JointStates are owned by Rig objects. Model, FaceModel, SkeletonModel call into their Rig pointer to access JointStates.

This commit is contained in:
Seth Alves 2015-07-22 18:43:10 -07:00
parent 47965bc39c
commit ee334ff826
19 changed files with 562 additions and 635 deletions

View file

@ -45,6 +45,7 @@
#include "Util.h"
#include "world.h"
#include "InterfaceLogging.h"
#include "EntityRig.h"
using namespace std;
@ -965,7 +966,7 @@ void Avatar::setAttachmentData(const QVector<AttachmentData>& attachmentData) {
if (_unusedAttachments.size() > 0) {
model = _unusedAttachments.takeFirst();
} else {
model = new Model(this);
model = new Model(std::make_shared<EntityRig>(), this);
}
model->init();
_attachmentModels.append(model);

View file

@ -35,6 +35,7 @@
#include "Menu.h"
#include "MyAvatar.h"
#include "SceneScriptingInterface.h"
#include "AvatarRig.h"
// 70 times per second - target is 60hz, but this helps account for any small deviations
// in the update loop
@ -65,7 +66,7 @@ AvatarManager::AvatarManager(QObject* parent) :
{
// register a meta type for the weak pointer we'll use for the owning avatar mixer for each avatar
qRegisterMetaType<QWeakPointer<Node> >("NodeWeakPointer");
_myAvatar = std::make_shared<MyAvatar>(std::make_shared<Rig>());
_myAvatar = std::make_shared<MyAvatar>(std::make_shared<AvatarRig>());
auto& packetReceiver = DependencyManager::get<NodeList>()->getPacketReceiver();
packetReceiver.registerListener(PacketType::BulkAvatarData, this, "processAvatarDataPacket");
@ -160,7 +161,7 @@ void AvatarManager::simulateAvatarFades(float deltaTime) {
}
AvatarSharedPointer AvatarManager::newSharedAvatar() {
return AvatarSharedPointer(std::make_shared<Avatar>(std::make_shared<Rig>()));
return AvatarSharedPointer(std::make_shared<Avatar>(std::make_shared<AvatarRig>()));
}
// virtual

View file

@ -16,9 +16,11 @@
#include "Head.h"
#include "Menu.h"
FaceModel::FaceModel(Head* owningHead) :
FaceModel::FaceModel(Head* owningHead, RigPointer rig) :
Model(rig, nullptr),
_owningHead(owningHead)
{
assert(_rig);
}
void FaceModel::simulate(float deltaTime, bool fullUpdate) {
@ -48,54 +50,58 @@ void FaceModel::simulate(float deltaTime, bool fullUpdate) {
}
}
void FaceModel::maybeUpdateNeckRotation(const JointState& parentState, const FBXJoint& joint, JointState& state) {
void FaceModel::maybeUpdateNeckRotation(const JointState& parentState, const FBXJoint& joint, int index) {
// get the rotation axes in joint space and use them to adjust the rotation
glm::mat3 axes = glm::mat3_cast(glm::quat());
glm::mat3 inverse = glm::mat3(glm::inverse(parentState.getTransform() *
glm::translate(state.getDefaultTranslationInConstrainedFrame()) *
glm::translate(_rig->getJointDefaultTranslationInConstrainedFrame(index)) *
joint.preTransform * glm::mat4_cast(joint.preRotation)));
glm::vec3 pitchYawRoll = safeEulerAngles(_owningHead->getFinalOrientationInLocalFrame());
glm::vec3 lean = glm::radians(glm::vec3(_owningHead->getFinalLeanForward(),
_owningHead->getTorsoTwist(),
_owningHead->getFinalLeanSideways()));
pitchYawRoll -= lean;
state.setRotationInConstrainedFrame(glm::angleAxis(-pitchYawRoll.z, glm::normalize(inverse * axes[2]))
_rig->setJointRotationInConstrainedFrame(index,
glm::angleAxis(-pitchYawRoll.z, glm::normalize(inverse * axes[2]))
* glm::angleAxis(pitchYawRoll.y, glm::normalize(inverse * axes[1]))
* glm::angleAxis(-pitchYawRoll.x, glm::normalize(inverse * axes[0]))
* joint.rotation, DEFAULT_PRIORITY);
}
void FaceModel::maybeUpdateEyeRotation(Model* model, const JointState& parentState, const FBXJoint& joint, JointState& state) {
void FaceModel::maybeUpdateEyeRotation(Model* model, const JointState& parentState, const FBXJoint& joint, int index) {
// likewise with the eye joints
// NOTE: at the moment we do the math in the world-frame, hence the inverse transform is more complex than usual.
glm::mat4 inverse = glm::inverse(glm::mat4_cast(model->getRotation()) * parentState.getTransform() *
glm::translate(state.getDefaultTranslationInConstrainedFrame()) *
glm::translate(_rig->getJointDefaultTranslationInConstrainedFrame(index)) *
joint.preTransform * glm::mat4_cast(joint.preRotation * joint.rotation));
glm::vec3 front = glm::vec3(inverse * glm::vec4(_owningHead->getFinalOrientationInWorldFrame() * IDENTITY_FRONT, 0.0f));
glm::vec3 lookAt = glm::vec3(inverse * glm::vec4(_owningHead->getCorrectedLookAtPosition() +
_owningHead->getSaccade() - model->getTranslation(), 1.0f));
glm::quat between = rotationBetween(front, lookAt);
const float MAX_ANGLE = 30.0f * RADIANS_PER_DEGREE;
state.setRotationInConstrainedFrame(glm::angleAxis(glm::clamp(glm::angle(between), -MAX_ANGLE, MAX_ANGLE), glm::axis(between)) *
_rig->setJointRotationInConstrainedFrame(index, glm::angleAxis(glm::clamp(glm::angle(between),
-MAX_ANGLE, MAX_ANGLE), glm::axis(between)) *
joint.rotation, DEFAULT_PRIORITY);
}
void FaceModel::updateJointState(int index) {
JointState& state = _jointStates[index];
const JointState& state = _rig->getJointState(index);
const FBXJoint& joint = state.getFBXJoint();
// guard against out-of-bounds access to _jointStates
if (joint.parentIndex != -1 && joint.parentIndex >= 0 && joint.parentIndex < _jointStates.size()) {
const JointState& parentState = _jointStates.at(joint.parentIndex);
const FBXGeometry& geometry = _geometry->getFBXGeometry();
// guard against out-of-bounds access to _jointStates
if (joint.parentIndex != -1 && joint.parentIndex >= 0 && joint.parentIndex < _rig->getJointStateCount()) {
const JointState& parentState = _rig->getJointState(joint.parentIndex);
if (index == geometry.neckJointIndex) {
maybeUpdateNeckRotation(parentState, joint, state);
maybeUpdateNeckRotation(parentState, joint, index);
} else if (index == geometry.leftEyeJointIndex || index == geometry.rightEyeJointIndex) {
maybeUpdateEyeRotation(this, parentState, joint, state);
maybeUpdateEyeRotation(this, parentState, joint, index);
}
}
Model::updateJointState(index);
glm::mat4 parentTransform = glm::scale(_scale) * glm::translate(_offset) * geometry.offset;
_rig->updateFaceJointState(index, parentTransform);
}
bool FaceModel::getEyePositions(glm::vec3& firstEyePosition, glm::vec3& secondEyePosition) const {

View file

@ -22,12 +22,12 @@ class FaceModel : public Model {
public:
FaceModel(Head* owningHead);
FaceModel(Head* owningHead, RigPointer rig);
virtual void simulate(float deltaTime, bool fullUpdate = true);
virtual void maybeUpdateNeckRotation(const JointState& parentState, const FBXJoint& joint, JointState& state);
virtual void maybeUpdateEyeRotation(Model* model, const JointState& parentState, const FBXJoint& joint, JointState& state);
virtual void maybeUpdateNeckRotation(const JointState& parentState, const FBXJoint& joint, int index);
virtual void maybeUpdateEyeRotation(Model* model, const JointState& parentState, const FBXJoint& joint, int index);
virtual void updateJointState(int index);
/// Retrieve the positions of up to two eye meshes.

View file

@ -23,6 +23,7 @@
#include "Util.h"
#include "devices/DdeFaceTracker.h"
#include "devices/Faceshift.h"
#include "AvatarRig.h"
using namespace std;
@ -55,11 +56,10 @@ Head::Head(Avatar* owningAvatar) :
_deltaLeanForward(0.0f),
_isCameraMoving(false),
_isLookingAtMe(false),
_faceModel(this),
_faceModel(this, std::make_shared<AvatarRig>()),
_leftEyeLookAtID(DependencyManager::get<GeometryCache>()->allocateID()),
_rightEyeLookAtID(DependencyManager::get<GeometryCache>()->allocateID())
{
}
void Head::init() {

