mirror of
https://github.com/overte-org/overte.git
synced 2025-04-25 09:54:14 +02:00
code out of Model into base and derived classes
PhysicalEntity (base class) gets some shape management stuff SkeletonModel (derived class) gets some boundary shape and joint-shape stuff
This commit is contained in:
parent
118717d96a
commit
ecbf5043d7
7 changed files with 371 additions and 377 deletions
|
@ -230,7 +230,6 @@ void Avatar::render(const glm::vec3& cameraPosition, RenderMode renderMode) {
|
|||
getHead()->getFaceModel().renderJointCollisionShapes(0.7f);
|
||||
}
|
||||
if (renderBounding && shouldRenderHead(cameraPosition, renderMode)) {
|
||||
getHead()->getFaceModel().renderBoundingCollisionShapes(0.7f);
|
||||
_skeletonModel.renderBoundingCollisionShapes(0.7f);
|
||||
}
|
||||
|
||||
|
|
|
@ -11,6 +11,9 @@
|
|||
|
||||
#include <glm/gtx/transform.hpp>
|
||||
|
||||
#include <CapsuleShape.h>
|
||||
#include <SphereShape.h>
|
||||
|
||||
#include "Application.h"
|
||||
#include "Avatar.h"
|
||||
#include "Hand.h"
|
||||
|
@ -20,7 +23,9 @@
|
|||
SkeletonModel::SkeletonModel(Avatar* owningAvatar, QObject* parent) :
|
||||
Model(parent),
|
||||
Ragdoll(),
|
||||
_owningAvatar(owningAvatar) {
|
||||
_owningAvatar(owningAvatar),
|
||||
_boundingShape(),
|
||||
_boundingShapeLocalOffset(0.0f) {
|
||||
}
|
||||
|
||||
void SkeletonModel::setJointStates(QVector<JointState> states) {
|
||||
|
@ -524,3 +529,251 @@ void SkeletonModel::renderRagdoll() {
|
|||
glEnable(GL_DEPTH_TEST);
|
||||
glEnable(GL_LIGHTING);
|
||||
}
|
||||
|
||||
// virtual
|
||||
void SkeletonModel::buildShapes() {
|
||||
if (!_geometry || _rootIndex == -1) {
|
||||
return;
|
||||
}
|
||||
|
||||
const FBXGeometry& geometry = _geometry->getFBXGeometry();
|
||||
if (geometry.joints.isEmpty()) {
|
||||
return;
|
||||
}
|
||||
// We create the shapes with proper dimensions, but we set their transforms later.
|
||||
float uniformScale = extractUniformScale(_scale);
|
||||
for (int i = 0; i < _jointStates.size(); i++) {
|
||||
const FBXJoint& joint = geometry.joints[i];
|
||||
|
||||
float radius = uniformScale * joint.boneRadius;
|
||||
float halfHeight = 0.5f * uniformScale * joint.distanceToParent;
|
||||
Shape::Type type = joint.shapeType;
|
||||
if (type == Shape::CAPSULE_SHAPE && halfHeight < EPSILON) {
|
||||
// this capsule is effectively a sphere
|
||||
type = Shape::SPHERE_SHAPE;
|
||||
}
|
||||
if (type == Shape::CAPSULE_SHAPE) {
|
||||
CapsuleShape* capsule = new CapsuleShape(radius, halfHeight);
|
||||
capsule->setEntity(this);
|
||||
_shapes.push_back(capsule);
|
||||
} else if (type == Shape::SPHERE_SHAPE) {
|
||||
SphereShape* sphere = new SphereShape(radius, glm::vec3(0.0f));
|
||||
_shapes.push_back(sphere);
|
||||
sphere->setEntity(this);
|
||||
} else {
|
||||
// this shape type is not handled and the joint shouldn't collide,
|
||||
// however we must have a Shape* for each joint, so we push NULL
|
||||
_shapes.push_back(NULL);
|
||||
}
|
||||
}
|
||||
|
||||
// This method moves the shapes to their default positions in Model frame
|
||||
// which is where we compute the bounding shape's parameters.
