Merge pull request #4561 from sethalves/island

scaling hints to hash, larger collision shapes
This commit is contained in:
Andrew Meadows 2015-04-01 09:40:18 -07:00
commit e27f800c75
5 changed files with 111 additions and 35 deletions

View file

@ -21,9 +21,12 @@
#include "Shape.h" #include "Shape.h"
QHash<QString, float> COMMENT_SCALE_HINTS;
class OBJTokenizer { class OBJTokenizer {
public: public:
OBJTokenizer(QIODevice* device) : _device(device), _pushedBackToken(-1) { } OBJTokenizer(QIODevice* device);
enum SpecialToken { enum SpecialToken {
NO_TOKEN = -1, NO_TOKEN = -1,
NO_PUSHBACKED_TOKEN = -1, NO_PUSHBACKED_TOKEN = -1,
@ -46,6 +49,15 @@ private:
}; };
OBJTokenizer::OBJTokenizer(QIODevice* device) : _device(device), _pushedBackToken(-1) {
// This is a list of comments that exports use to hint at scaling
if (COMMENT_SCALE_HINTS.isEmpty()) {
COMMENT_SCALE_HINTS["This file uses centimeters as units"] = 1.0f / 100.0f;
COMMENT_SCALE_HINTS["This file uses millimeters as units"] = 1.0f / 1000.0f;
}
}
int OBJTokenizer::nextToken() { int OBJTokenizer::nextToken() {
if (_pushedBackToken != NO_PUSHBACKED_TOKEN) { if (_pushedBackToken != NO_PUSHBACKED_TOKEN) {
int token = _pushedBackToken; int token = _pushedBackToken;
@ -60,7 +72,7 @@ int OBJTokenizer::nextToken() {
} }
switch (ch) { switch (ch) {
case '#': { case '#': {
_comment = _device->readLine(); // skip the comment _comment = _device->readLine(); // stash comment for a future call to getComment
qDebug() << "COMMENT:" << _comment; qDebug() << "COMMENT:" << _comment;
return COMMENT_TOKEN; return COMMENT_TOKEN;
} }
@ -136,11 +148,15 @@ bool parseOBJGroup(OBJTokenizer &tokenizer, const QVariantHash& mapping,
while (true) { while (true) {
int tokenType = tokenizer.nextToken(); int tokenType = tokenizer.nextToken();
if (tokenType == OBJTokenizer::COMMENT_TOKEN) { if (tokenType == OBJTokenizer::COMMENT_TOKEN) {
if (tokenizer.getComment().contains("This file uses centimeters as units")) { // loop through the list of known comments which suggest a scaling factor.
scaleGuess = 1.0f / 100.0f; // if we find one, save the scaling hint into scaleGuess
QString comment = tokenizer.getComment();
QHashIterator<QString, float> i(COMMENT_SCALE_HINTS);
while (i.hasNext()) {
i.next();
if (comment.contains(i.key())) {
scaleGuess = i.value();
} }
if (tokenizer.getComment().contains("This file uses millimeters as units")) {
scaleGuess = 1.0f / 1000.0f;
} }
continue; continue;
} }

View file

@ -35,7 +35,7 @@ btCollisionShape* ShapeManager::getShape(const ShapeInfo& info) {
// Very small or large objects are not supported. // Very small or large objects are not supported.
float diagonal = 4.0f * glm::length2(info.getHalfExtents()); float diagonal = 4.0f * glm::length2(info.getHalfExtents());
const float MIN_SHAPE_DIAGONAL_SQUARED = 3.0e-4f; // 1 cm cube const float MIN_SHAPE_DIAGONAL_SQUARED = 3.0e-4f; // 1 cm cube
const float MAX_SHAPE_DIAGONAL_SQUARED = 3.0e4f; // 100 m cube const float MAX_SHAPE_DIAGONAL_SQUARED = 3.0e6f; // 1000 m cube
if (diagonal < MIN_SHAPE_DIAGONAL_SQUARED || diagonal > MAX_SHAPE_DIAGONAL_SQUARED) { if (diagonal < MIN_SHAPE_DIAGONAL_SQUARED || diagonal > MAX_SHAPE_DIAGONAL_SQUARED) {
// qDebug() << "ShapeManager::getShape -- not making shape due to size" << diagonal; // qDebug() << "ShapeManager::getShape -- not making shape due to size" << diagonal;
return NULL; return NULL;