View file

@ -30,7 +30,7 @@ enum StandingFootState {
};
SkeletonModel::SkeletonModel(Avatar* owningAvatar, QObject* parent, RigPointer rig) :
Model(parent, rig),
Model(rig, parent),
_triangleFanID(DependencyManager::get<GeometryCache>()->allocateID()),
_owningAvatar(owningAvatar),
_boundingShape(),
@ -51,11 +51,13 @@ SkeletonModel::~SkeletonModel() {
}
void SkeletonModel::initJointStates(QVector<JointState> states) {
Model::initJointStates(states);
const FBXGeometry& geometry = _geometry->getFBXGeometry();
glm::mat4 parentTransform = glm::scale(_scale) * glm::translate(_offset) * geometry.offset;
_boundingRadius = _rig->initJointStates(states, parentTransform);
// Determine the default eye position for avatar scale = 1.0
int headJointIndex = _geometry->getFBXGeometry().headJointIndex;
if (0 <= headJointIndex && headJointIndex < _jointStates.size()) {
if (0 <= headJointIndex && headJointIndex < _rig->getJointStateCount()) {
glm::vec3 leftEyePosition, rightEyePosition;
getEyeModelPositions(leftEyePosition, rightEyePosition);
@ -75,8 +77,8 @@ void SkeletonModel::initJointStates(QVector<JointState> states) {
// the SkeletonModel override of updateJointState() will clear the translation part
// of its root joint and we need that done before we try to build shapes hence we
// recompute all joint transforms at this time.
for (int i = 0; i < _jointStates.size(); i++) {
updateJointState(i);
for (int i = 0; i < _rig->getJointStateCount(); i++) {
_rig->updateJointState(i, parentTransform);
}
clearShapes();
@ -168,7 +170,7 @@ void SkeletonModel::getHandShapes(int jointIndex, QVector<const Shape*>& shapes)
|| jointIndex == getRightHandJointIndex()) {
// get all shapes that have this hand as an ancestor in the skeleton heirarchy
const FBXGeometry& geometry = _geometry->getFBXGeometry();
for (int i = 0; i < _jointStates.size(); i++) {
for (int i = 0; i < _rig->getJointStateCount(); i++) {
const FBXJoint& joint = geometry.joints[i];
int parentIndex = joint.parentIndex;
Shape* shape = _shapes[i];
@ -211,7 +213,7 @@ bool operator<(const IndexValue& firstIndex, const IndexValue& secondIndex) {
}
void SkeletonModel::applyHandPosition(int jointIndex, const glm::vec3& position) {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
if (jointIndex == -1 || jointIndex >= _rig->getJointStateCount()) {
return;
}
// NOTE: 'position' is in model-frame
@ -226,16 +228,20 @@ void SkeletonModel::applyHandPosition(int jointIndex, const glm::vec3& position)
if (forearmLength < EPSILON) {
return;
}
JointState& state = _jointStates[jointIndex];
glm::quat handRotation = state.getRotation();
glm::quat handRotation;
if (!_rig->getJointStateRotation(jointIndex, handRotation)) {
return;
}
// align hand with forearm
float sign = (jointIndex == geometry.rightHandJointIndex) ? 1.0f : -1.0f;
state.applyRotationDelta(rotationBetween(handRotation * glm::vec3(-sign, 0.0f, 0.0f), forearmVector), true, PALM_PRIORITY);
_rig->applyJointRotationDelta(jointIndex,
rotationBetween(handRotation * glm::vec3(-sign, 0.0f, 0.0f), forearmVector),
true, PALM_PRIORITY);
}
void SkeletonModel::applyPalmData(int jointIndex, PalmData& palm) {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
if (jointIndex == -1 || jointIndex >= _rig->getJointStateCount()) {
return;
}
const FBXGeometry& geometry = _geometry->getFBXGeometry();
@ -261,43 +267,40 @@ void SkeletonModel::applyPalmData(int jointIndex, PalmData& palm) {
glm::vec3 forearm = palmRotation * glm::vec3(sign * forearmLength, 0.0f, 0.0f);
setJointPosition(parentJointIndex, palmPosition + forearm,
glm::quat(), false, -1, false, glm::vec3(0.0f, -1.0f, 0.0f), PALM_PRIORITY);
JointState& parentState = _jointStates[parentJointIndex];
parentState.setRotationInBindFrame(palmRotation, PALM_PRIORITY);
_rig->setJointRotationInBindFrame(parentJointIndex, palmRotation, PALM_PRIORITY);
// lock hand to forearm by slamming its rotation (in parent-frame) to identity
_jointStates[jointIndex].setRotationInConstrainedFrame(glm::quat(), PALM_PRIORITY);
_rig->setJointRotationInConstrainedFrame(jointIndex, glm::quat(), PALM_PRIORITY);
} else {
inverseKinematics(jointIndex, palmPosition, palmRotation, PALM_PRIORITY);
}
}
void SkeletonModel::updateJointState(int index) {
if (index < 0 && index >= _jointStates.size()) {
return; // bail
}
JointState& state = _jointStates[index];
const FBXJoint& joint = state.getFBXJoint();
if (joint.parentIndex >= 0 && joint.parentIndex < _jointStates.size()) {
const JointState& parentState = _jointStates.at(joint.parentIndex);
const FBXGeometry& geometry = _geometry->getFBXGeometry();
glm::mat4 parentTransform = glm::scale(_scale) * glm::translate(_offset) * geometry.offset;
const JointState joint = _rig->getJointState(index);
if (joint.getParentIndex() >= 0 && joint.getParentIndex() < _rig->getJointStateCount()) {
const JointState parentState = _rig->getJointState(joint.getParentIndex());
if (index == geometry.leanJointIndex) {
maybeUpdateLeanRotation(parentState, state);
maybeUpdateLeanRotation(parentState, index);
} else if (index == geometry.neckJointIndex) {
maybeUpdateNeckRotation(parentState, joint, state);
maybeUpdateNeckRotation(parentState, joint.getFBXJoint(), index);
} else if (index == geometry.leftEyeJointIndex || index == geometry.rightEyeJointIndex) {
maybeUpdateEyeRotation(parentState, joint, state);
maybeUpdateEyeRotation(parentState, joint.getFBXJoint(), index);
}
}
Model::updateJointState(index);
_rig->updateJointState(index, parentTransform);
if (index == _geometry->getFBXGeometry().rootJointIndex) {
state.clearTransformTranslation();
_rig->clearJointTransformTranslation(index);
}
}
void SkeletonModel::maybeUpdateLeanRotation(const JointState& parentState, JointState& state) {
void SkeletonModel::maybeUpdateLeanRotation(const JointState& parentState, int index) {
if (!_owningAvatar->isMyAvatar()) {
return;
}
@ -305,24 +308,24 @@ void SkeletonModel::maybeUpdateLeanRotation(const JointState& parentState, Joint
glm::vec3 xAxis(1.0f, 0.0f, 0.0f);
glm::vec3 yAxis(0.0f, 1.0f, 0.0f);
glm::vec3 zAxis(0.0f, 0.0f, 1.0f);
glm::quat inverse = glm::inverse(parentState.getRotation() * state.getDefaultRotationInParentFrame());
state.setRotationInConstrainedFrame(
glm::quat inverse = glm::inverse(parentState.getRotation() * _rig->getJointDefaultRotationInParentFrame(index));
_rig->setJointRotationInConstrainedFrame(index,
glm::angleAxis(- RADIANS_PER_DEGREE * _owningAvatar->getHead()->getFinalLeanSideways(), inverse * zAxis)
* glm::angleAxis(- RADIANS_PER_DEGREE * _owningAvatar->getHead()->getFinalLeanForward(), inverse * xAxis)
* glm::angleAxis(RADIANS_PER_DEGREE * _owningAvatar->getHead()->getTorsoTwist(), inverse * yAxis)
* state.getFBXJoint().rotation, LEAN_PRIORITY);
* _rig->getJointState(index).getFBXJoint().rotation, LEAN_PRIORITY);
}
void SkeletonModel::maybeUpdateNeckRotation(const JointState& parentState, const FBXJoint& joint, JointState& state) {
_owningAvatar->getHead()->getFaceModel().maybeUpdateNeckRotation(parentState, joint, state);
void SkeletonModel::maybeUpdateNeckRotation(const JointState& parentState, const FBXJoint& joint, int index) {
_owningAvatar->getHead()->getFaceModel().maybeUpdateNeckRotation(parentState, joint, index);
}
void SkeletonModel::maybeUpdateEyeRotation(const JointState& parentState, const FBXJoint& joint, JointState& state) {
_owningAvatar->getHead()->getFaceModel().maybeUpdateEyeRotation(this, parentState, joint, state);
void SkeletonModel::maybeUpdateEyeRotation(const JointState& parentState, const FBXJoint& joint, int index) {
_owningAvatar->getHead()->getFaceModel().maybeUpdateEyeRotation(this, parentState, joint, index);
}
void SkeletonModel::renderJointConstraints(gpu::Batch& batch, int jointIndex) {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
if (jointIndex == -1 || jointIndex >= _rig->getJointStateCount()) {
return;
}
const FBXGeometry& geometry = _geometry->getFBXGeometry();
@ -331,9 +334,11 @@ void SkeletonModel::renderJointConstraints(gpu::Batch& batch, int jointIndex) {
batch._glLineWidth(3.0f);
do {
const FBXJoint& joint = geometry.joints.at(jointIndex);
const JointState& jointState = _jointStates.at(jointIndex);
const JointState& jointState = _rig->getJointState(jointIndex);
glm::vec3 position = _rotation * jointState.getPosition() + _translation;
glm::quat parentRotation = (joint.parentIndex == -1) ? _rotation : _rotation * _jointStates.at(joint.parentIndex).getRotation();
glm::quat parentRotation = (joint.parentIndex == -1) ?
_rotation :
_rotation * _rig->getJointState(joint.parentIndex).getRotation();
float fanScale = directionSize * 0.75f;
Transform transform = Transform();
@ -464,14 +469,11 @@ void SkeletonModel::setHandPosition(int jointIndex, const glm::vec3& position, c
glm::vec3 forwardVector(rightHand ? -1.0f : 1.0f, 0.0f, 0.0f);
glm::quat shoulderRotation = rotationBetween(forwardVector, elbowPosition - shoulderPosition);
JointState& shoulderState = _jointStates[shoulderJointIndex];
shoulderState.setRotationInBindFrame(shoulderRotation, PALM_PRIORITY);
JointState& elbowState = _jointStates[elbowJointIndex];
elbowState.setRotationInBindFrame(rotationBetween(shoulderRotation * forwardVector, wristPosition - elbowPosition) * shoulderRotation, PALM_PRIORITY);
JointState& handState = _jointStates[jointIndex];
handState.setRotationInBindFrame(rotation, PALM_PRIORITY);
_rig->setJointRotationInBindFrame(shoulderJointIndex, shoulderRotation, PALM_PRIORITY);
_rig->setJointRotationInBindFrame(elbowJointIndex,
rotationBetween(shoulderRotation * forwardVector, wristPosition - elbowPosition) *
shoulderRotation, PALM_PRIORITY);
_rig->setJointRotationInBindFrame(jointIndex, rotation, PALM_PRIORITY);
}
bool SkeletonModel::getLeftHandPosition(glm::vec3& position) const {
@ -526,7 +528,7 @@ bool SkeletonModel::getNeckParentRotationFromDefaultOrientation(glm::quat& neckP
glm::quat worldFrameRotation;
bool success = getJointRotationInWorldFrame(parentIndex, worldFrameRotation);
if (success) {
neckParentRotation = worldFrameRotation * _jointStates[parentIndex].getFBXJoint().inverseDefaultRotation;
neckParentRotation = worldFrameRotation * _rig->getJointState(parentIndex).getFBXJoint().inverseDefaultRotation;
}
return success;
}
@ -636,7 +638,7 @@ float VERY_BIG_MASS = 1.0e6f;
// virtual
void SkeletonModel::buildShapes() {
if (_geometry == NULL || _jointStates.isEmpty()) {
if (_geometry == NULL || _rig->jointStatesEmpty()) {
return;
}
@ -647,9 +649,8 @@ void SkeletonModel::buildShapes() {
}
float uniformScale = extractUniformScale(_scale);
const int numStates = _jointStates.size();
for (int i = 0; i < numStates; i++) {
JointState& state = _jointStates[i];
for (int i = 0; i < _rig->getJointStateCount(); i++) {
const JointState& state = _rig->getJointState(i);
const FBXJoint& joint = state.getFBXJoint();
float radius = uniformScale * joint.boneRadius;
float halfHeight = 0.5f * uniformScale * joint.distanceToParent;
@ -683,7 +684,7 @@ void SkeletonModel::buildShapes() {
void SkeletonModel::computeBoundingShape(const FBXGeometry& geometry) {
// compute default joint transforms
int numStates = _jointStates.size();
int numStates = _rig->getJointStateCount();
assert(numStates == _shapes.size());
QVector<glm::mat4> transforms;
transforms.fill(glm::mat4(), numStates);
@ -694,11 +695,11 @@ void SkeletonModel::computeBoundingShape(const FBXGeometry& geometry) {
totalExtents.addPoint(glm::vec3(0.0f));
for (int i = 0; i < numStates; i++) {
// compute the default transform of this joint
JointState& state = _jointStates[i];
const JointState& state = _rig->getJointState(i);
const FBXJoint& joint = state.getFBXJoint();
int parentIndex = joint.parentIndex;
if (parentIndex == -1) {
transforms[i] = _jointStates[i].getTransform();
transforms[i] = _rig->getJointTransform(i);
} else {
glm::quat modifiedRotation = joint.preRotation * joint.rotation * joint.postRotation;
transforms[i] = transforms[parentIndex] * glm::translate(joint.translation)
@ -748,7 +749,7 @@ void SkeletonModel::computeBoundingShape(const FBXGeometry& geometry) {
_boundingShape.setRadius(capsuleRadius);
_boundingShape.setHalfHeight(0.5f * diagonal.y - capsuleRadius);
glm::vec3 rootPosition = _jointStates[geometry.rootJointIndex].getPosition();
glm::vec3 rootPosition = _rig->getJointState(geometry.rootJointIndex).getPosition();
_boundingShapeLocalOffset = 0.5f * (totalExtents.maximum + totalExtents.minimum) - rootPosition;
_boundingRadius = 0.5f * glm::length(diagonal);
}
@ -853,7 +854,7 @@ void SkeletonModel::cauterizeHead() {
if (isActive()) {
const FBXGeometry& geometry = _geometry->getFBXGeometry();
const int neckJointIndex = geometry.neckJointIndex;
if (neckJointIndex > 0 && neckJointIndex < _jointStates.size()) {
if (neckJointIndex > 0 && neckJointIndex < _rig->getJointStateCount()) {
// lazy init of headBones
if (_headBones.size() == 0) {
@ -861,13 +862,13 @@ void SkeletonModel::cauterizeHead() {
}
// preserve the translation for the neck
glm::vec4 trans = _jointStates[neckJointIndex].getTransform()[3];
// glm::vec4 trans = _jointStates[neckJointIndex].getTransform()[3];
glm::vec4 trans = _rig->getJointTransform(neckJointIndex)[3];
glm::vec4 zero(0, 0, 0, 0);
for (const int &i : _headBones) {
JointState& joint = _jointStates[i];
glm::mat4 newXform(zero, zero, zero, trans);
joint.setTransform(newXform);
joint.setVisibleTransform(newXform);
_rig->setJointTransform(i, newXform);
_rig->setJointVisibleTransform(i, newXform);
}
}
}

