resolve conflicts on merge with upstream master

This commit is contained in:
Stephen Birarda 2014-09-26 08:33:31 -07:00
commit f47cc176b5
5 changed files with 175 additions and 54 deletions

View file

@ -75,7 +75,7 @@ InboundAudioStream::Settings AudioMixer::_streamSettings;
bool AudioMixer::_printStreamStats = false;
bool AudioMixer::_enableFilter = false;
bool AudioMixer::_enableFilter = true;
AudioMixer::AudioMixer(const QByteArray& packet) :
ThreadedAssignment(packet),
@ -710,7 +710,9 @@ void AudioMixer::run() {
}
const QString FILTER_KEY = "J-enable-filter";
_enableFilter = audioGroupObject[FILTER_KEY].toBool();
if (audioGroupObject[FILTER_KEY].isBool()) {
_enableFilter = audioGroupObject[FILTER_KEY].toBool();
}
if (_enableFilter) {
qDebug() << "Filter enabled";
}

View file

@ -42,7 +42,7 @@
"type": "checkbox",
"label": "Enable Positional Filter",
"help": "If enabled, positional audio stream uses lowpass filter",
"default": false
"default": true
},
{
"name": "unattenuated-zone",

View file

@ -17,13 +17,20 @@ const int SPLAT_COUNT = 4;
// the splat textures
uniform sampler2D diffuseMaps[SPLAT_COUNT];
// the model space normal
varying vec3 normal;
// alpha values for the four splat textures
varying vec4 alphaValues;
void main(void) {
// determine the cube face to use for texture coordinate generation
vec3 absNormal = abs(normal);
vec2 parameters = step(absNormal.yy, absNormal.xz) * step(absNormal.zx, absNormal.xz);
// blend the splat textures
gl_FragColor = (texture2D(diffuseMaps[0], gl_TexCoord[0].st) * alphaValues.x +
texture2D(diffuseMaps[1], gl_TexCoord[1].st) * alphaValues.y +
texture2D(diffuseMaps[2], gl_TexCoord[2].st) * alphaValues.z +
texture2D(diffuseMaps[3], gl_TexCoord[3].st) * alphaValues.w);
gl_FragColor = (texture2D(diffuseMaps[0], mix(gl_TexCoord[0].xw, gl_TexCoord[0].zy, parameters)) * alphaValues.x +
texture2D(diffuseMaps[1], mix(gl_TexCoord[1].xw, gl_TexCoord[1].zy, parameters)) * alphaValues.y +
texture2D(diffuseMaps[2], mix(gl_TexCoord[2].xw, gl_TexCoord[2].zy, parameters)) * alphaValues.z +
texture2D(diffuseMaps[3], mix(gl_TexCoord[3].xw, gl_TexCoord[3].zy, parameters)) * alphaValues.w);
}

View file

@ -29,6 +29,9 @@ attribute vec4 materials;
// the weights of each material
attribute vec4 materialWeights;
// the model space normal
varying vec3 normal;
// alpha values for the four splat textures
varying vec4 alphaValues;
@ -36,12 +39,19 @@ void main(void) {
// use the fixed-function position
gl_Position = ftransform();
// pass along the normal
normal = gl_Normal;
// pass along the scaled/offset texture coordinates
vec4 textureSpacePosition = vec4(gl_Vertex.xz, 0.0, 1.0);
gl_TexCoord[0] = textureSpacePosition * vec4(splatTextureScalesS[0], splatTextureScalesT[0], 0.0, 1.0);
gl_TexCoord[1] = textureSpacePosition * vec4(splatTextureScalesS[1], splatTextureScalesT[1], 0.0, 1.0);
gl_TexCoord[2] = textureSpacePosition * vec4(splatTextureScalesS[2], splatTextureScalesT[2], 0.0, 1.0);
gl_TexCoord[3] = textureSpacePosition * vec4(splatTextureScalesS[3], splatTextureScalesT[3], 0.0, 1.0);
vec4 textureSpacePosition = gl_Vertex.xyyz;
gl_TexCoord[0] = textureSpacePosition * vec4(splatTextureScalesS[0], splatTextureScalesT[0],
splatTextureScalesS[0], splatTextureScalesT[0]);
gl_TexCoord[1] = textureSpacePosition * vec4(splatTextureScalesS[1], splatTextureScalesT[1],
splatTextureScalesS[1], splatTextureScalesT[1]);
gl_TexCoord[2] = textureSpacePosition * vec4(splatTextureScalesS[2], splatTextureScalesT[2],
splatTextureScalesS[2], splatTextureScalesT[2]);
gl_TexCoord[3] = textureSpacePosition * vec4(splatTextureScalesS[3], splatTextureScalesT[3],
splatTextureScalesS[3], splatTextureScalesT[3]);
// compute the alpha values for each texture
float value = materials[0];