|
||||
computeBoundingShape(geometry);
|
||||
|
||||
// finally sync shapes to joint positions
|
||||
_shapesAreDirty = true;
|
||||
updateShapePositions();
|
||||
}
|
||||
|
||||
void SkeletonModel::updateShapePositionsLegacy() {
|
||||
if (_shapesAreDirty && _shapes.size() == _jointStates.size()) {
|
||||
glm::vec3 rootPosition(0.0f);
|
||||
_boundingRadius = 0.0f;
|
||||
float uniformScale = extractUniformScale(_scale);
|
||||
for (int i = 0; i < _jointStates.size(); i++) {
|
||||
const JointState& state = _jointStates[i];
|
||||
const FBXJoint& joint = state.getFBXJoint();
|
||||
// shape position and rotation need to be in world-frame
|
||||
glm::quat stateRotation = state.getRotation();
|
||||
glm::vec3 shapeOffset = uniformScale * (stateRotation * joint.shapePosition);
|
||||
glm::vec3 worldPosition = _translation + _rotation * (state.getPosition() + shapeOffset);
|
||||
Shape* shape = _shapes[i];
|
||||
if (shape) {
|
||||
shape->setCenter(worldPosition);
|
||||
shape->setRotation(_rotation * stateRotation * joint.shapeRotation);
|
||||
float distance = glm::distance(worldPosition, _translation) + shape->getBoundingRadius();
|
||||
if (distance > _boundingRadius) {
|
||||
_boundingRadius = distance;
|
||||
}
|
||||
}
|
||||
if (joint.parentIndex == -1) {
|
||||
rootPosition = worldPosition;
|
||||
}
|
||||
}
|
||||
_shapesAreDirty = false;
|
||||
_boundingShape.setCenter(rootPosition + _rotation * _boundingShapeLocalOffset);
|
||||
_boundingShape.setRotation(_rotation);
|
||||
}
|
||||
}
|
||||
|
||||
void SkeletonModel::computeBoundingShape(const FBXGeometry& geometry) {
|
||||
// compute default joint transforms and rotations
|
||||
// (in local frame, ignoring Model translation and rotation)
|
||||
int numJoints = geometry.joints.size();
|
||||
QVector<glm::mat4> transforms;
|
||||
transforms.fill(glm::mat4(), numJoints);
|
||||
QVector<glm::quat> finalRotations;
|
||||
finalRotations.fill(glm::quat(), numJoints);
|
||||
|
||||
QVector<bool> shapeIsSet;
|
||||
shapeIsSet.fill(false, numJoints);
|
||||
int numShapesSet = 0;
|
||||
int lastNumShapesSet = -1;
|
||||
while (numShapesSet < numJoints && numShapesSet != lastNumShapesSet) {
|
||||
lastNumShapesSet = numShapesSet;
|
||||
for (int i = 0; i < numJoints; i++) {
|
||||
const FBXJoint& joint = geometry.joints.at(i);
|
||||
int parentIndex = joint.parentIndex;
|
||||
|
||||
if (parentIndex == -1) {
|
||||
glm::mat4 baseTransform = glm::scale(_scale) * glm::translate(_offset);
|
||||
glm::quat combinedRotation = joint.preRotation * joint.rotation * joint.postRotation;
|
||||
glm::mat4 rootTransform = baseTransform * geometry.offset * glm::translate(joint.translation)
|
||||
* joint.preTransform * glm::mat4_cast(combinedRotation) * joint.postTransform;
|
||||
// remove the tranlsation part before we save the root transform
|
||||
transforms[i] = glm::translate(- extractTranslation(rootTransform)) * rootTransform;
|
||||
|
||||
finalRotations[i] = combinedRotation;
|
||||
++numShapesSet;
|
||||
shapeIsSet[i] = true;
|
||||
} else if (shapeIsSet[parentIndex]) {
|
||||
glm::quat combinedRotation = joint.preRotation * joint.rotation * joint.postRotation;
|
||||
transforms[i] = transforms[parentIndex] * glm::translate(joint.translation)
|
||||
* joint.preTransform * glm::mat4_cast(combinedRotation) * joint.postTransform;
|
||||
finalRotations[i] = finalRotations[parentIndex] * combinedRotation;
|
||||
++numShapesSet;
|
||||
shapeIsSet[i] = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// sync shapes to joints
|
||||
_boundingRadius = 0.0f;
|
||||
float uniformScale = extractUniformScale(_scale);
|
||||
for (int i = 0; i < _shapes.size(); i++) {
|
||||
Shape* shape = _shapes[i];
|
||||
if (!shape) {
|
||||
continue;
|
||||
}
|
||||
const FBXJoint& joint = geometry.joints[i];
|
||||
glm::vec3 jointToShapeOffset = uniformScale * (finalRotations[i] * joint.shapePosition);
|
||||
glm::vec3 localPosition = extractTranslation(transforms[i]) + jointToShapeOffset;
|
||||
shape->setCenter(localPosition);
|
||||
shape->setRotation(finalRotations[i] * joint.shapeRotation);
|
||||
float distance = glm::length(localPosition) + shape->getBoundingRadius();
|
||||
if (distance > _boundingRadius) {
|
||||
_boundingRadius = distance;
|
||||
}
|
||||
}
|
||||
|
||||
// compute bounding box
|
||||
Extents totalExtents;
|
||||
totalExtents.reset();
|
||||
totalExtents.addPoint(glm::vec3(0.0f));
|
||||
for (int i = 0; i < _shapes.size(); i++) {
|
||||
Shape* shape = _shapes[i];
|
||||
if (!shape) {
|
||||
continue;
|
||||
}
|
||||
Extents shapeExtents;
|
||||
shapeExtents.reset();
|
||||
glm::vec3 localPosition = shape->getCenter();
|
||||
int type = shape->getType();
|
||||
if (type == Shape::CAPSULE_SHAPE) {
|
||||
// add the two furthest surface points of the capsule
|
||||
CapsuleShape* capsule = static_cast<CapsuleShape*>(shape);
|
||||
glm::vec3 axis;
|
||||
capsule->computeNormalizedAxis(axis);
|
||||
float radius = capsule->getRadius();
|
||||
float halfHeight = capsule->getHalfHeight();
|
||||
axis = halfHeight * axis + glm::vec3(radius);
|
||||
|
||||
shapeExtents.addPoint(localPosition + axis);
|
||||
shapeExtents.addPoint(localPosition - axis);
|
||||
totalExtents.addExtents(shapeExtents);
|
||||
} else if (type == Shape::SPHERE_SHAPE) {
|
||||
float radius = shape->getBoundingRadius();
|
||||
glm::vec3 axis = glm::vec3(radius);
|
||||
shapeExtents.addPoint(localPosition + axis);
|
||||
shapeExtents.addPoint(localPosition - axis);
|
||||
totalExtents.addExtents(shapeExtents);
|
||||
}
|
||||
}
|
||||
|
||||
// compute bounding shape parameters
|
||||
// NOTE: we assume that the longest side of totalExtents is the yAxis...