View file

@ -134,9 +134,9 @@ protected:
/// Updates the state of the joint at the specified index.
virtual void updateJointState(int index);
void maybeUpdateLeanRotation(const JointState& parentState, JointState& state);
void maybeUpdateNeckRotation(const JointState& parentState, const FBXJoint& joint, JointState& state);
void maybeUpdateEyeRotation(const JointState& parentState, const FBXJoint& joint, JointState& state);
void maybeUpdateLeanRotation(const JointState& parentState, int index);
void maybeUpdateNeckRotation(const JointState& parentState, const FBXJoint& joint, int index);
void maybeUpdateEyeRotation(const JointState& parentState, const FBXJoint& joint, int index);
void cauterizeHead();
void initHeadBones();

View file

@ -14,7 +14,7 @@
#include "Application.h"
ModelOverlay::ModelOverlay()
: _model(),
: _model(nullptr),
_modelTextures(QVariantMap()),
_updateModel(false)
{
@ -24,7 +24,7 @@ ModelOverlay::ModelOverlay()
ModelOverlay::ModelOverlay(const ModelOverlay* modelOverlay) :
Volume3DOverlay(modelOverlay),
_model(),
_model(nullptr),
_modelTextures(QVariantMap()),
_url(modelOverlay->_url),
_updateModel(false)

View file

@ -159,12 +159,12 @@ void AnimationHandle::applyFrame(float frameIndex) {
const FBXAnimationFrame& floorFrame = animationGeometry.animationFrames.at((int)glm::floor(frameIndex) % frameCount);
const FBXAnimationFrame& ceilFrame = animationGeometry.animationFrames.at((int)glm::ceil(frameIndex) % frameCount);
float frameFraction = glm::fract(frameIndex);
QVector<JointState> jointStates = _rig->getJointStates();
assert(_rig->getJointStateCount() >= _jointMappings.size());
for (int i = 0; i < _jointMappings.size(); i++) {
int mapping = _jointMappings.at(i);
if (mapping != -1) {
JointState& state = jointStates[mapping];
state.setRotationInConstrainedFrame(safeMix(floorFrame.rotations.at(i),
_rig->setJointRotationInConstrainedFrame(mapping,
safeMix(floorFrame.rotations.at(i),
ceilFrame.rotations.at(i),
frameFraction),
_priority);
@ -176,10 +176,9 @@ void AnimationHandle::replaceMatchingPriorities(float newPriority) {
for (int i = 0; i < _jointMappings.size(); i++) {
int mapping = _jointMappings.at(i);
if (mapping != -1) {
QVector<JointState> jointStates = _rig->getJointStates();
JointState& state = jointStates[mapping];
JointState state = _rig->getJointState(mapping);
if (_priority == state._animationPriority) {
state._animationPriority = newPriority;
_rig->setJointAnimatinoPriority(mapping, newPriority);
}
}
}
@ -189,9 +188,8 @@ void AnimationHandle::restoreJoints() {
for (int i = 0; i < _jointMappings.size(); i++) {
int mapping = _jointMappings.at(i);
if (mapping != -1) {
QVector<JointState> jointStates = _rig->getJointStates();
JointState& state = jointStates[mapping];
state.restoreRotation(1.0f, state._animationPriority);
JointState state = _rig->getJointState(mapping);
_rig->restoreJointRotation(mapping, 1.0f, state._animationPriority);
}
}
}

View file

@ -0,0 +1,51 @@
//
// AvatarRig.cpp
// libraries/animation/src/
//
// Created by SethAlves on 2015-7-22.
// Copyright 2015 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "AvatarRig.h"
/// Updates the state of the joint at the specified index.
void AvatarRig::updateJointState(int index, glm::mat4 parentTransform) {
if (index < 0 && index >= _jointStates.size()) {
return; // bail
}
JointState& state = _jointStates[index];
const FBXJoint& joint = state.getFBXJoint();
// compute model transforms
int parentIndex = joint.parentIndex;
if (parentIndex == -1) {
state.computeTransform(parentTransform);
} else {
// guard against out-of-bounds access to _jointStates
if (joint.parentIndex >= 0 && joint.parentIndex < _jointStates.size()) {
const JointState& parentState = _jointStates.at(parentIndex);
state.computeTransform(parentState.getTransform(), parentState.getTransformChanged());
}
}
}
void AvatarRig::updateFaceJointState(int index, glm::mat4 parentTransform) {
JointState& state = _jointStates[index];
const FBXJoint& joint = state.getFBXJoint();
// compute model transforms
int parentIndex = joint.parentIndex;
if (parentIndex == -1) {
state.computeTransform(parentTransform);
} else {
// guard against out-of-bounds access to _jointStates
if (joint.parentIndex >= 0 && joint.parentIndex < _jointStates.size()) {
const JointState& parentState = _jointStates.at(parentIndex);
state.computeTransform(parentState.getTransform(), parentState.getTransformChanged());
}
}
}

View file

@ -0,0 +1,28 @@
//
// AvatarRig.h
// libraries/animation/src/
//
// Created by SethAlves on 2015-7-22.
// Copyright 2015 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#ifndef hifi_AvatarRig_h
#define hifi_AvatarRig_h
#include <QObject>
#include "Rig.h"
class AvatarRig : public Rig {
Q_OBJECT
public:
~AvatarRig() {}
virtual void updateJointState(int index, glm::mat4 parentTransform);
virtual void updateFaceJointState(int index, glm::mat4 parentTransform);
};
#endif // hifi_AvatarRig_h