View file

@ -667,8 +667,9 @@ int VoxelMaterialBoxEditVisitor::visit(MetavoxelInfo& info) {
return DEFAULT_ORDER;
}
VoxelColorDataPointer colorPointer = info.inputValues.at(0).getInlineValue<VoxelColorDataPointer>();
QVector<QRgb> colorContents = (colorPointer && colorPointer->getSize() == VOXEL_BLOCK_SAMPLES) ?
QVector<QRgb> oldColorContents = (colorPointer && colorPointer->getSize() == VOXEL_BLOCK_SAMPLES) ?
colorPointer->getContents() : QVector<QRgb>(VOXEL_BLOCK_VOLUME);
QVector<QRgb> colorContents = oldColorContents;
Box overlap = info.getBounds().getIntersection(_region);
float scale = VOXEL_BLOCK_SIZE / info.size;
@ -725,32 +726,92 @@ int VoxelMaterialBoxEditVisitor::visit(MetavoxelInfo& info) {
for (int x = hermiteMinX, hermiteMaxX = x + hermiteSizeX - 1; x <= hermiteMaxX; x++,
hermiteDestX += VoxelHermiteData::EDGE_COUNT) {
// internal edges are set to zero; border edges (when non-terminal) are set to the intersection values
hermiteDestX[0] = 0x0;
if ((x == hermiteMinX || x == hermiteMaxX) && x != VOXEL_BLOCK_SIZE) {
const QRgb* color = colorContents.constData() + z * VOXEL_BLOCK_AREA + y * VOXEL_BLOCK_SAMPLES + x;
int offset = z * VOXEL_BLOCK_AREA + y * VOXEL_BLOCK_SAMPLES + x;
const QRgb* color = colorContents.constData() + offset;
int alpha0 = qAlpha(color[0]);
if (alpha0 != qAlpha(color[1])) {
hermiteDestX[0] = qRgba(alpha0 == 0 ? -NORMAL_MAX : NORMAL_MAX, 0, 0,
((x == hermiteMinX ? overlap.minimum.x : overlap.maximum.x) - x) * EIGHT_BIT_MAXIMUM);
int alpha1 = qAlpha(color[1]);
if (alpha0 != alpha1) {
const QRgb* oldColor = oldColorContents.constData() + offset;
if (qAlpha(oldColor[0]) == alpha0 && qAlpha(oldColor[1]) == alpha1) {
if (x == hermiteMinX) {
int alpha = (overlap.minimum.x - x) * EIGHT_BIT_MAXIMUM;
if (alpha <= qAlpha(hermiteDestX[0])) {
hermiteDestX[0] = qRgba(alpha0 == 0 ? -NORMAL_MAX : NORMAL_MAX, 0, 0, alpha);
}
} else {
int alpha = (overlap.maximum.x - x) * EIGHT_BIT_MAXIMUM;
if (alpha >= qAlpha(hermiteDestX[0])) {
hermiteDestX[0] = qRgba(alpha0 == 0 ? -NORMAL_MAX : NORMAL_MAX, 0, 0, alpha);
}
}
} else {
hermiteDestX[0] = qRgba(alpha0 == 0 ? -NORMAL_MAX : NORMAL_MAX, 0, 0,
((x == hermiteMinX ? overlap.minimum.x : overlap.maximum.x) - x) * EIGHT_BIT_MAXIMUM);
}
} else {
hermiteDestX[0] = 0x0;
}
} else {
hermiteDestX[0] = 0x0;
}
hermiteDestX[1] = 0x0;
if ((y == hermiteMinY || y == hermiteMaxY) && y != VOXEL_BLOCK_SIZE) {
const QRgb* color = colorContents.constData() + z * VOXEL_BLOCK_AREA + y * VOXEL_BLOCK_SAMPLES + x;
int offset = z * VOXEL_BLOCK_AREA + y * VOXEL_BLOCK_SAMPLES + x;
const QRgb* color = colorContents.constData() + offset;
int alpha0 = qAlpha(color[0]);
if (alpha0 != qAlpha(color[VOXEL_BLOCK_SAMPLES])) {
hermiteDestX[1] = qRgba(0, alpha0 == 0 ? -NORMAL_MAX : NORMAL_MAX, 0,
((y == hermiteMinY ? overlap.minimum.y : overlap.maximum.y) - y) * EIGHT_BIT_MAXIMUM);
int alpha2 = qAlpha(color[VOXEL_BLOCK_SAMPLES]);
if (alpha0 != alpha2) {