|
||||
glm::vec3 diagonal = totalExtents.maximum - totalExtents.minimum;
|
||||
// ... and assume the radius is half the RMS of the X and Z sides:
|
||||
float capsuleRadius = 0.5f * sqrtf(0.5f * (diagonal.x * diagonal.x + diagonal.z * diagonal.z));
|
||||
_boundingShape.setRadius(capsuleRadius);
|
||||
_boundingShape.setHalfHeight(0.5f * diagonal.y - capsuleRadius);
|
||||
_boundingShapeLocalOffset = 0.5f * (totalExtents.maximum + totalExtents.minimum);
|
||||
}
|
||||
|
||||
void SkeletonModel::resetShapePositions() {
|
||||
// DEBUG method.
|
||||
// Moves shapes to the joint default locations for debug visibility into
|
||||
// how the bounding shape is computed.
|
||||
|
||||
if (!_geometry || _rootIndex == -1 || _shapes.isEmpty()) {
|
||||
// geometry or joints have not yet been created
|
||||
return;
|
||||
}
|
||||
|
||||
const FBXGeometry& geometry = _geometry->getFBXGeometry();
|
||||
if (geometry.joints.isEmpty() || _shapes.size() != geometry.joints.size()) {
|
||||
return;
|
||||
}
|
||||
|
||||
// The shapes are moved to their default positions in computeBoundingShape().
|
||||
computeBoundingShape(geometry);
|
||||
|
||||
// Then we move them into world frame for rendering at the Model's location.
|
||||
for (int i = 0; i < _shapes.size(); i++) {
|
||||
Shape* shape = _shapes[i];
|
||||
if (shape) {
|
||||
shape->setCenter(_translation + _rotation * shape->getCenter());
|
||||
shape->setRotation(_rotation * shape->getRotation());
|
||||
}
|
||||
}
|
||||
_boundingShape.setCenter(_translation + _rotation * _boundingShapeLocalOffset);
|
||||
_boundingShape.setRotation(_rotation);
|
||||
}
|
||||
|
||||
void SkeletonModel::renderBoundingCollisionShapes(float alpha) {
|
||||
const int BALL_SUBDIVISIONS = 10;
|
||||
if (_shapes.isEmpty()) {
|
||||
// the bounding shape has not been propery computed
|
||||
// so no need to render it
|
||||
return;
|
||||
}
|
||||
glPushMatrix();
|
||||
|
||||
Application::getInstance()->loadTranslatedViewMatrix(_translation);
|
||||
|
||||
// draw a blue sphere at the capsule endpoint
|
||||
glm::vec3 endPoint;
|
||||
_boundingShape.getEndPoint(endPoint);
|
||||
endPoint = endPoint - _translation;
|
||||
glTranslatef(endPoint.x, endPoint.y, endPoint.z);
|
||||
glColor4f(0.6f, 0.6f, 0.8f, alpha);
|
||||
glutSolidSphere(_boundingShape.getRadius(), BALL_SUBDIVISIONS, BALL_SUBDIVISIONS);
|
||||
|
||||
// draw a yellow sphere at the capsule startpoint
|
||||
glm::vec3 startPoint;
|
||||
_boundingShape.getStartPoint(startPoint);
|
||||
startPoint = startPoint - _translation;
|
||||
glm::vec3 axis = endPoint - startPoint;
|
||||
glTranslatef(-axis.x, -axis.y, -axis.z);
|
||||
glColor4f(0.8f, 0.8f, 0.6f, alpha);
|
||||
glutSolidSphere(_boundingShape.getRadius(), BALL_SUBDIVISIONS, BALL_SUBDIVISIONS);
|
||||
|
||||
// draw a green cylinder between the two points
|
||||
glm::vec3 origin(0.0f);
|
||||
glColor4f(0.6f, 0.8f, 0.6f, alpha);
|
||||
Avatar::renderJointConnectingCone( origin, axis, _boundingShape.getRadius(), _boundingShape.getRadius());
|
||||
|
||||
glPopMatrix();
|
||||
}
|
||||
|
||||
|
|
|
@ -14,6 +14,7 @@
|
|||
|
||||
#include "renderer/Model.h"
|
||||
|
||||
#include <CapsuleShape.h>
|
||||
#include <Ragdoll.h>
|
||||
|
||||
class Avatar;
|
||||
|
@ -30,7 +31,6 @@ public:
|
|||
|
||||
void simulate(float deltaTime, bool fullUpdate = true);
|
||||
void simulateRagdoll(float deltaTime);
|
||||
void updateShapePositions();
|
||||
|
||||
/// \param jointIndex index of hand joint
|
||||
/// \param shapes[out] list in which is stored pointers to hand shapes
|
||||
|
@ -95,6 +95,17 @@ public:
|
|||
/// \return whether or not both eye meshes were found
|
||||
bool getEyePositions(glm::vec3& firstEyePosition, glm::vec3& secondEyePosition) const;
|
||||
|
||||
void buildShapes();
|
||||
void updateShapePositions();
|
||||
void updateShapePositionsLegacy();
|
||||
|
||||
void computeBoundingShape(const FBXGeometry& geometry);
|
||||
void renderBoundingCollisionShapes(float alpha);
|
||||
float getBoundingShapeRadius() const { return _boundingShape.getRadius(); }
|
||||
const CapsuleShape& getBoundingShape() const { return _boundingShape; }
|
||||
|
||||
void resetShapePositions(); // DEBUG method
|
||||
|
||||
void renderRagdoll();
|
||||
protected:
|
||||
|
||||
|
@ -121,6 +132,9 @@ private:
|
|||
void setHandPosition(int jointIndex, const glm::vec3& position, const glm::quat& rotation);
|
||||
|
||||
Avatar* _owningAvatar;
|
||||
|
||||
CapsuleShape _boundingShape;
|
||||
glm::vec3 _boundingShapeLocalOffset;
|
||||
};
|
||||
|
||||
#endif // hifi_SkeletonModel_h
|
||||
|
|
|
@ -33,7 +33,6 @@ static int vec3VectorTypeId = qRegisterMetaType<QVector<glm::vec3> >();
|
|||
|
||||
Model::Model(QObject* parent) :
|
||||
QObject(parent),
|
||||
PhysicalEntity(PhysicalEntity::ENTITY_MODEL),
|
||||
_scale(1.0f, 1.0f, 1.0f),
|
||||
_scaleToFit(false),
|
||||
_scaleToFitLargestDimension(0.0f),
|
||||
|
@ -42,8 +41,6 @@ Model::Model(QObject* parent) :
|
|||
_snappedToCenter(false),
|
||||
_rootIndex(-1),
|
||||
//_enableCollisionShapes(false),
|
||||
_boundingShape(),
|
||||
_boundingShapeLocalOffset(0.0f),
|
||||
_lodDistance(0.0f),
|
||||
_pupilDilation(0.0f),
|
||||
_url("http://invalid.com") {
|
||||
|
@ -793,308 +790,11 @@ AnimationHandlePointer Model::createAnimationHandle() {
|
|||
|
||||
// virtual override from PhysicalEntity
|
||||
void Model::buildShapes() {
|
||||
if (!_geometry || _rootIndex == -1) {
|
||||
return;
|
||||
}
|
||||
|
||||
const FBXGeometry& geometry = _geometry->getFBXGeometry();
|
||||
if (geometry.joints.isEmpty()) {
|
||||
return;
|
||||
}
|
||||
|
||||
// We create the shapes with proper dimensions, but we set their transforms later.