View file

@ -0,0 +1,30 @@
//
// EntityRig.cpp
// libraries/animation/src/
//
// Created by SethAlves on 2015-7-22.
// Copyright 2015 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "EntityRig.h"
/// Updates the state of the joint at the specified index.
void EntityRig::updateJointState(int index, glm::mat4 parentTransform) {
JointState& state = _jointStates[index];
const FBXJoint& joint = state.getFBXJoint();
// compute model transforms
int parentIndex = joint.parentIndex;
if (parentIndex == -1) {
state.computeTransform(parentTransform);
} else {
// guard against out-of-bounds access to _jointStates
if (joint.parentIndex >= 0 && joint.parentIndex < _jointStates.size()) {
const JointState& parentState = _jointStates.at(parentIndex);
state.computeTransform(parentState.getTransform(), parentState.getTransformChanged());
}
}
}

View file

@ -0,0 +1,28 @@
//
// EntityRig.h
// libraries/animation/src/
//
// Created by SethAlves on 2015-7-22.
// Copyright 2015 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#ifndef hifi_EntityRig_h
#define hifi_EntityRig_h
#include <QObject>
#include "Rig.h"
class EntityRig : public Rig {
Q_OBJECT
public:
~EntityRig() {}
virtual void updateJointState(int index, glm::mat4 parentTransform);
virtual void updateFaceJointState(int index, glm::mat4 parentTransform) { }
};
#endif // hifi_EntityRig_h

View file

@ -13,11 +13,7 @@
#include "Rig.h"
bool Rig::removeRunningAnimation(AnimationHandlePointer animationHandle) {
return _runningAnimations.removeOne(animationHandle);
}
static void insertSorted(QList<AnimationHandlePointer>& handles, const AnimationHandlePointer& handle) {
void insertSorted(QList<AnimationHandlePointer>& handles, const AnimationHandlePointer& handle) {
for (QList<AnimationHandlePointer>::iterator it = handles.begin(); it != handles.end(); it++) {
if (handle->getPriority() > (*it)->getPriority()) {
handles.insert(it, handle);
@ -27,6 +23,16 @@ static void insertSorted(QList<AnimationHandlePointer>& handles, const Animation
handles.append(handle);
}
AnimationHandlePointer Rig::createAnimationHandle() {
AnimationHandlePointer handle(new AnimationHandle(getRigPointer()));
_animationHandles.insert(handle);
return handle;
}
bool Rig::removeRunningAnimation(AnimationHandlePointer animationHandle) {
return _runningAnimations.removeOne(animationHandle);
}
void Rig::addRunningAnimation(AnimationHandlePointer animationHandle) {
insertSorted(_runningAnimations, animationHandle);
}
@ -35,9 +41,9 @@ bool Rig::isRunningAnimation(AnimationHandlePointer animationHandle) {
return _runningAnimations.contains(animationHandle);
}
float Rig::initJointStates(glm::vec3 scale, glm::vec3 offset, QVector<JointState> states) {
float Rig::initJointStates(QVector<JointState> states, glm::mat4 parentTransform) {
_jointStates = states;
initJointTransforms(scale, offset);
initJointTransforms(parentTransform);
int numStates = _jointStates.size();
float radius = 0.0f;
@ -52,11 +58,11 @@ float Rig::initJointStates(glm::vec3 scale, glm::vec3 offset, QVector<JointState
_jointStates[i].slaveVisibleTransform();
}
// XXX update AnimationHandles from here?
return radius;
}
void Rig::initJointTransforms(glm::vec3 scale, glm::vec3 offset) {
void Rig::initJointTransforms(glm::mat4 parentTransform) {
// compute model transforms
int numStates = _jointStates.size();
for (int i = 0; i < numStates; ++i) {
@ -64,9 +70,6 @@ void Rig::initJointTransforms(glm::vec3 scale, glm::vec3 offset) {
const FBXJoint& joint = state.getFBXJoint();
int parentIndex = joint.parentIndex;
if (parentIndex == -1) {
// const FBXGeometry& geometry = _geometry->getFBXGeometry();
// NOTE: in practice geometry.offset has a non-unity scale (rather than a translation)
glm::mat4 parentTransform = glm::scale(scale) * glm::translate(offset); // * geometry.offset; XXX
state.initTransform(parentTransform);
} else {
const JointState& parentState = _jointStates.at(parentIndex);
@ -75,19 +78,30 @@ void Rig::initJointTransforms(glm::vec3 scale, glm::vec3 offset) {
}
}
void Rig::resetJoints() {
void Rig::clearJointTransformTranslation(int jointIndex) {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return;
}
_jointStates[jointIndex].clearTransformTranslation();
}
void Rig::reset(const QVector<FBXJoint>& fbxJoints) {
if (_jointStates.isEmpty()) {
return;
}
// const FBXGeometry& geometry = _geometry->getFBXGeometry();
for (int i = 0; i < _jointStates.size(); i++) {
const FBXJoint& fbxJoint = _jointStates[i].getFBXJoint();
_jointStates[i].setRotationInConstrainedFrame(fbxJoint.rotation, 0.0f);
_jointStates[i].setRotationInConstrainedFrame(fbxJoints.at(i).rotation, 0.0f);
}
}
bool Rig::getJointState(int index, glm::quat& rotation) const {
JointState Rig::getJointState(int jointIndex) const {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return JointState();
}
return _jointStates[jointIndex];
}
bool Rig::getJointStateRotation(int index, glm::quat& rotation) const {
if (index == -1 || index >= _jointStates.size()) {
return false;
}
@ -105,12 +119,6 @@ bool Rig::getVisibleJointState(int index, glm::quat& rotation) const {
return !state.rotationIsDefault(rotation);
}
void Rig::updateVisibleJointStates() {
for (int i = 0; i < _jointStates.size(); i++) {
_jointStates[i].slaveVisibleTransform();
}
}
void Rig::clearJointState(int index) {
if (index != -1 && index < _jointStates.size()) {
JointState& state = _jointStates[index];
@ -122,6 +130,18 @@ void Rig::clearJointStates() {
_jointStates.clear();
}
void Rig::clearJointAnimationPriority(int index) {
if (index != -1 && index < _jointStates.size()) {
_jointStates[index]._animationPriority = 0.0f;
}
}
void Rig::setJointAnimatinoPriority(int index, float newPriority) {
if (index != -1 && index < _jointStates.size()) {
_jointStates[index]._animationPriority = newPriority;
}
}
void Rig::setJointState(int index, bool valid, const glm::quat& rotation, float priority) {
if (index != -1 && index < _jointStates.size()) {
JointState& state = _jointStates[index];
@ -133,99 +153,103 @@ void Rig::setJointState(int index, bool valid, const glm::quat& rotation, float
}
}
void Rig::clearJointAnimationPriority(int index) {
void Rig::restoreJointRotation(int index, float fraction, float priority) {
if (index != -1 && index < _jointStates.size()) {
_jointStates[index]._animationPriority = 0.0f;
_jointStates[index].restoreRotation(fraction, priority);
}
}
AnimationHandlePointer Rig::createAnimationHandle() {
AnimationHandlePointer handle(new AnimationHandle(getRigPointer()));
_animationHandles.insert(handle);
return handle;
}
bool Rig::getJointStateAtIndex(int jointIndex, JointState& jointState) const {
bool Rig::getJointPositionInWorldFrame(int jointIndex, glm::vec3& position,
glm::vec3 translation, glm::quat rotation) const {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return false;
}
jointState = _jointStates[jointIndex];
// position is in world-frame
position = translation + rotation * _jointStates[jointIndex].getPosition();
return true;
}
void Rig::updateJointStates(glm::mat4 parentTransform) {
bool Rig::getJointPosition(int jointIndex, glm::vec3& position) const {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return false;
}
// position is in model-frame
position = extractTranslation(_jointStates[jointIndex].getTransform());
return true;
}
bool Rig::getJointRotationInWorldFrame(int jointIndex, glm::quat& result, const glm::quat& rotation) const {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return false;
}
result = rotation * _jointStates[jointIndex].getRotation();
return true;
}
bool Rig::getJointRotation(int jointIndex, glm::quat& rotation) const {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return false;
}
rotation = _jointStates[jointIndex].getRotation();
return true;
}
bool Rig::getJointCombinedRotation(int jointIndex, glm::quat& result, const glm::quat& rotation) const {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return false;
}
result = rotation * _jointStates[jointIndex].getRotation();
return true;
}
bool Rig::getVisibleJointPositionInWorldFrame(int jointIndex, glm::vec3& position,
glm::vec3 translation, glm::quat rotation) const {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return false;
}
// position is in world-frame
position = translation + rotation * _jointStates[jointIndex].getVisiblePosition();
return true;
}
bool Rig::getVisibleJointRotationInWorldFrame(int jointIndex, glm::quat& result, glm::quat rotation) const {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return false;
}
result = rotation * _jointStates[jointIndex].getVisibleRotation();
return true;
}
glm::mat4 Rig::getJointTransform(int jointIndex) const {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return glm::mat4();
}
return _jointStates[jointIndex].getTransform();
}
glm::mat4 Rig::getJointVisibleTransform(int jointIndex) const {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return glm::mat4();
}
return _jointStates[jointIndex].getVisibleTransform();
}
void Rig::simulateInternal(glm::mat4 parentTransform) {
for (int i = 0; i < _jointStates.size(); i++) {
updateJointState(i, parentTransform);
}
}
void Rig::updateJointState(int index, glm::mat4 parentTransform) {
JointState& state = _jointStates[index];
const FBXJoint& joint = state.getFBXJoint();
// compute model transforms
int parentIndex = joint.parentIndex;
if (parentIndex == -1) {
// glm::mat4 parentTransform = glm::scale(scale) * glm::translate(offset) * geometryOffset;
state.computeTransform(parentTransform);
} else {
// guard against out-of-bounds access to _jointStates
if (joint.parentIndex >= 0 && joint.parentIndex < _jointStates.size()) {
const JointState& parentState = _jointStates.at(parentIndex);
state.computeTransform(parentState.getTransform(), parentState.getTransformChanged());
}
}
}
void Rig::resetAllTransformsChanged() {
for (int i = 0; i < _jointStates.size(); i++) {
_jointStates[i].resetTransformChanged();
}
}
glm::quat Rig::setJointRotationInBindFrame(int jointIndex, const glm::quat& rotation, float priority, bool constrain) {
glm::quat endRotation;
if (jointIndex == -1 || _jointStates.isEmpty()) {
return endRotation;
}
JointState& state = _jointStates[jointIndex];
state.setRotationInBindFrame(rotation, priority, constrain);
endRotation = state.getRotationInBindFrame();
return endRotation;
}
glm::quat Rig::setJointRotationInConstrainedFrame(int jointIndex, glm::quat targetRotation, float priority, bool constrain) {
glm::quat endRotation;
if (jointIndex == -1 || _jointStates.isEmpty()) {
return endRotation;
}
JointState& state = _jointStates[jointIndex];
state.setRotationInConstrainedFrame(targetRotation, priority, constrain);
endRotation = state.getRotationInConstrainedFrame();
return endRotation;
}
void Rig::applyJointRotationDelta(int jointIndex, const glm::quat& delta, bool constrain, float priority) {
if (jointIndex == -1 || _jointStates.isEmpty()) {
return;
}
_jointStates[jointIndex].applyRotationDelta(delta, constrain, priority);
}
bool Rig::setJointPosition(int jointIndex, const glm::vec3& position, const glm::quat& rotation,
bool useRotation, int lastFreeIndex, bool allIntermediatesFree, const glm::vec3& alignment,
float priority, glm::mat4 parentTransform) {
bool Rig::setJointPosition(int jointIndex, const glm::vec3& position, const glm::quat& rotation, bool useRotation,
int lastFreeIndex, bool allIntermediatesFree, const glm::vec3& alignment, float priority,
const QVector<int>& freeLineage, glm::mat4 parentTransform) {
if (jointIndex == -1 || _jointStates.isEmpty()) {
return false;
}
// const FBXGeometry& geometry = _geometry->getFBXGeometry();
// const QVector<int>& freeLineage = geometry.joints.at(jointIndex).freeLineage;
const FBXJoint& fbxJoint = _jointStates[jointIndex].getFBXJoint();
const QVector<int>& freeLineage = fbxJoint.freeLineage;
if (freeLineage.isEmpty()) {
return false;
}
@ -304,19 +328,14 @@ bool Rig::setJointPosition(int jointIndex, const glm::vec3& position, const glm:
return true;
}
void Rig::inverseKinematics(int endIndex, glm::vec3 targetPosition,
const glm::quat& targetRotation, float priority, glm::mat4 parentTransform) {
void Rig::inverseKinematics(int endIndex, glm::vec3 targetPosition, const glm::quat& targetRotation, float priority,
const QVector<int>& freeLineage, glm::mat4 parentTransform) {
// NOTE: targetRotation is from bind- to model-frame
if (endIndex == -1 || _jointStates.isEmpty()) {
return;
}
// const FBXGeometry& geometry = _geometry->getFBXGeometry();
// const QVector<int>& freeLineage = geometry.joints.at(endIndex).freeLineage;
const FBXJoint& fbxJoint = _jointStates[endIndex].getFBXJoint();
const QVector<int>& freeLineage = fbxJoint.freeLineage;
if (freeLineage.isEmpty()) {
return;
}
@ -404,11 +423,11 @@ void Rig::inverseKinematics(int endIndex, glm::vec3 targetPosition,
}
// recompute transforms from the top down
glm::mat4 parentTransform = topParentTransform;
glm::mat4 currentParentTransform = topParentTransform;
for (int j = numFree - 1; j >= 0; --j) {
JointState& freeState = _jointStates[freeLineage.at(j)];
freeState.computeTransform(parentTransform);
parentTransform = freeState.getTransform();
freeState.computeTransform(currentParentTransform);
currentParentTransform = freeState.getTransform();
}
// measure our success
@ -420,14 +439,10 @@ void Rig::inverseKinematics(int endIndex, glm::vec3 targetPosition,
endState.setRotationInBindFrame(targetRotation, priority, true);
}
bool Rig::restoreJointPosition(int jointIndex, float fraction, float priority) {
bool Rig::restoreJointPosition(int jointIndex, float fraction, float priority, const QVector<int>& freeLineage) {
if (jointIndex == -1 || _jointStates.isEmpty()) {
return false;
}
// const FBXGeometry& geometry = _geometry->getFBXGeometry();
// const QVector<int>& freeLineage = geometry.joints.at(jointIndex).freeLineage;
const FBXJoint& fbxJoint = _jointStates[jointIndex].getFBXJoint();
const QVector<int>& freeLineage = fbxJoint.freeLineage;
foreach (int index, freeLineage) {
JointState& state = _jointStates[index];
@ -436,22 +451,78 @@ bool Rig::restoreJointPosition(int jointIndex, float fraction, float priority) {
return true;
}
float Rig::getLimbLength(int jointIndex, glm::vec3 scale) const {
float Rig::getLimbLength(int jointIndex, const QVector<int>& freeLineage,
const glm::vec3 scale, const QVector<FBXJoint>& fbxJoints) const {
if (jointIndex == -1 || _jointStates.isEmpty()) {
return 0.0f;
}
// const FBXGeometry& geometry = _geometry->getFBXGeometry();
// const QVector<int>& freeLineage = geometry.joints.at(jointIndex).freeLineage;
const FBXJoint& fbxJoint = _jointStates[jointIndex].getFBXJoint();
const QVector<int>& freeLineage = fbxJoint.freeLineage;
float length = 0.0f;
float lengthScale = (scale.x + scale.y + scale.z) / 3.0f;
for (int i = freeLineage.size() - 2; i >= 0; i--) {
int something = freeLineage.at(i);
const FBXJoint& fbxJointI = _jointStates[something].getFBXJoint();
length += fbxJointI.distanceToParent * lengthScale;
length += fbxJoints.at(freeLineage.at(i)).distanceToParent * lengthScale;
}
return length;
}
glm::quat Rig::setJointRotationInBindFrame(int jointIndex, const glm::quat& rotation, float priority, bool constrain) {
glm::quat endRotation;
if (jointIndex == -1 || _jointStates.isEmpty()) {
return endRotation;
}
JointState& state = _jointStates[jointIndex];
state.setRotationInBindFrame(rotation, priority, constrain);
endRotation = state.getRotationInBindFrame();
return endRotation;
}
glm::vec3 Rig::getJointDefaultTranslationInConstrainedFrame(int jointIndex) {
if (jointIndex == -1 || _jointStates.isEmpty()) {
return glm::vec3();
}
return _jointStates[jointIndex].getDefaultTranslationInConstrainedFrame();
}
glm::quat Rig::setJointRotationInConstrainedFrame(int jointIndex, glm::quat targetRotation, float priority, bool constrain) {
glm::quat endRotation;
if (jointIndex == -1 || _jointStates.isEmpty()) {
return endRotation;
}
JointState& state = _jointStates[jointIndex];
state.setRotationInConstrainedFrame(targetRotation, priority, constrain);
endRotation = state.getRotationInConstrainedFrame();
return endRotation;
}
void Rig::updateVisibleJointStates() {
for (int i = 0; i < _jointStates.size(); i++) {
_jointStates[i].slaveVisibleTransform();
}
}
void Rig::setJointTransform(int jointIndex, glm::mat4 newTransform) {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return;
}
_jointStates[jointIndex].setTransform(newTransform);
}
void Rig::setJointVisibleTransform(int jointIndex, glm::mat4 newTransform) {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return;
}
_jointStates[jointIndex].setVisibleTransform(newTransform);
}
void Rig::applyJointRotationDelta(int jointIndex, const glm::quat& delta, bool constrain, float priority) {
if (jointIndex == -1 || _jointStates.isEmpty()) {
return;
}
_jointStates[jointIndex].applyRotationDelta(delta, constrain, priority);
}
glm::quat Rig::getJointDefaultRotationInParentFrame(int jointIndex) {
if (jointIndex == -1 || _jointStates.isEmpty()) {
return glm::quat();
}
return _jointStates[jointIndex].getDefaultRotationInParentFrame();
}

