* newAngularConstraint(const glm::vec3& minAngles, const glm::vec3& maxAngles);
|
||||
|
||||
AngularConstraint() {}
|
||||
virtual ~AngularConstraint() {}
|
||||
virtual bool clamp(glm::quat& rotation) const = 0;
|
||||
virtual bool softClamp(glm::quat& targetRotation, const glm::quat& oldRotation, float mixFraction);
|
||||
protected:
|
||||
};
|
||||
|
||||
class HingeConstraint : public AngularConstraint {
|
||||
public:
|
||||
HingeConstraint(const glm::vec3& forwardAxis, const glm::vec3& rotationAxis, float minAngle, float maxAngle);
|
||||
virtual bool clamp(glm::quat& rotation) const;
|
||||
virtual bool softClamp(glm::quat& targetRotation, const glm::quat& oldRotation, float mixFraction);
|
||||
protected:
|
||||
glm::vec3 _forwardAxis;
|
||||
glm::vec3 _rotationAxis;
|
||||
float _minAngle;
|
||||
float _maxAngle;
|
||||
};
|
||||
|
||||
class ConeRollerConstraint : public AngularConstraint {
|
||||
public:
|
||||
ConeRollerConstraint(float coneAngle, const glm::vec3& coneAxis, float minRoll, float maxRoll);
|
||||
virtual bool clamp(glm::quat& rotation) const;
|
||||
private:
|
||||
float _coneAngle;
|
||||
glm::vec3 _coneAxis;
|
||||
float _minRoll;
|
||||
float _maxRoll;
|
||||
};
|
||||
|
||||
#endif // hifi_AngularConstraint_h
|
|
@ -11,41 +11,50 @@
|
|||
|
||||
#include "Interpolate.h"
|
||||
|
||||
float Interpolate::cubicInterpolate2Points(float y0, float y1, float y2, float y3, float u) {
|
||||
float a0, a1, a2, a3, uu, uuu;
|
||||
#include <assert.h>
|
||||
#include <math.h>
|
||||
|
||||
a0 = y3 - y2 - y0 + y1;
|
||||
a1 = y0 - y1 - a0;
|
||||
a2 = y2 - y0;
|
||||
a3 = y1;
|
||||
|
||||
uu = u * u;
|
||||
uuu = uu * u;
|
||||
|
||||
return (a0 * uuu + a1 * uu + a2 * u + a3);
|
||||
float Interpolate::bezierInterpolate(float y1, float y2, float y3, float u) {
|
||||
// https://en.wikipedia.org/wiki/Bezier_curve
|
||||
assert(0.0f <= u && u <= 1.0f);
|
||||
return (1.0f - u) * (1.0f - u) * y1 + 2.0f * (1.0f - u) * u * y2 + u * u * y3;
|
||||
}
|
||||
|
||||
float Interpolate::cubicInterpolate3Points(float y1, float y2, float y3, float u) {
|
||||
float y0, y4;
|
||||
float Interpolate::interpolate3Points(float y1, float y2, float y3, float u) {
|
||||
assert(0.0f <= u && u <= 1.0f);
|
||||
|
||||
if (u <= 0.5f) {
|
||||
if (y1 == y2) {
|
||||
return y2;
|
||||
if ((u <= 0.5f && y1 == y2) || (u >= 0.5f && y2 == y3)) {
|
||||
// Flat line.
|
||||
return y2;
|
||||
}
|
||||
|
||||
if ((y2 >= y1 && y2 >= y3) || (y2 <= y1 && y2 <= y3)) {
|
||||
// U or inverted-U shape.
|
||||
// Make the slope at y2 = 0, which means that the control points half way between the value points have the value y2.
|
||||
if (u <= 0.5f) {
|
||||
return bezierInterpolate(y1, y2, y2, 2.0f * u);
|
||||
} else {
|
||||
return bezierInterpolate(y2, y2, y3, 2.0f * u - 1.0f);
|
||||
}
|
||||
|
||||
y0 = 2.0f * y1 - y2; // y0 is linear extension of line from y2 to y1.
|
||||
u = 2.0f * u;
|
||||
|
||||
return Interpolate::cubicInterpolate2Points(y0, y1, y2, y3, u);
|
||||
|
||||
} else {
|
||||
if (y2 == y3) {
|
||||
return y2;
|
||||
// L or inverted and/or mirrored L shape.
|
||||
// Make the slope at y2 be the slope between y1 and y3, up to a maximum of double the minimum of the slopes between y1
|
||||
// and y2, and y2 and y3. Use this slope to calculate the control points half way between the value points.
|
||||
// Note: The maximum ensures that the control points and therefore the interpolated values stay between y1 and y3.
|
||||
float slope = y3 - y1;
|
||||
float slope12 = y2 - y1;
|
||||
float slope23 = y3 - y2;
|
||||
if (fabsf(slope) > fabsf(2.0f * slope12)) {
|
||||
slope = 2.0f * slope12;
|
||||
} else if (fabsf(slope) > fabsf(2.0f * slope23)) {
|
||||
slope = 2.0f * slope23;
|
||||
}
|
||||
|
||||
y4 = 2.0f * y3 - y2; // y4 is linear extension of line from y2 to y3.
|
||||
u = 2.0f * u - 1.0f;
|
||||
|
||||
return Interpolate::cubicInterpolate2Points(y1, y2, y3, y4, u);
|
||||
if (u <= 0.5f) {
|
||||
return bezierInterpolate(y1, y2 - slope / 2.0f, y2, 2.0f * u);
|
||||
} else {
|
||||
return bezierInterpolate(y2, y2 + slope / 2.0f, y3, 2.0f * u - 1.0f);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -15,11 +15,13 @@
|
|||
class Interpolate {
|
||||
|
||||
public:
|
||||
// Cubic interpolation at position u [0.0 - 1.0] between values y1 and y2 with equidistant values y0 and y3 either side.
|
||||
static float cubicInterpolate2Points(float y0, float y1, float y2, float y3, float u);
|
||||
// Bezier interpolate at position u [0.0 - 1.0] between y values equally spaced along the x-axis. The interpolated values
|
||||
// pass through y1 and y3 but not y2; y2 is the Bezier control point.
|
||||
static float bezierInterpolate(float y1, float y2, float y3, float u);
|
||||
|
||||
// Cubic interpolation at position u [0.0 - 1.0] between values y1 and y3 with midpoint value y2.
|
||||
static float cubicInterpolate3Points(float y1, float y2, float y3, float u);
|
||||
// Interpolate at position u [0.0 - 1.0] between y values equally spaced along the x-axis such that the interpolated values
|
||||
// pass through all three y values. Return value lies wholly within the range of y values passed in.
|
||||
static float interpolate3Points(float y1, float y2, float y3, float u);
|
||||
};
|
||||
|
||||
#endif // hifi_Interpolate_h
|
||||
|
|
Loading…
Reference in a new issue