const QRgb* oldColor = oldColorContents.constData() + offset;
if (qAlpha(oldColor[0]) == alpha0 && qAlpha(oldColor[VOXEL_BLOCK_SAMPLES]) == alpha2) {
if (y == hermiteMinY) {
int alpha = (overlap.minimum.y - y) * EIGHT_BIT_MAXIMUM;
if (alpha <= qAlpha(hermiteDestX[1])) {
hermiteDestX[1] = qRgba(0, alpha0 == 0 ? -NORMAL_MAX : NORMAL_MAX, 0, alpha);
}
} else {
int alpha = (overlap.maximum.y - y) * EIGHT_BIT_MAXIMUM;
if (alpha >= qAlpha(hermiteDestX[1])) {
hermiteDestX[1] = qRgba(0, alpha0 == 0 ? -NORMAL_MAX : NORMAL_MAX, 0, alpha);
}
}
} else {
hermiteDestX[1] = qRgba(0, alpha0 == 0 ? -NORMAL_MAX : NORMAL_MAX, 0,
((y == hermiteMinY ? overlap.minimum.y : overlap.maximum.y) - y) * EIGHT_BIT_MAXIMUM);
}
} else {
hermiteDestX[1] = 0x0;
}
} else {
hermiteDestX[1] = 0x0;
}
hermiteDestX[2] = 0x0;
if ((z == hermiteMinZ || z == hermiteMaxZ) && z != VOXEL_BLOCK_SIZE) {
const QRgb* color = colorContents.constData() + z * VOXEL_BLOCK_AREA + y * VOXEL_BLOCK_SAMPLES + x;
int offset = z * VOXEL_BLOCK_AREA + y * VOXEL_BLOCK_SAMPLES + x;
const QRgb* color = colorContents.constData() + offset;
int alpha0 = qAlpha(color[0]);
if (alpha0 != qAlpha(color[VOXEL_BLOCK_AREA])) {
hermiteDestX[2] = qRgba(0, 0, alpha0 == 0 ? -NORMAL_MAX : NORMAL_MAX,
((z == hermiteMinZ ? overlap.minimum.z : overlap.maximum.z) - z) * EIGHT_BIT_MAXIMUM);
int alpha4 = qAlpha(color[VOXEL_BLOCK_AREA]);
if (alpha0 != alpha4) {
const QRgb* oldColor = oldColorContents.constData() + offset;
if (qAlpha(oldColor[0]) == alpha0 && qAlpha(oldColor[VOXEL_BLOCK_AREA]) == alpha4) {
if (z == hermiteMinZ) {
int alpha = (overlap.minimum.z - z) * EIGHT_BIT_MAXIMUM;
if (alpha <= qAlpha(hermiteDestX[2])) {
hermiteDestX[2] = qRgba(0, 0, alpha0 == 0 ? -NORMAL_MAX : NORMAL_MAX, alpha);
}
} else {
int alpha = (overlap.maximum.z - z) * EIGHT_BIT_MAXIMUM;
if (alpha >= qAlpha(hermiteDestX[2])) {
hermiteDestX[2] = qRgba(0, 0, alpha0 == 0 ? -NORMAL_MAX : NORMAL_MAX, alpha);
}
}
} else {
hermiteDestX[2] = qRgba(0, 0, alpha0 == 0 ? -NORMAL_MAX : NORMAL_MAX,
((z == hermiteMinZ ? overlap.minimum.z : overlap.maximum.z) - z) * EIGHT_BIT_MAXIMUM);
}
} else {
hermiteDestX[2] = 0x0;
}
} else {
hermiteDestX[2] = 0x0;
}
}
}
@ -864,8 +925,9 @@ int VoxelMaterialSphereEditVisitor::visit(MetavoxelInfo& info) {
return DEFAULT_ORDER;
}
VoxelColorDataPointer colorPointer = info.inputValues.at(0).getInlineValue<VoxelColorDataPointer>();
QVector<QRgb> colorContents = (colorPointer && colorPointer->getSize() == VOXEL_BLOCK_SAMPLES) ?
QVector<QRgb> oldColorContents = (colorPointer && colorPointer->getSize() == VOXEL_BLOCK_SAMPLES) ?
colorPointer->getContents() : QVector<QRgb>(VOXEL_BLOCK_VOLUME);
QVector<QRgb> colorContents = oldColorContents;
Box overlap = info.getBounds().getIntersection(_bounds);
float scale = VOXEL_BLOCK_SIZE / info.size;
@ -883,6 +945,7 @@ int VoxelMaterialSphereEditVisitor::visit(MetavoxelInfo& info) {
float relativeRadiusSquared = relativeRadius * relativeRadius;
QRgb rgb = _color.rgba();