View file

@ -11,7 +11,7 @@
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
/* TBD:
- What is responsibilities of Animation/AnimationPointer/AnimationCache/AnimationDetails? Is there common/copied code (e.g., ScriptableAvatar::update)?
- What is responsibilities of Animation/AnimationPointer/AnimationCache/AnimationDetails? Is there common/copied code (e.g., ScriptableAvatar::update)?
- How do attachments interact with the physics of the attached entity? E.g., do hand joints need to reflect held object physics?
- Is there any current need (i.e., for initial campatability) to have multiple animations per role (e.g., idle) with the system choosing randomly?
@ -37,49 +37,69 @@ typedef std::shared_ptr<Rig> RigPointer;
class Rig : public QObject, public std::enable_shared_from_this<Rig> {
public:
virtual ~Rig() {}
RigPointer getRigPointer() { return shared_from_this(); }
AnimationHandlePointer createAnimationHandle();
bool removeRunningAnimation(AnimationHandlePointer animationHandle);
void addRunningAnimation(AnimationHandlePointer animationHandle);
bool isRunningAnimation(AnimationHandlePointer animationHandle);
const QList<AnimationHandlePointer>& getRunningAnimations() const { return _runningAnimations; }
float initJointStates(glm::vec3 scale, glm::vec3 offset, QVector<JointState> states);
void initJointTransforms(glm::vec3 scale, glm::vec3 offset);
void resetJoints();
float initJointStates(QVector<JointState> states, glm::mat4 parentTransform);
bool jointStatesEmpty() { return _jointStates.isEmpty(); };
int jointStateCount() const { return _jointStates.size(); }
bool getJointStateAtIndex(int jointIndex, JointState& jointState) const;
int getJointStateCount() const { return _jointStates.size(); }
void updateJointStates(glm::mat4 parentTransform);
void updateJointState(int index, glm::mat4 parentTransform);
void resetAllTransformsChanged();
bool getJointState(int index, glm::quat& rotation) const;
void initJointTransforms(glm::mat4 parentTransform);
void clearJointTransformTranslation(int jointIndex);
void reset(const QVector<FBXJoint>& fbxJoints);
bool getJointStateRotation(int index, glm::quat& rotation) const;
void applyJointRotationDelta(int jointIndex, const glm::quat& delta, bool constrain, float priority);
JointState getJointState(int jointIndex) const;
bool getVisibleJointState(int index, glm::quat& rotation) const;
void updateVisibleJointStates();
void clearJointState(int index);
void clearJointStates();
void setJointState(int index, bool valid, const glm::quat& rotation, float priority);
void clearJointAnimationPriority(int index);
void setJointAnimatinoPriority(int index, float newPriority);
void setJointState(int index, bool valid, const glm::quat& rotation, float priority);
void restoreJointRotation(int index, float fraction, float priority);
bool getJointPositionInWorldFrame(int jointIndex, glm::vec3& position,
glm::vec3 translation, glm::quat rotation) const;
bool getJointPosition(int jointIndex, glm::vec3& position) const;
bool getJointRotationInWorldFrame(int jointIndex, glm::quat& result, const glm::quat& rotation) const;
bool getJointRotation(int jointIndex, glm::quat& rotation) const;
bool getJointCombinedRotation(int jointIndex, glm::quat& result, const glm::quat& rotation) const;
bool getVisibleJointPositionInWorldFrame(int jointIndex, glm::vec3& position,
glm::vec3 translation, glm::quat rotation) const;
bool getVisibleJointRotationInWorldFrame(int jointIndex, glm::quat& result, glm::quat rotation) const;
glm::mat4 getJointTransform(int jointIndex) const;
void setJointTransform(int jointIndex, glm::mat4 newTransform);
glm::mat4 getJointVisibleTransform(int jointIndex) const;
void setJointVisibleTransform(int jointIndex, glm::mat4 newTransform);
void simulateInternal(glm::mat4 parentTransform);
bool setJointPosition(int jointIndex, const glm::vec3& position, const glm::quat& rotation, bool useRotation,
int lastFreeIndex, bool allIntermediatesFree, const glm::vec3& alignment, float priority,
const QVector<int>& freeLineage, glm::mat4 parentTransform);
void inverseKinematics(int endIndex, glm::vec3 targetPosition, const glm::quat& targetRotation, float priority,
const QVector<int>& freeLineage, glm::mat4 parentTransform);
bool restoreJointPosition(int jointIndex, float fraction, float priority, const QVector<int>& freeLineage);
float getLimbLength(int jointIndex, const QVector<int>& freeLineage,
const glm::vec3 scale, const QVector<FBXJoint>& fbxJoints) const;
glm::quat setJointRotationInBindFrame(int jointIndex, const glm::quat& rotation, float priority, bool constrain = false);
glm::vec3 getJointDefaultTranslationInConstrainedFrame(int jointIndex);
glm::quat setJointRotationInConstrainedFrame(int jointIndex, glm::quat targetRotation,
float priority, bool constrain = false);
void applyJointRotationDelta(int jointIndex, const glm::quat& delta, bool constrain, float priority);
glm::quat getJointDefaultRotationInParentFrame(int jointIndex);
void updateVisibleJointStates();
QVector<JointState> getJointStates() { return _jointStates; }
virtual void updateJointState(int index, glm::mat4 parentTransform) = 0;
virtual void updateFaceJointState(int index, glm::mat4 parentTransform) = 0;
AnimationHandlePointer createAnimationHandle();
bool setJointPosition(int jointIndex, const glm::vec3& position, const glm::quat& rotation,
bool useRotation, int lastFreeIndex, bool allIntermediatesFree, const glm::vec3& alignment,
float priority, glm::mat4 parentTransform);
void inverseKinematics(int endIndex, glm::vec3 targetPosition,
const glm::quat& targetRotation, float priority, glm::mat4 parentTransform);
bool restoreJointPosition(int jointIndex, float fraction, float priority);
float getLimbLength(int jointIndex, glm::vec3 scale) const;
protected:
protected:
QVector<JointState> _jointStates;
QSet<AnimationHandlePointer> _animationHandles;

View file

@ -40,6 +40,7 @@
#include "RenderablePolyVoxEntityItem.h"
#include "EntitiesRendererLogging.h"
#include "AddressManager.h"
#include "EntityRig.h"
EntityTreeRenderer::EntityTreeRenderer(bool wantScripts, AbstractViewStateInterface* viewState,
AbstractScriptingServicesInterface* scriptingServices) :
@ -695,7 +696,7 @@ Model* EntityTreeRenderer::allocateModel(const QString& url, const QString& coll
return model;
}
model = new Model();
model = new Model(std::make_shared<EntityRig>());
model->init();
model->setURL(QUrl(url));
model->setCollisionModelURL(QUrl(collisionUrl));
@ -728,7 +729,7 @@ Model* EntityTreeRenderer::updateModel(Model* original, const QString& newUrl, c
}
// create the model and correctly initialize it with the new url
model = new Model();
model = new Model(std::make_shared<EntityRig>());
model->init();
model->setURL(QUrl(newUrl));
model->setCollisionModelURL(QUrl(collisionUrl));

View file

@ -67,7 +67,7 @@ int RenderableZoneEntityItem::readEntitySubclassDataFromBuffer(const unsigned ch
}
Model* RenderableZoneEntityItem::getModel() {
Model* model = new Model();
Model* model = new Model(nullptr);
model->setIsWireframe(true);
model->init();
return model;