|
||||
float uniformScale = extractUniformScale(_scale);
|
||||
for (int i = 0; i < _jointStates.size(); i++) {
|
||||
const FBXJoint& joint = geometry.joints[i];
|
||||
|
||||
float radius = uniformScale * joint.boneRadius;
|
||||
float halfHeight = 0.5f * uniformScale * joint.distanceToParent;
|
||||
Shape::Type type = joint.shapeType;
|
||||
if (type == Shape::CAPSULE_SHAPE && halfHeight < EPSILON) {
|
||||
// this capsule is effectively a sphere
|
||||
type = Shape::SPHERE_SHAPE;
|
||||
}
|
||||
if (type == Shape::CAPSULE_SHAPE) {
|
||||
CapsuleShape* capsule = new CapsuleShape(radius, halfHeight);
|
||||
capsule->setEntity(this);
|
||||
_shapes.push_back(capsule);
|
||||
} else if (type == Shape::SPHERE_SHAPE) {
|
||||
SphereShape* sphere = new SphereShape(radius, glm::vec3(0.0f));
|
||||
_shapes.push_back(sphere);
|
||||
sphere->setEntity(this);
|
||||
} else {
|
||||
// this shape type is not handled and the joint shouldn't collide,
|
||||
// however we must have a Shape* for each joint, so we push NULL
|
||||
_shapes.push_back(NULL);
|
||||
}
|
||||
}
|
||||
|
||||
// This method moves the shapes to their default positions in Model frame
|
||||
// which is where we compute the bounding shape's parameters.
|
||||
computeBoundingShape(geometry);
|
||||
|
||||
// finally sync shapes to joint positions
|
||||
_shapesAreDirty = true;
|
||||
updateShapePositions();
|
||||
}
|
||||
|
||||
void Model::computeBoundingShape(const FBXGeometry& geometry) {
|
||||
// compute default joint transforms and rotations
|
||||
// (in local frame, ignoring Model translation and rotation)
|
||||
int numJoints = geometry.joints.size();
|
||||
QVector<glm::mat4> transforms;
|
||||
transforms.fill(glm::mat4(), numJoints);
|
||||
QVector<glm::quat> finalRotations;
|
||||
finalRotations.fill(glm::quat(), numJoints);
|
||||
|
||||
QVector<bool> shapeIsSet;
|
||||
shapeIsSet.fill(false, numJoints);
|
||||
int numShapesSet = 0;
|
||||
int lastNumShapesSet = -1;
|
||||
while (numShapesSet < numJoints && numShapesSet != lastNumShapesSet) {
|
||||
lastNumShapesSet = numShapesSet;
|
||||
for (int i = 0; i < numJoints; i++) {
|
||||
const FBXJoint& joint = geometry.joints.at(i);
|
||||
int parentIndex = joint.parentIndex;
|
||||
|
||||
if (parentIndex == -1) {
|
||||
glm::mat4 baseTransform = glm::scale(_scale) * glm::translate(_offset);
|
||||
glm::quat combinedRotation = joint.preRotation * joint.rotation * joint.postRotation;
|
||||
glm::mat4 rootTransform = baseTransform * geometry.offset * glm::translate(joint.translation)
|
||||
* joint.preTransform * glm::mat4_cast(combinedRotation) * joint.postTransform;
|
||||
// remove the tranlsation part before we save the root transform
|
||||
transforms[i] = glm::translate(- extractTranslation(rootTransform)) * rootTransform;
|
||||
|
||||
finalRotations[i] = combinedRotation;
|
||||
++numShapesSet;
|
||||
shapeIsSet[i] = true;
|
||||
} else if (shapeIsSet[parentIndex]) {
|
||||
glm::quat combinedRotation = joint.preRotation * joint.rotation * joint.postRotation;
|
||||
transforms[i] = transforms[parentIndex] * glm::translate(joint.translation)
|
||||
* joint.preTransform * glm::mat4_cast(combinedRotation) * joint.postTransform;
|
||||
finalRotations[i] = finalRotations[parentIndex] * combinedRotation;
|
||||
++numShapesSet;
|
||||
shapeIsSet[i] = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// sync shapes to joints