View file

@ -38,6 +38,15 @@ bool vhacd::VHACDUtil::loadFBX(const QString filename, vhacd::LoadFBXResults *re
} }
std::cout << "-------------------\n";
foreach (const FBXMesh& mesh, geometry.meshes) {
foreach (const FBXMeshPart &meshPart, mesh.parts) {
std::cout << meshPart.triangleIndices.size() << " ";
}
}
std::cout << "\n";
//results->meshCount = geometry.meshes.count(); //results->meshCount = geometry.meshes.count();
// qDebug() << "read in" << geometry.meshes.count() << "meshes"; // qDebug() << "read in" << geometry.meshes.count() << "meshes";
@ -52,14 +61,29 @@ bool vhacd::VHACDUtil::loadFBX(const QString filename, vhacd::LoadFBXResults *re
vertices.append(glm::vec3(mesh.modelTransform * glm::vec4(vertex, 1.0f))); vertices.append(glm::vec3(mesh.modelTransform * glm::vec4(vertex, 1.0f)));
} }
//get the triangle indices for each mesh // get the triangle indices for each mesh
QVector<int> triangles; QVector<int> triangles;
foreach(FBXMeshPart part, mesh.parts){ foreach(FBXMeshPart meshPart, mesh.parts){
QVector<int> indices = part.triangleIndices; QVector<int> indices = meshPart.triangleIndices;
triangles += indices; triangles += indices;
unsigned int quadCount = meshPart.quadIndices.size() / 4;
for (unsigned int i = 0; i < quadCount; i++) {
unsigned int p0Index = meshPart.quadIndices[i * 4];
unsigned int p1Index = meshPart.quadIndices[i * 4 + 1];
unsigned int p2Index = meshPart.quadIndices[i * 4 + 2];
unsigned int p3Index = meshPart.quadIndices[i * 4 + 3];
// split each quad into two triangles
triangles.append(p0Index);
triangles.append(p1Index);
triangles.append(p2Index);
triangles.append(p0Index);
triangles.append(p2Index);
triangles.append(p3Index);
}
} }
//only read meshes with triangles // only read meshes with triangles
if (triangles.count() <= 0){ if (triangles.count() <= 0){
continue; continue;
} }
@ -131,15 +155,16 @@ void vhacd::VHACDUtil::fattenMeshes(vhacd::LoadFBXResults *meshes, vhacd::LoadFB
auto d1 = p2 - p0; auto d1 = p2 - p0;
auto cp = glm::cross(d0, d1); auto cp = glm::cross(d0, d1);
cp = 5.0f * glm::normalize(cp); cp = -2.0f * glm::normalize(cp);
auto p3 = p0 + cp; auto p3 = p0 + cp;
auto p4 = p1 + cp;
auto p5 = p2 + cp;
auto n = results->perMeshVertices.size(); auto n = results->perMeshVertices.size();
results->perMeshVertices[i] << p3 << p4 << p5; results->perMeshVertices[i] << p3;
results->perMeshTriangleIndices[i] << n << n+1 << n+2;
results->perMeshTriangleIndices[i] << triangles[j] << n << triangles[j + 1];
results->perMeshTriangleIndices[i] << triangles[j + 1] << n << triangles[j + 2];
results->perMeshTriangleIndices[i] << triangles[j + 2] << n << triangles[j];
} }
results->meshCount++; results->meshCount++;
@ -148,21 +173,26 @@ void vhacd::VHACDUtil::fattenMeshes(vhacd::LoadFBXResults *meshes, vhacd::LoadFB
bool vhacd::VHACDUtil::computeVHACD(vhacd::LoadFBXResults *meshes, VHACD::IVHACD::Parameters params, bool vhacd::VHACDUtil::computeVHACD(vhacd::LoadFBXResults *inMeshes, VHACD::IVHACD::Parameters params,
vhacd::ComputeResults *results, vhacd::ComputeResults *results,
int startMeshIndex, int endMeshIndex, float minimumMeshSize) const { int startMeshIndex, int endMeshIndex, float minimumMeshSize,
bool fattenFaces) const {
// vhacd::LoadFBXResults *meshes = new vhacd::LoadFBXResults; vhacd::LoadFBXResults *meshes = new vhacd::LoadFBXResults;
// combineMeshes(inMeshes, meshes); // combineMeshes(inMeshes, meshes);
// vhacd::LoadFBXResults *meshes = new vhacd::LoadFBXResults; // vhacd::LoadFBXResults *meshes = new vhacd::LoadFBXResults;
// fattenMeshes(inMeshes, meshes);
if (fattenFaces) {
fattenMeshes(inMeshes, meshes);
} else {
meshes = inMeshes;
}
VHACD::IVHACD * interfaceVHACD = VHACD::CreateVHACD(); VHACD::IVHACD * interfaceVHACD = VHACD::CreateVHACD();
int meshCount = meshes->meshCount; int meshCount = meshes->meshCount;
int count = 0; int count = 0;
std::cout << "Performing V-HACD computation on " << meshCount << " meshes ..... " << std::endl;
if (startMeshIndex < 0) { if (startMeshIndex < 0) {
startMeshIndex = 0; startMeshIndex = 0;
@ -171,6 +201,14 @@ bool vhacd::VHACDUtil::computeVHACD(vhacd::LoadFBXResults *meshes, VHACD::IVHACD
endMeshIndex = meshCount; endMeshIndex = meshCount;
} }
for (int i = 0; i < meshCount; i++) {
std::cout << meshes->perMeshTriangleIndices.at(i).size() << " ";
}
std::cout << "\n";
std::cout << "Performing V-HACD computation on " << endMeshIndex - startMeshIndex << " meshes ..... " << std::endl;
for (int i = startMeshIndex; i < endMeshIndex; i++){ for (int i = startMeshIndex; i < endMeshIndex; i++){
qDebug() << "--------------------"; qDebug() << "--------------------";
std::vector<glm::vec3> vertices = meshes->perMeshVertices.at(i).toStdVector(); std::vector<glm::vec3> vertices = meshes->perMeshVertices.at(i).toStdVector();
@ -211,7 +249,6 @@ bool vhacd::VHACDUtil::computeVHACD(vhacd::LoadFBXResults *meshes, VHACD::IVHACD
} }
hull.m_points = m_points_copy; hull.m_points = m_points_copy;
int *m_triangles_copy = new int[hull.m_nTriangles * 3]; int *m_triangles_copy = new int[hull.m_nTriangles * 3];
// std::copy(std::begin(hull.m_triangles), std::end(hull.m_triangles), std::begin(m_triangles_copy)); // std::copy(std::begin(hull.m_triangles), std::end(hull.m_triangles), std::begin(m_triangles_copy));
for (unsigned int i=0; i<hull.m_nTriangles * 3; i++) { for (unsigned int i=0; i<hull.m_nTriangles * 3; i++) {