View file

@ -60,7 +60,7 @@ static int weakNetworkGeometryPointerTypeId = qRegisterMetaType<QWeakPointer<Net
static int vec3VectorTypeId = qRegisterMetaType<QVector<glm::vec3> >();
float Model::FAKE_DIMENSION_PLACEHOLDER = -1.0f;
Model::Model(QObject* parent, RigPointer rig) :
Model::Model(RigPointer rig, QObject* parent) :
QObject(parent),
_scale(1.0f, 1.0f, 1.0f),
_scaleToFit(false),
@ -252,22 +252,9 @@ QVector<JointState> Model::createJointStates(const FBXGeometry& geometry) {
};
void Model::initJointTransforms() {
// compute model transforms
int numStates = _jointStates.size();
for (int i = 0; i < numStates; ++i) {
JointState& state = _jointStates[i];
const FBXJoint& joint = state.getFBXJoint();
int parentIndex = joint.parentIndex;
if (parentIndex == -1) {
const FBXGeometry& geometry = _geometry->getFBXGeometry();
// NOTE: in practice geometry.offset has a non-unity scale (rather than a translation)
glm::mat4 parentTransform = glm::scale(_scale) * glm::translate(_offset) * geometry.offset;
state.initTransform(parentTransform);
} else {
const JointState& parentState = _jointStates.at(parentIndex);
state.initTransform(parentState.getTransform());
}
}
_rig->initJointTransforms(parentTransform);
}
void Model::init() {
@ -396,14 +383,8 @@ void Model::init() {
}
void Model::reset() {
if (_jointStates.isEmpty()) {
return;
}
const FBXGeometry& geometry = _geometry->getFBXGeometry();
for (int i = 0; i < _jointStates.size(); i++) {
_jointStates[i].setRotationInConstrainedFrame(geometry.joints.at(i).rotation, 0.0f);
}
_rig->reset(geometry.joints);
_meshGroupsKnown = false;
_readyWhenAdded = false; // in case any of our users are using scenes
invalidCalculatedMeshBoxes(); // if we have to reload, we need to assume our mesh boxes are all invalid
@ -436,7 +417,8 @@ bool Model::updateGeometry() {
const FBXGeometry& newGeometry = geometry->getFBXGeometry();
QVector<JointState> newJointStates = createJointStates(newGeometry);
if (! _jointStates.isEmpty()) {
if (! _rig->jointStatesEmpty()) {
// copy the existing joint states
const FBXGeometry& oldGeometry = _geometry->getFBXGeometry();
for (QHash<QString, int>::const_iterator it = oldGeometry.jointIndices.constBegin();
@ -444,10 +426,11 @@ bool Model::updateGeometry() {
int oldIndex = it.value() - 1;
int newIndex = newGeometry.getJointIndex(it.key());
if (newIndex != -1) {
newJointStates[newIndex].copyState(_jointStates[oldIndex]);
newJointStates[newIndex].copyState(_rig->getJointState(oldIndex));
}
}
}
deleteGeometry();
_dilatedTextures.clear();
setGeometry(geometry);
@ -457,7 +440,7 @@ bool Model::updateGeometry() {
invalidCalculatedMeshBoxes(); // if we have to reload, we need to assume our mesh boxes are all invalid
initJointStates(newJointStates);
needToRebuild = true;
} else if (_jointStates.isEmpty()) {
} else if (_rig->jointStatesEmpty()) {
const FBXGeometry& fbxGeometry = geometry->getFBXGeometry();
if (fbxGeometry.joints.size() > 0) {
initJointStates(createJointStates(fbxGeometry));
@ -493,22 +476,9 @@ bool Model::updateGeometry() {
// virtual
void Model::initJointStates(QVector<JointState> states) {
_jointStates = states;
initJointTransforms();
int numStates = _jointStates.size();
float radius = 0.0f;
for (int i = 0; i < numStates; ++i) {
float distance = glm::length(_jointStates[i].getPosition());
if (distance > radius) {
radius = distance;
}
_jointStates[i].buildConstraint();
}
for (int i = 0; i < _jointStates.size(); i++) {
_jointStates[i].slaveVisibleTransform();
}
_boundingRadius = radius;
const FBXGeometry& geometry = _geometry->getFBXGeometry();
glm::mat4 parentTransform = glm::scale(_scale) * glm::translate(_offset) * geometry.offset;
_boundingRadius = _rig->initJointStates(states, parentTransform);
}
bool Model::findRayIntersectionAgainstSubMeshes(const glm::vec3& origin, const glm::vec3& direction, float& distance,
@ -1070,51 +1040,24 @@ glm::vec3 Model::calculateScaledOffsetPoint(const glm::vec3& point) const {
return translatedPoint;
}
bool Model::getJointState(int index, glm::quat& rotation) const {
if (index == -1 || index >= _jointStates.size()) {
return false;
}
const JointState& state = _jointStates.at(index);
rotation = state.getRotationInConstrainedFrame();
return !state.rotationIsDefault(rotation);
return _rig->getJointStateRotation(index, rotation);
}
bool Model::getVisibleJointState(int index, glm::quat& rotation) const {
if (index == -1 || index >= _jointStates.size()) {
return false;
}
const JointState& state = _jointStates.at(index);
rotation = state.getVisibleRotationInConstrainedFrame();
return !state.rotationIsDefault(rotation);
return _rig->getVisibleJointState(index, rotation);
}
void Model::clearJointState(int index) {
if (index != -1 && index < _jointStates.size()) {
JointState& state = _jointStates[index];
state.setRotationInConstrainedFrame(glm::quat(), 0.0f);
}
_rig->clearJointState(index);
}
void Model::clearJointAnimationPriority(int index) {
if (_rig) {
_rig->clearJointAnimationPriority(index);
} else {
if (index != -1 && index < _jointStates.size()) {
_jointStates[index]._animationPriority = 0.0f;
}
}
}
void Model::setJointState(int index, bool valid, const glm::quat& rotation, float priority) {
if (index != -1 && index < _jointStates.size()) {
JointState& state = _jointStates[index];
if (valid) {
state.setRotationInConstrainedFrame(rotation, priority);
} else {
state.restoreRotation(1.0f, priority);
}
}
_rig->setJointState(index, valid, rotation, priority);
}
int Model::getParentJointIndex(int jointIndex) const {
@ -1189,62 +1132,31 @@ void Model::setCollisionModelURL(const QUrl& url) {
}
bool Model::getJointPositionInWorldFrame(int jointIndex, glm::vec3& position) const {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return false;
}
// position is in world-frame
position = _translation + _rotation * _jointStates[jointIndex].getPosition();
return true;
return _rig->getJointPositionInWorldFrame(jointIndex, position, _translation, _rotation);
}
bool Model::getJointPosition(int jointIndex, glm::vec3& position) const {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return false;
}
// position is in model-frame
position = extractTranslation(_jointStates[jointIndex].getTransform());
return true;
return _rig->getJointPosition(jointIndex, position);
}
bool Model::getJointRotationInWorldFrame(int jointIndex, glm::quat& rotation) const {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return false;
}
rotation = _rotation * _jointStates[jointIndex].getRotation();
return true;
return _rig->getJointRotationInWorldFrame(jointIndex, rotation, _rotation);
}
bool Model::getJointRotation(int jointIndex, glm::quat& rotation) const {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return false;
}
rotation = _jointStates[jointIndex].getRotation();
return true;
return _rig->getJointRotation(jointIndex, rotation);
}
bool Model::getJointCombinedRotation(int jointIndex, glm::quat& rotation) const {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return false;
}
rotation = _rotation * _jointStates[jointIndex].getRotation();
return true;
return _rig->getJointCombinedRotation(jointIndex, rotation, _rotation);
}
bool Model::getVisibleJointPositionInWorldFrame(int jointIndex, glm::vec3& position) const {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return false;
}
// position is in world-frame
position = _translation + _rotation * _jointStates[jointIndex].getVisiblePosition();
return true;
return _rig->getVisibleJointPositionInWorldFrame(jointIndex, position, _translation, _rotation);
}
bool Model::getVisibleJointRotationInWorldFrame(int jointIndex, glm::quat& rotation) const {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return false;
}
rotation = _rotation * _jointStates[jointIndex].getVisibleRotation();
return true;
return _rig->getVisibleJointRotationInWorldFrame(jointIndex, rotation, _rotation);
}
QStringList Model::getJointNames() const {
@ -1438,12 +1350,14 @@ void Model::updateClusterMatrices() {
if (_showTrueJointTransforms) {
for (int j = 0; j < mesh.clusters.size(); j++) {
const FBXCluster& cluster = mesh.clusters.at(j);
state.clusterMatrices[j] = modelToWorld * _jointStates[cluster.jointIndex].getTransform() * cluster.inverseBindMatrix;
state.clusterMatrices[j] =
modelToWorld * _rig->getJointTransform(cluster.jointIndex) * cluster.inverseBindMatrix;
}
} else {
for (int j = 0; j < mesh.clusters.size(); j++) {
const FBXCluster& cluster = mesh.clusters.at(j);
state.clusterMatrices[j] = modelToWorld * _jointStates[cluster.jointIndex].getVisibleTransform() * cluster.inverseBindMatrix;
state.clusterMatrices[j] =
modelToWorld * _rig->getJointVisibleTransform(cluster.jointIndex) * cluster.inverseBindMatrix;
}
}
}
@ -1457,16 +1371,12 @@ void Model::simulateInternal(float deltaTime) {
handle->simulate(deltaTime);
}
for (int i = 0; i < _jointStates.size(); i++) {
updateJointState(i);
}
for (int i = 0; i < _jointStates.size(); i++) {
_jointStates[i].resetTransformChanged();
}
const FBXGeometry& geometry = _geometry->getFBXGeometry();
glm::mat4 parentTransform = glm::scale(_scale) * glm::translate(_offset) * geometry.offset;
_rig->simulateInternal(parentTransform);
_shapesAreDirty = !_shapes.isEmpty();
const FBXGeometry& geometry = _geometry->getFBXGeometry();
glm::mat4 modelToWorld = glm::mat4_cast(_rotation);
for (int i = 0; i < _meshStates.size(); i++) {
MeshState& state = _meshStates[i];
@ -1474,12 +1384,14 @@ void Model::simulateInternal(float deltaTime) {
if (_showTrueJointTransforms) {
for (int j = 0; j < mesh.clusters.size(); j++) {
const FBXCluster& cluster = mesh.clusters.at(j);
state.clusterMatrices[j] = modelToWorld * _jointStates[cluster.jointIndex].getTransform() * cluster.inverseBindMatrix;
state.clusterMatrices[j] =
modelToWorld * _rig->getJointTransform(cluster.jointIndex) * cluster.inverseBindMatrix;
}
} else {
for (int j = 0; j < mesh.clusters.size(); j++) {
const FBXCluster& cluster = mesh.clusters.at(j);
state.clusterMatrices[j] = modelToWorld * _jointStates[cluster.jointIndex].getVisibleTransform() * cluster.inverseBindMatrix;
state.clusterMatrices[j] =
modelToWorld * _rig->getJointVisibleTransform(cluster.jointIndex) * cluster.inverseBindMatrix;
}
}
}
@ -1492,261 +1404,42 @@ void Model::simulateInternal(float deltaTime) {
}
void Model::updateJointState(int index) {
JointState& state = _jointStates[index];
const FBXJoint& joint = state.getFBXJoint();