|
||||
_boundingRadius = 0.0f;
|
||||
float uniformScale = extractUniformScale(_scale);
|
||||
for (int i = 0; i < _shapes.size(); i++) {
|
||||
Shape* shape = _shapes[i];
|
||||
if (!shape) {
|
||||
continue;
|
||||
}
|
||||
const FBXJoint& joint = geometry.joints[i];
|
||||
glm::vec3 jointToShapeOffset = uniformScale * (finalRotations[i] * joint.shapePosition);
|
||||
glm::vec3 localPosition = extractTranslation(transforms[i]) + jointToShapeOffset;
|
||||
shape->setCenter(localPosition);
|
||||
shape->setRotation(finalRotations[i] * joint.shapeRotation);
|
||||
float distance = glm::length(localPosition) + shape->getBoundingRadius();
|
||||
if (distance > _boundingRadius) {
|
||||
_boundingRadius = distance;
|
||||
}
|
||||
}
|
||||
|
||||
// compute bounding box
|
||||
Extents totalExtents;
|
||||
totalExtents.reset();
|
||||
totalExtents.addPoint(glm::vec3(0.0f));
|
||||
for (int i = 0; i < _shapes.size(); i++) {
|
||||
Shape* shape = _shapes[i];
|
||||
if (!shape) {
|
||||
continue;
|
||||
}
|
||||
Extents shapeExtents;
|
||||
shapeExtents.reset();
|
||||
glm::vec3 localPosition = shape->getCenter();
|
||||
int type = shape->getType();
|
||||
if (type == Shape::CAPSULE_SHAPE) {
|
||||
// add the two furthest surface points of the capsule
|
||||
CapsuleShape* capsule = static_cast<CapsuleShape*>(shape);
|
||||
glm::vec3 axis;
|
||||
capsule->computeNormalizedAxis(axis);
|
||||
float radius = capsule->getRadius();
|
||||
float halfHeight = capsule->getHalfHeight();
|
||||
axis = halfHeight * axis + glm::vec3(radius);
|
||||
|
||||
shapeExtents.addPoint(localPosition + axis);
|
||||
shapeExtents.addPoint(localPosition - axis);
|
||||
totalExtents.addExtents(shapeExtents);
|
||||
} else if (type == Shape::SPHERE_SHAPE) {
|
||||
float radius = shape->getBoundingRadius();
|
||||
glm::vec3 axis = glm::vec3(radius);
|
||||
shapeExtents.addPoint(localPosition + axis);
|
||||
shapeExtents.addPoint(localPosition - axis);
|
||||
totalExtents.addExtents(shapeExtents);
|
||||
}
|
||||
}
|
||||
|
||||
// compute bounding shape parameters
|
||||
// NOTE: we assume that the longest side of totalExtents is the yAxis...
|
||||
glm::vec3 diagonal = totalExtents.maximum - totalExtents.minimum;
|
||||
// ... and assume the radius is half the RMS of the X and Z sides:
|
||||
float capsuleRadius = 0.5f * sqrtf(0.5f * (diagonal.x * diagonal.x + diagonal.z * diagonal.z));
|
||||
_boundingShape.setRadius(capsuleRadius);
|
||||
_boundingShape.setHalfHeight(0.5f * diagonal.y - capsuleRadius);
|
||||
_boundingShapeLocalOffset = 0.5f * (totalExtents.maximum + totalExtents.minimum);
|
||||
}
|
||||
|
||||
void Model::resetShapePositions() {
|
||||
// DEBUG method.
|
||||
// Moves shapes to the joint default locations for debug visibility into
|
||||
// how the bounding shape is computed.
|
||||
|
||||
if (!_geometry || _rootIndex == -1 || _shapes.isEmpty()) {
|
||||
// geometry or joints have not yet been created
|
||||
return;
|
||||
}
|
||||
|
||||
const FBXGeometry& geometry = _geometry->getFBXGeometry();
|
||||
if (geometry.joints.isEmpty() || _shapes.size() != geometry.joints.size()) {
|
||||
return;
|
||||
}
|
||||
|
||||
// The shapes are moved to their default positions in computeBoundingShape().
|
||||
computeBoundingShape(geometry);
|
||||
|
||||
// Then we move them into world frame for rendering at the Model's location.