View file

@ -43,7 +43,8 @@ namespace vhacd {
void combineMeshes(vhacd::LoadFBXResults *meshes, vhacd::LoadFBXResults *results) const; void combineMeshes(vhacd::LoadFBXResults *meshes, vhacd::LoadFBXResults *results) const;
void fattenMeshes(vhacd::LoadFBXResults *meshes, vhacd::LoadFBXResults *results) const; void fattenMeshes(vhacd::LoadFBXResults *meshes, vhacd::LoadFBXResults *results) const;
bool computeVHACD(vhacd::LoadFBXResults *meshes, VHACD::IVHACD::Parameters params, bool computeVHACD(vhacd::LoadFBXResults *meshes, VHACD::IVHACD::Parameters params,
vhacd::ComputeResults *results, int startMeshIndex, int endMeshIndex, float minimumMeshSize) const; vhacd::ComputeResults *results, int startMeshIndex, int endMeshIndex, float minimumMeshSize,
bool fattenFaces) const;
~VHACDUtil(); ~VHACDUtil();
}; };

View file

@ -92,6 +92,9 @@ VHACDUtilApp::VHACDUtilApp(int argc, char* argv[]) :
const QCommandLineOption outputOneMeshOption("1", "output hulls as single mesh"); const QCommandLineOption outputOneMeshOption("1", "output hulls as single mesh");
parser.addOption(outputOneMeshOption); parser.addOption(outputOneMeshOption);
const QCommandLineOption fattenFacesOption("f", "fatten faces");
parser.addOption(fattenFacesOption);
const QCommandLineOption inputFilenameOption("i", "input file", "filename.fbx"); const QCommandLineOption inputFilenameOption("i", "input file", "filename.fbx");
parser.addOption(inputFilenameOption); parser.addOption(inputFilenameOption);
@ -107,6 +110,15 @@ VHACDUtilApp::VHACDUtilApp(int argc, char* argv[]) :
const QCommandLineOption minimumMeshSizeOption("m", "minimum mesh size to consider", "0"); const QCommandLineOption minimumMeshSizeOption("m", "minimum mesh size to consider", "0");
parser.addOption(minimumMeshSizeOption); parser.addOption(minimumMeshSizeOption);
const QCommandLineOption vHacdResolutionOption("resolution", "v-hacd resolution", "100000");
parser.addOption(vHacdResolutionOption);
const QCommandLineOption vHacdDepthOption("depth", "v-hacd depth", "20");
parser.addOption(vHacdDepthOption);
const QCommandLineOption vHacdDeltaOption("delta", "v-hacd delta", "0.05");
parser.addOption(vHacdDeltaOption);
if (!parser.parse(QCoreApplication::arguments())) { if (!parser.parse(QCoreApplication::arguments())) {
qCritical() << parser.errorText() << endl; qCritical() << parser.errorText() << endl;
@ -119,17 +131,15 @@ VHACDUtilApp::VHACDUtilApp(int argc, char* argv[]) :
Q_UNREACHABLE(); Q_UNREACHABLE();
} }
bool fattenFaces = parser.isSet(fattenFacesOption);
bool outputOneMesh = parser.isSet(outputOneMeshOption); bool outputOneMesh = parser.isSet(outputOneMeshOption);
QString inputFilename; QString inputFilename;
// check for an assignment pool passed on the command line or in the config
if (parser.isSet(inputFilenameOption)) { if (parser.isSet(inputFilenameOption)) {
inputFilename = parser.value(inputFilenameOption); inputFilename = parser.value(inputFilenameOption);
} }
QString outputFilename; QString outputFilename;
// check for an assignment pool passed on the command line or in the config
