First version with own implementation of SSIM.

This commit is contained in:
nissim.hadar 2017-11-25 03:01:15 -08:00
parent 2a062ad772
commit e20ac9aa94

View file

@ -0,0 +1,122 @@
//
// ImageComparer.cpp
//
// Created by Nissim Hadar on 18 Nov 2017.
// Copyright 2013 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "ImageComparer.h"
#include <glm/glm.hpp>
// Computes SSIM - see https://en.wikipedia.org/wiki/Structural_similarity
// The value is computed for the luminence component and the maximum value is returned
double ImageComparer::compareImages(QImage resultImage, QImage expectedImage) const {
const double K1{ 0.01 };
const double K2{ 0.03 };
// Make sure the image is 8 bits per colour
QImage::Format format = expectedImage.format();
if (format != QImage::Format::Format_RGB32) {
throw -1;
}
const int L = 255; // (2^number of bits per pixel) - 1
const double c1 = pow((K1 * L), 2);
const double c2 = pow((K2 * L), 2);
// Coefficients for luminosity calculation
const double RED_COEFFICIENT = 0.212655f;
const double GREEN_COEFFICIENT = 0.715158f;
const double BLUE_COEFFICIENT = 0.072187f;
// First go over all full 8x8 blocks
// This is done in 3 loops
// 1) Read the pixels into a linear array (an optimization)
// 2) Calculate mean
// 3) Calculate variance and covariance
//
// p - pixel in expected image
// q - pixel in result image
//
const int WIN_SIZE = 8;
int x{ 0 }; // column index (start of block)
int y{ 0 }; // row index (start of block
double ssimMax{ 0.0 };
int w = expectedImage.width();
int h = expectedImage.height();
while (x < expectedImage.width()) {
int lastX = x + WIN_SIZE;
if (lastX > expectedImage.width()) {
x -= (lastX - expectedImage.width());
}
while (y < expectedImage.height()) {
int lastY = y + WIN_SIZE;
if (lastY > expectedImage.height()) {
y -= (lastY - expectedImage.height());
}
// Collect pixels
int i{ 0 };
double p[WIN_SIZE * WIN_SIZE];
double q[WIN_SIZE * WIN_SIZE];
for (int xx = 0; xx < WIN_SIZE; ++xx) {
for (int yy = 0; yy < WIN_SIZE; ++yy) {
// Get pixels
QRgb pixelP = expectedImage.pixel(QPoint(xx, yy));
QRgb pixelQ = resultImage.pixel(QPoint(xx, yy));
// Convert to vec3
p[i] =
RED_COEFFICIENT * qRed(pixelP) + GREEN_COEFFICIENT * qGreen(pixelP) + BLUE_COEFFICIENT * qBlue(pixelP);
q[i] =
RED_COEFFICIENT * qRed(pixelQ) + GREEN_COEFFICIENT * qGreen(pixelQ) + BLUE_COEFFICIENT * qBlue(pixelQ);
++i;
}
}
// Calculate mean
double mP{ 0.0 }; // average value of expected pixel
double mQ{ 0.0 }; // average value of result pixel
for (int j = 0; j < WIN_SIZE * WIN_SIZE; ++j) {
mP += p[j];
mQ += q[j];
}
mP /= (WIN_SIZE * WIN_SIZE);
mQ /= (WIN_SIZE * WIN_SIZE);
// Calculate variance and covariance
double sigsqP{ 0.0 };
double sigsqQ{ 0.0 };
double sigPQ{ 0.0 };
for (int j = 0; j < WIN_SIZE * WIN_SIZE; ++j) {
sigsqP += (p[j] - mP) * (p[j] - mP);
sigsqQ += (q[j] - mQ) * (q[j] - mQ);
sigPQ += (p[j] - mP) * (q[j] - mQ);
}
sigsqP /= (WIN_SIZE * WIN_SIZE);
sigsqQ /= (WIN_SIZE * WIN_SIZE);
sigPQ /= (WIN_SIZE * WIN_SIZE);
double numerator = (2.0f * mP * mQ + c1) * (2.0f * sigPQ + c2);
double denominator = (mP * mP + mQ * mQ + c1) * (sigsqP + sigsqQ + c2);
double ssim = numerator / denominator;
if (ssim > ssimMax) {
ssimMax = ssim;
}
y += WIN_SIZE;
}
x += WIN_SIZE;
}
return ssimMax;
};