|
||||
for (int i = 0; i < _shapes.size(); i++) {
|
||||
Shape* shape = _shapes[i];
|
||||
if (shape) {
|
||||
shape->setCenter(_translation + _rotation * shape->getCenter());
|
||||
shape->setRotation(_rotation * shape->getRotation());
|
||||
}
|
||||
}
|
||||
_boundingShape.setCenter(_translation + _rotation * _boundingShapeLocalOffset);
|
||||
_boundingShape.setRotation(_rotation);
|
||||
// TODO: figure out how to load/build collision shapes for general models
|
||||
}
|
||||
|
||||
void Model::updateShapePositions() {
|
||||
if (_shapesAreDirty && _shapes.size() == _jointStates.size()) {
|
||||
glm::vec3 rootPosition(0.0f);
|
||||
_boundingRadius = 0.0f;
|
||||
float uniformScale = extractUniformScale(_scale);
|
||||
for (int i = 0; i < _jointStates.size(); i++) {
|
||||
const JointState& state = _jointStates[i];
|
||||
const FBXJoint& joint = state.getFBXJoint();
|
||||
// shape position and rotation need to be in world-frame
|
||||
glm::quat stateRotation = state.getRotation();
|
||||
glm::vec3 shapeOffset = uniformScale * (stateRotation * joint.shapePosition);
|
||||
glm::vec3 worldPosition = _translation + _rotation * (state.getPosition() + shapeOffset);
|
||||
Shape* shape = _shapes[i];
|
||||
if (shape) {
|
||||
shape->setCenter(worldPosition);
|
||||
shape->setRotation(_rotation * stateRotation * joint.shapeRotation);
|
||||
float distance = glm::distance(worldPosition, _translation) + shape->getBoundingRadius();
|
||||
if (distance > _boundingRadius) {
|
||||
_boundingRadius = distance;
|
||||
}
|
||||
}
|
||||
if (joint.parentIndex == -1) {
|
||||
rootPosition = worldPosition;
|
||||
}
|
||||
}
|
||||
_shapesAreDirty = false;
|
||||
_boundingShape.setCenter(rootPosition + _rotation * _boundingShapeLocalOffset);
|
||||
_boundingShape.setRotation(_rotation);
|
||||
}
|
||||
}
|
||||
|
||||
bool Model::findRayIntersection(const glm::vec3& origin, const glm::vec3& direction, float& distance) const {
|
||||
const glm::vec3 relativeOrigin = origin - _translation;
|
||||
const FBXGeometry& geometry = _geometry->getFBXGeometry();
|
||||
float minDistance = FLT_MAX;
|
||||
float radiusScale = extractUniformScale(_scale);
|
||||
for (int i = 0; i < _jointStates.size(); i++) {
|
||||
const FBXJoint& joint = geometry.joints[i];
|
||||
glm::vec3 end = _translation + _rotation * _jointStates[i].getPosition();
|
||||
float endRadius = joint.boneRadius * radiusScale;
|
||||
glm::vec3 start = end;
|
||||
float startRadius = joint.boneRadius * radiusScale;
|
||||
if (joint.parentIndex != -1) {
|
||||
start = _translation + _rotation * _jointStates[joint.parentIndex].getPosition();
|
||||
startRadius = geometry.joints[joint.parentIndex].boneRadius * radiusScale;
|
||||
}
|
||||
// for now, use average of start and end radii
|
||||
float capsuleDistance;
|
||||
if (findRayCapsuleIntersection(relativeOrigin, direction, start, end,
|
||||
(startRadius + endRadius) / 2.0f, capsuleDistance)) {
|
||||
minDistance = qMin(minDistance, capsuleDistance);
|
||||
}
|
||||
}
|
||||
if (minDistance < FLT_MAX) {
|
||||
distance = minDistance;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool Model::findCollisions(const QVector<const Shape*> shapes, CollisionList& collisions) {
|
||||
bool collided = false;
|
||||
for (int i = 0; i < shapes.size(); ++i) {
|
||||
const Shape* theirShape = shapes[i];
|
||||
if (!theirShape) {
|
||||
continue;
|
||||
}
|
||||
for (int j = 0; j < _shapes.size(); ++j) {
|
||||
const Shape* ourShape = _shapes[j];
|
||||
if (ourShape && ShapeCollider::collideShapes(theirShape, ourShape, collisions)) {
|
||||
collided = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
return collided;
|
||||
}
|
||||
|
||||
bool Model::findSphereCollisions(const glm::vec3& sphereCenter, float sphereRadius,
|
||||
CollisionList& collisions, int skipIndex) {
|
||||
bool collided = false;
|
||||
SphereShape sphere(sphereRadius, sphereCenter);
|
||||
const FBXGeometry& geometry = _geometry->getFBXGeometry();
|
||||
for (int i = 0; i < _shapes.size(); i++) {
|
||||
Shape* shape = _shapes[i];
|
||||
if (!shape) {
|
||||
continue;
|
||||
}
|
||||
const FBXJoint& joint = geometry.joints[i];
|
||||
if (joint.parentIndex != -1) {
|
||||
if (skipIndex != -1) {
|
||||
int ancestorIndex = joint.parentIndex;
|
||||
do {
|
||||
if (ancestorIndex == skipIndex) {
|
||||
goto outerContinue;
|
||||
}
|
||||
ancestorIndex = geometry.joints[ancestorIndex].parentIndex;
|
||||
|
||||
} while (ancestorIndex != -1);
|
||||
}
|
||||
}
|
||||
if (ShapeCollider::collideShapes(&sphere, shape, collisions)) {
|
||||
CollisionInfo* collision = collisions.getLastCollision();
|
||||