// compute model transforms
int parentIndex = joint.parentIndex;
if (parentIndex == -1) {
const FBXGeometry& geometry = _geometry->getFBXGeometry();
glm::mat4 parentTransform = glm::scale(_scale) * glm::translate(_offset) * geometry.offset;
state.computeTransform(parentTransform);
} else {
// guard against out-of-bounds access to _jointStates
if (joint.parentIndex >= 0 && joint.parentIndex < _jointStates.size()) {
const JointState& parentState = _jointStates.at(parentIndex);
state.computeTransform(parentState.getTransform(), parentState.getTransformChanged());
}
}
}
void Model::updateVisibleJointStates() {
if (_showTrueJointTransforms) {
// no need to update visible transforms
return;
}
for (int i = 0; i < _jointStates.size(); i++) {
_jointStates[i].slaveVisibleTransform();
}
_rig->updateJointState(index, parentTransform);
}
bool Model::setJointPosition(int jointIndex, const glm::vec3& position, const glm::quat& rotation, bool useRotation,
int lastFreeIndex, bool allIntermediatesFree, const glm::vec3& alignment, float priority) {
if (jointIndex == -1 || _jointStates.isEmpty()) {
return false;
}
const FBXGeometry& geometry = _geometry->getFBXGeometry();
const QVector<int>& freeLineage = geometry.joints.at(jointIndex).freeLineage;
if (freeLineage.isEmpty()) {
return false;
}
if (lastFreeIndex == -1) {
lastFreeIndex = freeLineage.last();
}
// this is a cyclic coordinate descent algorithm: see
// http://www.ryanjuckett.com/programming/animation/21-cyclic-coordinate-descent-in-2d
const int ITERATION_COUNT = 1;
glm::vec3 worldAlignment = alignment;
for (int i = 0; i < ITERATION_COUNT; i++) {
// first, try to rotate the end effector as close as possible to the target rotation, if any
glm::quat endRotation;
if (useRotation) {
JointState& state = _jointStates[jointIndex];
state.setRotationInBindFrame(rotation, priority);
endRotation = state.getRotationInBindFrame();
}
// then, we go from the joint upwards, rotating the end as close as possible to the target
glm::vec3 endPosition = extractTranslation(_jointStates[jointIndex].getTransform());
for (int j = 1; freeLineage.at(j - 1) != lastFreeIndex; j++) {
int index = freeLineage.at(j);
JointState& state = _jointStates[index];
const FBXJoint& joint = state.getFBXJoint();
if (!(joint.isFree || allIntermediatesFree)) {
continue;
}
glm::vec3 jointPosition = extractTranslation(state.getTransform());
glm::vec3 jointVector = endPosition - jointPosition;
glm::quat oldCombinedRotation = state.getRotation();
glm::quat combinedDelta;
float combinedWeight;
if (useRotation) {
combinedDelta = safeMix(rotation * glm::inverse(endRotation),
rotationBetween(jointVector, position - jointPosition), 0.5f);
combinedWeight = 2.0f;
} else {
combinedDelta = rotationBetween(jointVector, position - jointPosition);
combinedWeight = 1.0f;
}
if (alignment != glm::vec3() && j > 1) {
jointVector = endPosition - jointPosition;
glm::vec3 positionSum;
for (int k = j - 1; k > 0; k--) {
int index = freeLineage.at(k);
updateJointState(index);
positionSum += extractTranslation(_jointStates.at(index).getTransform());
}
glm::vec3 projectedCenterOfMass = glm::cross(jointVector,
glm::cross(positionSum / (j - 1.0f) - jointPosition, jointVector));
glm::vec3 projectedAlignment = glm::cross(jointVector, glm::cross(worldAlignment, jointVector));
const float LENGTH_EPSILON = 0.001f;
if (glm::length(projectedCenterOfMass) > LENGTH_EPSILON && glm::length(projectedAlignment) > LENGTH_EPSILON) {
combinedDelta = safeMix(combinedDelta, rotationBetween(projectedCenterOfMass, projectedAlignment),
1.0f / (combinedWeight + 1.0f));
}
}
state.applyRotationDelta(combinedDelta, true, priority);
glm::quat actualDelta = state.getRotation() * glm::inverse(oldCombinedRotation);
endPosition = actualDelta * jointVector + jointPosition;
if (useRotation) {
endRotation = actualDelta * endRotation;
}
}
}
// now update the joint states from the top
for (int j = freeLineage.size() - 1; j >= 0; j--) {
updateJointState(freeLineage.at(j));
}
glm::mat4 parentTransform = glm::scale(_scale) * glm::translate(_offset) * geometry.offset;
if (_rig->setJointPosition(jointIndex, position, rotation, useRotation,
lastFreeIndex, allIntermediatesFree, alignment, priority, freeLineage, parentTransform)) {
_shapesAreDirty = !_shapes.isEmpty();
return true;
}
return false;
}
void Model::inverseKinematics(int endIndex, glm::vec3 targetPosition, const glm::quat& targetRotation, float priority) {
// NOTE: targetRotation is from bind- to model-frame
if (endIndex == -1 || _jointStates.isEmpty()) {
return;
}
const FBXGeometry& geometry = _geometry->getFBXGeometry();
const QVector<int>& freeLineage = geometry.joints.at(endIndex).freeLineage;
if (freeLineage.isEmpty()) {
return;
}
int numFree = freeLineage.size();
// store and remember topmost parent transform
glm::mat4 topParentTransform;
{
int index = freeLineage.last();
const JointState& state = _jointStates.at(index);
const FBXJoint& joint = state.getFBXJoint();
int parentIndex = joint.parentIndex;
if (parentIndex == -1) {
const FBXGeometry& geometry = _geometry->getFBXGeometry();
topParentTransform = glm::scale(_scale) * glm::translate(_offset) * geometry.offset;
} else {
topParentTransform = _jointStates[parentIndex].getTransform();
}
}
// this is a cyclic coordinate descent algorithm: see
// http://www.ryanjuckett.com/programming/animation/21-cyclic-coordinate-descent-in-2d
// keep track of the position of the end-effector
JointState& endState = _jointStates[endIndex];
glm::vec3 endPosition = endState.getPosition();
float distanceToGo = glm::distance(targetPosition, endPosition);
const int MAX_ITERATION_COUNT = 2;
const float ACCEPTABLE_IK_ERROR = 0.005f; // 5mm
int numIterations = 0;
do {
++numIterations;
// moving up, rotate each free joint to get endPosition closer to target
for (int j = 1; j < numFree; j++) {
int nextIndex = freeLineage.at(j);
JointState& nextState = _jointStates[nextIndex];
FBXJoint nextJoint = nextState.getFBXJoint();
if (! nextJoint.isFree) {
continue;
}
glm::vec3 pivot = nextState.getPosition();
glm::vec3 leverArm = endPosition - pivot;
float leverLength = glm::length(leverArm);
if (leverLength < EPSILON) {
continue;
}
glm::quat deltaRotation = rotationBetween(leverArm, targetPosition - pivot);
// We want to mix the shortest rotation with one that will pull the system down with gravity
// so that limbs don't float unrealistically. To do this we compute a simplified center of mass
// where each joint has unit mass and we don't bother averaging it because we only need direction.
if (j > 1) {
glm::vec3 centerOfMass(0.0f);
for (int k = 0; k < j; ++k) {
int massIndex = freeLineage.at(k);
centerOfMass += _jointStates[massIndex].getPosition() - pivot;
}
// the gravitational effect is a rotation that tends to align the two cross products
const glm::vec3 worldAlignment = glm::vec3(0.0f, -1.0f, 0.0f);
glm::quat gravityDelta = rotationBetween(glm::cross(centerOfMass, leverArm),
glm::cross(worldAlignment, leverArm));
float gravityAngle = glm::angle(gravityDelta);
const float MIN_GRAVITY_ANGLE = 0.1f;
float mixFactor = 0.5f;
if (gravityAngle < MIN_GRAVITY_ANGLE) {
// the final rotation is a mix of the two
mixFactor = 0.5f * gravityAngle / MIN_GRAVITY_ANGLE;
}
deltaRotation = safeMix(deltaRotation, gravityDelta, mixFactor);
}
// Apply the rotation, but use mixRotationDelta() which blends a bit of the default pose
// in the process. This provides stability to the IK solution for most models.
glm::quat oldNextRotation = nextState.getRotation();
float mixFactor = 0.03f;
nextState.mixRotationDelta(deltaRotation, mixFactor, priority);
// measure the result of the rotation which may have been modified by
// blending and constraints
glm::quat actualDelta = nextState.getRotation() * glm::inverse(oldNextRotation);
endPosition = pivot + actualDelta * leverArm;
}
// recompute transforms from the top down
glm::mat4 parentTransform = topParentTransform;
for (int j = numFree - 1; j >= 0; --j) {
JointState& freeState = _jointStates[freeLineage.at(j)];
freeState.computeTransform(parentTransform);
parentTransform = freeState.getTransform();
}
// measure our success
endPosition = endState.getPosition();
distanceToGo = glm::distance(targetPosition, endPosition);
} while (numIterations < MAX_ITERATION_COUNT && distanceToGo < ACCEPTABLE_IK_ERROR);
// set final rotation of the end joint
endState.setRotationInBindFrame(targetRotation, priority, true);
glm::mat4 parentTransform = glm::scale(_scale) * glm::translate(_offset) * geometry.offset;
_rig->inverseKinematics(endIndex, targetPosition, targetRotation, priority, freeLineage, parentTransform);
_shapesAreDirty = !_shapes.isEmpty();
}
bool Model::restoreJointPosition(int jointIndex, float fraction, float priority) {
if (jointIndex == -1 || _jointStates.isEmpty()) {
return false;
}
const FBXGeometry& geometry = _geometry->getFBXGeometry();
const QVector<int>& freeLineage = geometry.joints.at(jointIndex).freeLineage;
foreach (int index, freeLineage) {
JointState& state = _jointStates[index];
state.restoreRotation(fraction, priority);
}
return true;
return _rig->restoreJointPosition(jointIndex, fraction, priority, freeLineage);
}
float Model::getLimbLength(int jointIndex) const {
if (jointIndex == -1 || _jointStates.isEmpty()) {
return 0.0f;
}
const FBXGeometry& geometry = _geometry->getFBXGeometry();
const QVector<int>& freeLineage = geometry.joints.at(jointIndex).freeLineage;
float length = 0.0f;
float lengthScale = (_scale.x + _scale.y + _scale.z) / 3.0f;
for (int i = freeLineage.size() - 2; i >= 0; i--) {
length += geometry.joints.at(freeLineage.at(i)).distanceToParent * lengthScale;
}
return length;
return _rig->getLimbLength(jointIndex, freeLineage, _scale, geometry.joints);
}
void Model::renderJointCollisionShapes(float alpha) {
@ -1816,7 +1509,7 @@ void Model::applyNextGeometry() {
void Model::deleteGeometry() {
_blendedVertexBuffers.clear();
_jointStates.clear();
_rig->clearJointStates();
_meshStates.clear();
clearShapes();
@ -1945,7 +1638,9 @@ void Model::renderPart(RenderArgs* args, int meshIndex, int partIndex, bool tran
args, locations);
{
updateVisibleJointStates();
if (!_showTrueJointTransforms) {
_rig->updateVisibleJointStates();
} // else no need to update visible transforms
}
// if our index is ever out of range for either meshes or networkMeshes, then skip it, and set our _meshGroupsKnown