bool flipped = (qAlpha(rgb) == 0);
glm::vec3 position(0.0f, 0.0f, minZ);
for (QRgb* destZ = colorContents.data() + minZ * VOXEL_BLOCK_AREA + minY * VOXEL_BLOCK_SAMPLES + minX,
*endZ = destZ + sizeZ * VOXEL_BLOCK_AREA; destZ != endZ; destZ += VOXEL_BLOCK_AREA, position.z++) {
@ -932,78 +995,117 @@ int VoxelMaterialSphereEditVisitor::visit(MetavoxelInfo& info) {
hermiteDestX += VoxelHermiteData::EDGE_COUNT) {
// at each intersected non-terminal edge, we check for a transition and, if one is detected, we assign the
// crossing and normal values based on intersection with the sphere
hermiteDestX[0] = 0x0;
glm::vec3 offset(x - relativeCenter.x, y - relativeCenter.y, z - relativeCenter.z);
glm::vec3 vector(x - relativeCenter.x, y - relativeCenter.y, z - relativeCenter.z);
if (x != VOXEL_BLOCK_SIZE) {
const QRgb* color = colorContents.constData() + z * VOXEL_BLOCK_AREA + y * VOXEL_BLOCK_SAMPLES + x;
int offset = z * VOXEL_BLOCK_AREA + y * VOXEL_BLOCK_SAMPLES + x;
const QRgb* color = colorContents.constData() + offset;
int alpha0 = qAlpha(color[0]);
if (alpha0 != qAlpha(color[1])) {
float radicand = relativeRadiusSquared - offset.y * offset.y - offset.z * offset.z;
int alpha1 = qAlpha(color[1]);
if (alpha0 != alpha1) {
float radicand = relativeRadiusSquared - vector.y * vector.y - vector.z * vector.z;
float parameter = 0.5f;
if (radicand >= 0.0f) {
float root = glm::sqrt(radicand);
parameter = -offset.x - root;
parameter = -vector.x - root;
if (parameter < 0.0f || parameter > 1.0f) {
parameter = glm::clamp(-offset.x + root, 0.0f, 1.0f);
parameter = glm::clamp(-vector.x + root, 0.0f, 1.0f);
}
}
glm::vec3 normal = offset + glm::vec3(parameter, 0.0f, 0.0f);
glm::vec3 normal = vector + glm::vec3(parameter, 0.0f, 0.0f);
float length = glm::length(normal);
if (length > EPSILON) {
normal /= length;
} else {
normal = glm::vec3(0.0f, 1.0f, 0.0f);
}
hermiteDestX[0] = packNormal(normal, parameter * EIGHT_BIT_MAXIMUM);
const QRgb* oldColor = oldColorContents.constData() + offset;
if (qAlpha(oldColor[0]) == alpha0 && qAlpha(oldColor[1]) == alpha1) {
int alpha = parameter * EIGHT_BIT_MAXIMUM;
if (normal.x < 0.0f ? alpha <= qAlpha(hermiteDestX[0]) : alpha >= qAlpha(hermiteDestX[0])) {
hermiteDestX[0] = packNormal(flipped ? -normal : normal, alpha);
}
} else {
hermiteDestX[0] = packNormal(flipped ? -normal : normal, parameter * EIGHT_BIT_MAXIMUM);
}
} else {
hermiteDestX[0] = 0x0;
}
} else {
hermiteDestX[0] = 0x0;
}
hermiteDestX[1] = 0x0;
if (y != VOXEL_BLOCK_SIZE) {
const QRgb* color = colorContents.constData() + z * VOXEL_BLOCK_AREA + y * VOXEL_BLOCK_SAMPLES + x;
int offset = z * VOXEL_BLOCK_AREA + y * VOXEL_BLOCK_SAMPLES + x;
const QRgb* color = colorContents.constData() + offset;
int alpha0 = qAlpha(color[0]);
if (alpha0 != qAlpha(color[VOXEL_BLOCK_SAMPLES])) {
float radicand = relativeRadiusSquared - offset.x * offset.x - offset.z * offset.z;
int alpha2 = qAlpha(color[VOXEL_BLOCK_SAMPLES]);
if (alpha0 != alpha2) {