collision->_data = (void*)(this);
|
||||
collision->_intData = i;
|
||||
collided = true;
|
||||
}
|
||||
outerContinue: ;
|
||||
}
|
||||
return collided;
|
||||
}
|
||||
|
||||
bool Model::findPlaneCollisions(const glm::vec4& plane, CollisionList& collisions) {
|
||||
bool collided = false;
|
||||
PlaneShape planeShape(plane);
|
||||
for (int i = 0; i < _shapes.size(); i++) {
|
||||
if (_shapes[i] && ShapeCollider::collideShapes(&planeShape, _shapes[i], collisions)) {
|
||||
CollisionInfo* collision = collisions.getLastCollision();
|
||||
collision->_data = (void*)(this);
|
||||
collision->_intData = i;
|
||||
collided = true;
|
||||
}
|
||||
}
|
||||
return collided;
|
||||
// TODO: implement this when we know how to build shapes for regular Models
|
||||
}
|
||||
|
||||
class Blender : public QRunnable {
|
||||
|
@ -1441,41 +1141,6 @@ void Model::renderJointCollisionShapes(float alpha) {
|
|||
glPopMatrix();
|
||||
}
|
||||
|
||||
void Model::renderBoundingCollisionShapes(float alpha) {
|
||||
if (_shapes.isEmpty()) {
|
||||
// the bounding shape has not been propery computed
|
||||
// so no need to render it
|
||||
return;
|
||||
}
|
||||
glPushMatrix();
|
||||
|
||||
Application::getInstance()->loadTranslatedViewMatrix(_translation);
|
||||
|
||||
// draw a blue sphere at the capsule endpoint
|
||||
glm::vec3 endPoint;
|
||||
_boundingShape.getEndPoint(endPoint);
|
||||
endPoint = endPoint - _translation;
|
||||
glTranslatef(endPoint.x, endPoint.y, endPoint.z);
|
||||
glColor4f(0.6f, 0.6f, 0.8f, alpha);
|
||||
glutSolidSphere(_boundingShape.getRadius(), BALL_SUBDIVISIONS, BALL_SUBDIVISIONS);
|
||||
|
||||
// draw a yellow sphere at the capsule startpoint
|
||||
glm::vec3 startPoint;
|
||||
_boundingShape.getStartPoint(startPoint);
|
||||
startPoint = startPoint - _translation;
|
||||
glm::vec3 axis = endPoint - startPoint;
|
||||
glTranslatef(-axis.x, -axis.y, -axis.z);
|
||||
glColor4f(0.8f, 0.8f, 0.6f, alpha);
|
||||
glutSolidSphere(_boundingShape.getRadius(), BALL_SUBDIVISIONS, BALL_SUBDIVISIONS);
|
||||
|
||||
// draw a green cylinder between the two points
|
||||
glm::vec3 origin(0.0f);
|
||||
glColor4f(0.6f, 0.8f, 0.6f, alpha);
|
||||
Avatar::renderJointConnectingCone( origin, axis, _boundingShape.getRadius(), _boundingShape.getRadius());
|
||||
|
||||
glPopMatrix();
|
||||
}
|
||||
|
||||
void Model::setBlendedVertices(const QVector<glm::vec3>& vertices, const QVector<glm::vec3>& normals) {
|
||||
if (_blendedVertexBuffers.isEmpty()) {
|
||||
return;
|
||||
|
|
|
@ -16,7 +16,6 @@
|
|||
#include <QObject>
|
||||
#include <QUrl>
|
||||
|
||||
#include <CapsuleShape.h>
|
||||
#include <PhysicalEntity.h>
|
||||
|
||||
#include <AnimationCache.h>
|
||||
|
@ -132,34 +131,15 @@ public:
|
|||
|
||||
const QList<AnimationHandlePointer>& getRunningAnimations() const { return _runningAnimations; }
|
||||
|
||||
// virtual override from PhysicalEntity
|
||||
// virtual overrides from PhysicalEntity
|
||||
virtual void buildShapes();
|
||||
|
||||
void resetShapePositions(); // DEBUG method
|
||||
virtual void updateShapePositions();
|
||||
|
||||
void renderJointCollisionShapes(float alpha);
|
||||
void renderBoundingCollisionShapes(float alpha);
|
||||
|
||||
bool findRayIntersection(const glm::vec3& origin, const glm::vec3& direction, float& distance) const;
|
||||
|
||||
/// \param shapes list of pointers shapes to test against Model
|
||||
/// \param collisions list to store collision results
|
||||
/// \return true if at least one shape collided agains Model
|
||||
bool findCollisions(const QVector<const Shape*> shapes, CollisionList& collisions);
|
||||
|
||||
bool findSphereCollisions(const glm::vec3& penetratorCenter, float penetratorRadius,
|
||||
CollisionList& collisions, int skipIndex = -1);
|
||||
|
||||
bool findPlaneCollisions(const glm::vec4& plane, CollisionList& collisions);
|
||||
|
||||
float getBoundingShapeRadius() const { return _boundingShape.getRadius(); }
|
||||
|
||||
/// Sets blended vertices computed in a separate thread.
|
||||
void setBlendedVertices(const QVector<glm::vec3>& vertices, const QVector<glm::vec3>& normals);
|
||||
|
||||
const CapsuleShape& getBoundingShape() const { return _boundingShape; }
|
||||
|
||||
protected:
|
||||
QSharedPointer<NetworkGeometry> _geometry;
|
||||
|
||||
|
@ -176,9 +156,6 @@ protected:
|
|||
|
||||
QVector<JointState> _jointStates;
|
||||
|
||||
CapsuleShape _boundingShape;
|
||||
glm::vec3 _boundingShapeLocalOffset;
|
||||
|
||||
class MeshState {
|
||||
public:
|
||||
QVector<glm::mat4> clusterMatrices;
|
||||
|
@ -222,8 +199,6 @@ protected:
|
|||
/// first free ancestor.