if (parser.isSet(outputFilenameOption)) { if (parser.isSet(outputFilenameOption)) {
outputFilename = parser.value(outputFilenameOption); outputFilename = parser.value(outputFilenameOption);
} }
@ -148,30 +158,43 @@ VHACDUtilApp::VHACDUtilApp(int argc, char* argv[]) :
} }
int startMeshIndex = -1; int startMeshIndex = -1;
// check for an assignment pool passed on the command line or in the config
if (parser.isSet(startMeshIndexOption)) { if (parser.isSet(startMeshIndexOption)) {
startMeshIndex = parser.value(startMeshIndexOption).toInt(); startMeshIndex = parser.value(startMeshIndexOption).toInt();
} }
int endMeshIndex = -1; int endMeshIndex = -1;
// check for an assignment pool passed on the command line or in the config
if (parser.isSet(endMeshIndexOption)) { if (parser.isSet(endMeshIndexOption)) {
endMeshIndex = parser.value(endMeshIndexOption).toInt(); endMeshIndex = parser.value(endMeshIndexOption).toInt();
} }
float minimumMeshSize = 0.0f; float minimumMeshSize = 0.0f;
// check for an assignment pool passed on the command line or in the config
if (parser.isSet(minimumMeshSizeOption)) { if (parser.isSet(minimumMeshSizeOption)) {
minimumMeshSize = parser.value(minimumMeshSizeOption).toFloat(); minimumMeshSize = parser.value(minimumMeshSizeOption).toFloat();
} }
int vHacdResolution = 100000;
if (parser.isSet(vHacdResolutionOption)) {
vHacdResolution = parser.value(vHacdResolutionOption).toInt();
}
int vHacdDepth = 20;
if (parser.isSet(vHacdDepthOption)) {
vHacdDepth = parser.value(vHacdDepthOption).toInt();
}
float vHacdDelta = 0.05;
if (parser.isSet(vHacdDeltaOption)) {
vHacdDelta = parser.value(vHacdDeltaOption).toFloat();
}
//set parameters for V-HACD //set parameters for V-HACD
params.m_callback = &pCallBack; //progress callback params.m_callback = &pCallBack; //progress callback
params.m_resolution = 100000; // 100000 params.m_resolution = vHacdResolution; // 100000
params.m_depth = 20; // 20 params.m_depth = vHacdDepth; // 20
params.m_concavity = 0.001; // 0.001 params.m_concavity = 0.001; // 0.001
params.m_delta = 0.05; // 0.05 params.m_delta = vHacdDelta; // 0.05
params.m_planeDownsampling = 4; // 4 params.m_planeDownsampling = 4; // 4
params.m_convexhullDownsampling = 4; // 4 params.m_convexhullDownsampling = 4; // 4
params.m_alpha = 0.05; // 0.05 // controls the bias toward clipping along symmetry planes params.m_alpha = 0.05; // 0.05 // controls the bias toward clipping along symmetry planes
@ -198,8 +221,7 @@ VHACDUtilApp::VHACDUtilApp(int argc, char* argv[]) :
//perform vhacd computation //perform vhacd computation
begin = std::chrono::high_resolution_clock::now(); begin = std::chrono::high_resolution_clock::now();
if (!vUtil.computeVHACD(&fbx, params, &results, startMeshIndex, endMeshIndex, minimumMeshSize, fattenFaces)) {
if (!vUtil.computeVHACD(&fbx, params, &results, startMeshIndex, endMeshIndex, minimumMeshSize)) {
cout << "Compute Failed..."; cout << "Compute Failed...";
} }
end = std::chrono::high_resolution_clock::now(); end = std::chrono::high_resolution_clock::now();