View file

@ -64,7 +64,7 @@ public:
static void setAbstractViewStateInterface(AbstractViewStateInterface* viewState) { _viewState = viewState; }
Model(QObject* parent = nullptr, RigPointer rig = nullptr);
Model(RigPointer rig, QObject* parent = nullptr);
virtual ~Model();
/// enables/disables scale to fit behavior, the model will be automatically scaled to the specified largest dimension
@ -162,7 +162,7 @@ public:
const QSharedPointer<NetworkGeometry> getCollisionGeometry(bool delayLoad = true);
/// Returns the number of joint states in the model.
int getJointStateCount() const { return _jointStates.size(); }
int getJointStateCount() const { return _rig->getJointStateCount(); }
/// Fetches the joint state at the specified index.
/// \return whether or not the joint state is "valid" (that is, non-default)
@ -224,8 +224,8 @@ public:
void setShowTrueJointTransforms(bool show) { _showTrueJointTransforms = show; }
QVector<JointState>& getJointStates() { return _jointStates; }
const QVector<JointState>& getJointStates() const { return _jointStates; }
// QVector<JointState>& getJointStates() { return _rig->getJointStates(); }
// const QVector<JointState>& getJointStates() const { return _jointStates; }
void inverseKinematics(int jointIndex, glm::vec3 position, const glm::quat& rotation, float priority);
@ -260,8 +260,6 @@ protected:
bool _showTrueJointTransforms;
QVector<JointState> _jointStates;
class MeshState {
public:
QVector<glm::mat4> clusterMatrices;
@ -283,8 +281,6 @@ protected:
/// Updates the state of the joint at the specified index.
virtual void updateJointState(int index);
virtual void updateVisibleJointStates();
/// \param jointIndex index of joint in model structure
/// \param position position of joint in model-frame
/// \param rotation rotation of joint in model-frame