|
||||
float getLimbLength(int jointIndex) const;
|
||||
|
||||
void computeBoundingShape(const FBXGeometry& geometry);
|
||||
|
||||
private:
|
||||
|
||||
friend class AnimationHandle;
|
||||
|
|
|
@ -11,9 +11,9 @@
|
|||
|
||||
#include "PhysicalEntity.h"
|
||||
#include "Shape.h"
|
||||
#include "ShapeCollider.h"
|
||||
|
||||
PhysicalEntity::PhysicalEntity(EntityType type) :
|
||||
_entityType(type),
|
||||
PhysicalEntity::PhysicalEntity() :
|
||||
_translation(0.0f),
|
||||
_rotation(),
|
||||
_boundingRadius(0.0f),
|
||||
|
@ -61,4 +61,93 @@ void PhysicalEntity::clearShapes() {
|
|||
_shapes.clear();
|
||||
}
|
||||
|
||||
bool PhysicalEntity::findRayIntersection(const glm::vec3& origin, const glm::vec3& direction, float& distance) const {
|
||||
/* TODO: Andrew to make this work
|
||||
int numShapes = _shapes.size();
|
||||
float minDistance = FLT_MAX;
|
||||
for (int j = 0; j < numShapes; ++j) {
|
||||
const Shape* shape = _shapes[j];
|
||||
float thisDistance = FLT_MAX;
|
||||
if (shape && ShapeCollider::findRayIntersection(ourShape, origin, direction, thisDistance)) {
|
||||
if (thisDistance < minDistance) {
|
||||
minDistance = thisDistance;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (minDistance < FLT_MAX) {
|
||||
distance = minDistance;
|
||||
return true;
|
||||
}
|
||||
*/
|
||||
return false;
|
||||
}
|
||||
|
||||
bool PhysicalEntity::findCollisions(const QVector<const Shape*> shapes, CollisionList& collisions) {
|
||||
bool collided = false;
|
||||
int numTheirShapes = shapes.size();
|
||||
for (int i = 0; i < numTheirShapes; ++i) {
|
||||
const Shape* theirShape = shapes[i];
|
||||
if (!theirShape) {
|
||||
continue;
|
||||
}
|
||||
int numOurShapes = _shapes.size();
|
||||
for (int j = 0; j < numOurShapes; ++j) {
|
||||
const Shape* ourShape = _shapes[j];
|
||||
if (ourShape && ShapeCollider::collideShapes(theirShape, ourShape, collisions)) {
|
||||
collided = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
return collided;
|
||||
}
|
||||
|
||||
bool PhysicalEntity::findSphereCollisions(const glm::vec3& sphereCenter, float sphereRadius,
|
||||
CollisionList& collisions, int skipIndex) {
|
||||
bool collided = false;
|
||||
// TODO: Andrew to implement this or make it unecessary
|
||||
/*
|
||||
SphereShape sphere(sphereRadius, sphereCenter);
|
||||
const FBXGeometry& geometry = _geometry->getFBXGeometry();
|
||||
for (int i = 0; i < _shapes.size(); i++) {
|
||||
Shape* shape = _shapes[i];
|
||||
if (!shape) {
|
||||
continue;
|
||||
}
|
||||
const FBXJoint& joint = geometry.joints[i];
|
||||
if (joint.parentIndex != -1) {
|
||||
if (skipIndex != -1) {
|
||||
int ancestorIndex = joint.parentIndex;
|
||||
do {
|
||||
if (ancestorIndex == skipIndex) {
|
||||
goto outerContinue;
|
||||
}
|
||||
ancestorIndex = geometry.joints[ancestorIndex].parentIndex;
|
||||
|
||||
} while (ancestorIndex != -1);
|
||||
}
|
||||
}
|
||||
if (ShapeCollider::collideShapes(&sphere, shape, collisions)) {
|
||||
CollisionInfo* collision = collisions.getLastCollision();
|
||||
collision->_data = (void*)(this);
|
||||
collision->_intData = i;
|
||||
collided = true;
|
||||
}
|
||||
outerContinue: ;
|
||||
}
|
||||
*/
|
||||
return collided;
|
||||
}
|
||||
|
||||
bool PhysicalEntity::findPlaneCollisions(const glm::vec4& plane, CollisionList& collisions) {
|
||||
bool collided = false;
|
||||
PlaneShape planeShape(plane);
|
||||
for (int i = 0; i < _shapes.size(); i++) {
|
||||
if (_shapes[i] && ShapeCollider::collideShapes(&planeShape, _shapes[i], collisions)) {
|
||||
CollisionInfo* collision = collisions.getLastCollision();
|
||||
collision->_data = (void*)(this);
|
||||
collision->_intData = i;
|
||||
collided = true;
|
||||
}
|
||||
}
|
||||
return collided;
|
||||
}
|
||||
|
|
|
@ -17,6 +17,8 @@
|
|||
#include <glm/glm.hpp>
|
||||
#include <glm/gtc/quaternion.hpp>
|
||||
|
||||
#include "CollisionInfo.h"
|
||||
|
||||
class Shape;
|
||||
|
||||
// PhysicalEntity is the base class for anything that owns one or more Shapes that collide in a
|
||||
|
@ -26,12 +28,7 @@ class Shape;
|
|||
class PhysicalEntity {
|
||||
|
||||
public:
|
||||
enum EntityType {
|
||||
ENTITY_UNKNOWN,
|
||||
ENTITY_MODEL,
|
||||
};
|
||||
|
||||
PhysicalEntity(EntityType type = ENTITY_UNKNOWN);
|
||||
PhysicalEntity();
|
||||
virtual ~PhysicalEntity() {}
|
||||
|
||||
void setTranslation(const glm::vec3& translation);
|
||||
|
@ -41,8 +38,6 @@ public:
|
|||
const glm::quat& getRotation() const { return _rotation; }
|
||||
float getBoundingRadius() const { return _boundingRadius; }
|
||||
|
||||
EntityType getEntityType() const { return _entityType; }
|
||||
|
||||
void setShapeBackPointers();
|
||||
|
||||
void setEnableShapes(bool enable);
|
||||
|
@ -50,8 +45,12 @@ public:
|
|||
virtual void buildShapes() = 0;
|
||||
virtual void clearShapes();
|
||||
|
||||
bool findRayIntersection(const glm::vec3& origin, const glm::vec3& direction, float& distance) const;
|
||||
bool findCollisions(const QVector<const Shape*> shapes, CollisionList& collisions);
|
||||
bool findSphereCollisions(const glm::vec3& sphereCenter, float sphereRadius, CollisionList& collisions, int skipIndex);
|
||||
bool findPlaneCollisions(const glm::vec4& plane, CollisionList& collisions);
|
||||
|
||||
protected:
|
||||
EntityType _entityType;
|
||||
glm::vec3 _translation;
|
||||
glm::quat _rotation;
|
||||
float _boundingRadius;
|
||||
|
|
Loading…
Reference in a new issue