float radicand = relativeRadiusSquared - vector.x * vector.x - vector.z * vector.z;
float parameter = 0.5f;
if (radicand >= 0.0f) {
float root = glm::sqrt(radicand);
parameter = -offset.y - root;
parameter = -vector.y - root;
if (parameter < 0.0f || parameter > 1.0f) {
parameter = glm::clamp(-offset.y + root, 0.0f, 1.0f);
parameter = glm::clamp(-vector.y + root, 0.0f, 1.0f);
}
}
glm::vec3 normal = offset + glm::vec3(parameter, 0.0f, 0.0f);
glm::vec3 normal = vector + glm::vec3(parameter, 0.0f, 0.0f);
float length = glm::length(normal);
if (length > EPSILON) {
normal /= length;
} else {
normal = glm::vec3(1.0f, 0.0f, 0.0f);
}
hermiteDestX[1] = packNormal(normal, parameter * EIGHT_BIT_MAXIMUM);
const QRgb* oldColor = oldColorContents.constData() + offset;
if (qAlpha(oldColor[0]) == alpha0 && qAlpha(oldColor[VOXEL_BLOCK_SAMPLES]) == alpha2) {
int alpha = parameter * EIGHT_BIT_MAXIMUM;
if (normal.y < 0.0f ? alpha <= qAlpha(hermiteDestX[1]) : alpha >= qAlpha(hermiteDestX[1])) {
hermiteDestX[1] = packNormal(flipped ? -normal : normal, alpha);
}
} else {
hermiteDestX[1] = packNormal(flipped ? -normal : normal, parameter * EIGHT_BIT_MAXIMUM);
}
} else {
hermiteDestX[1] = 0x0;
}
} else {
hermiteDestX[1] = 0x0;
}
hermiteDestX[2] = 0x0;
if (z != VOXEL_BLOCK_SIZE) {
const QRgb* color = colorContents.constData() + z * VOXEL_BLOCK_AREA + y * VOXEL_BLOCK_SAMPLES + x;
int offset = z * VOXEL_BLOCK_AREA + y * VOXEL_BLOCK_SAMPLES + x;
const QRgb* color = colorContents.constData() + offset;
int alpha0 = qAlpha(color[0]);
if (alpha0 != qAlpha(color[VOXEL_BLOCK_AREA])) {
float radicand = relativeRadiusSquared - offset.x * offset.x - offset.y * offset.y;
int alpha4 = qAlpha(color[VOXEL_BLOCK_AREA]);
if (alpha0 != alpha4) {
float radicand = relativeRadiusSquared - vector.x * vector.x - vector.y * vector.y;
float parameter = 0.5f;
if (radicand >= 0.0f) {
float root = glm::sqrt(radicand);
parameter = -offset.z - root;
parameter = -vector.z - root;
if (parameter < 0.0f || parameter > 1.0f) {
parameter = glm::clamp(-offset.z + root, 0.0f, 1.0f);
parameter = glm::clamp(-vector.z + root, 0.0f, 1.0f);
}
}
glm::vec3 normal = offset + glm::vec3(parameter, 0.0f, 0.0f);
glm::vec3 normal = vector + glm::vec3(parameter, 0.0f, 0.0f);
float length = glm::length(normal);
if (length > EPSILON) {
normal /= length;
} else {
normal = glm::vec3(1.0f, 0.0f, 0.0f);
}
hermiteDestX[2] = packNormal(normal, parameter * EIGHT_BIT_MAXIMUM);
const QRgb* oldColor = oldColorContents.constData() + offset;
if (qAlpha(oldColor[0]) == alpha0 && qAlpha(oldColor[VOXEL_BLOCK_AREA]) == alpha4) {
int alpha = parameter * EIGHT_BIT_MAXIMUM;
if (normal.z < 0.0f ? alpha <= qAlpha(hermiteDestX[2]) : alpha >= qAlpha(hermiteDestX[2])) {
hermiteDestX[2] = packNormal(flipped ? -normal : normal, alpha);
}
} else {
hermiteDestX[2] = packNormal(flipped ? -normal : normal, parameter * EIGHT_BIT_MAXIMUM);
}
} else {
hermiteDestX[2] = 0x0;
}
} else {
hermiteDestX[2] = 0x0;
}
}
}