merge upstream/master into andrew/inertia

Conflicts:
	interface/src/Application.cpp
This commit is contained in:
Andrew Meadows 2014-04-17 08:40:25 -07:00
commit db717b980b
18 changed files with 2074 additions and 31 deletions

View file

@ -0,0 +1,711 @@
//
// audioReflectorTools.js
// hifi
//
// Created by Brad Hefta-Gaub on 2/14/14.
// Copyright (c) 2014 HighFidelity, Inc. All rights reserved.
//
// Tools for manipulating the attributes of the AudioReflector behavior
//
//
var delayScale = 100.0;
var fanoutScale = 10.0;
var speedScale = 20;
var factorScale = 5.0;
var localFactorScale = 1.0;
var reflectiveScale = 100.0;
var diffusionScale = 100.0;
var absorptionScale = 100.0;
var combFilterScale = 50.0;
// these three properties are bound together, if you change one, the others will also change
var reflectiveRatio = AudioReflector.getReflectiveRatio();
var diffusionRatio = AudioReflector.getDiffusionRatio();
var absorptionRatio = AudioReflector.getAbsorptionRatio();
var reflectiveThumbX;
var diffusionThumbX;
var absorptionThumbX;
function setReflectiveRatio(reflective) {
var total = diffusionRatio + absorptionRatio + (reflective / reflectiveScale);
diffusionRatio = diffusionRatio / total;
absorptionRatio = absorptionRatio / total;
reflectiveRatio = (reflective / reflectiveScale) / total;
updateRatioValues();
}
function setDiffusionRatio(diffusion) {
var total = (diffusion / diffusionScale) + absorptionRatio + reflectiveRatio;
diffusionRatio = (diffusion / diffusionScale) / total;
absorptionRatio = absorptionRatio / total;
reflectiveRatio = reflectiveRatio / total;
updateRatioValues();
}
function setAbsorptionRatio(absorption) {
var total = diffusionRatio + (absorption / absorptionScale) + reflectiveRatio;
diffusionRatio = diffusionRatio / total;
absorptionRatio = (absorption / absorptionScale) / total;
reflectiveRatio = reflectiveRatio / total;
updateRatioValues();
}
function updateRatioSliders() {
reflectiveThumbX = reflectiveMinThumbX + ((reflectiveMaxThumbX - reflectiveMinThumbX) * reflectiveRatio);
diffusionThumbX = diffusionMinThumbX + ((diffusionMaxThumbX - diffusionMinThumbX) * diffusionRatio);
absorptionThumbX = absorptionMinThumbX + ((absorptionMaxThumbX - absorptionMinThumbX) * absorptionRatio);
Overlays.editOverlay(reflectiveThumb, { x: reflectiveThumbX } );
Overlays.editOverlay(diffusionThumb, { x: diffusionThumbX } );
Overlays.editOverlay(absorptionThumb, { x: absorptionThumbX } );
}
function updateRatioValues() {
AudioReflector.setReflectiveRatio(reflectiveRatio);
AudioReflector.setDiffusionRatio(diffusionRatio);
AudioReflector.setAbsorptionRatio(absorptionRatio);
}
var topY = 250;
var sliderHeight = 35;
var delayY = topY;
topY += sliderHeight;
var delayLabel = Overlays.addOverlay("text", {
x: 40,
y: delayY,
width: 60,
height: sliderHeight,
color: { red: 0, green: 0, blue: 0},
textColor: { red: 255, green: 255, blue: 255},
topMargin: 12,
leftMargin: 5,
text: "Delay:"
});
var delaySlider = Overlays.addOverlay("image", {
// alternate form of expressing bounds
bounds: { x: 100, y: delayY, width: 150, height: sliderHeight},
subImage: { x: 46, y: 0, width: 200, height: 71 },
imageURL: "https://s3-us-west-1.amazonaws.com/highfidelity-public/images/slider.png",
color: { red: 255, green: 255, blue: 255},
alpha: 1
});
var delayMinThumbX = 110;
var delayMaxThumbX = delayMinThumbX + 110;
var delayThumbX = delayMinThumbX + ((delayMaxThumbX - delayMinThumbX) * (AudioReflector.getPreDelay() / delayScale));
var delayThumb = Overlays.addOverlay("image", {
x: delayThumbX,
y: delayY + 9,
width: 18,
height: 17,
imageURL: "https://s3-us-west-1.amazonaws.com/highfidelity-public/images/thumb.png",
color: { red: 255, green: 0, blue: 0},
alpha: 1
});
var fanoutY = topY;
topY += sliderHeight;
var fanoutLabel = Overlays.addOverlay("text", {
x: 40,
y: fanoutY,
width: 60,
height: sliderHeight,
color: { red: 0, green: 0, blue: 0},
textColor: { red: 255, green: 255, blue: 255},
topMargin: 12,
leftMargin: 5,
text: "Fanout:"
});
var fanoutSlider = Overlays.addOverlay("image", {
// alternate form of expressing bounds
bounds: { x: 100, y: fanoutY, width: 150, height: sliderHeight},
subImage: { x: 46, y: 0, width: 200, height: 71 },
imageURL: "https://s3-us-west-1.amazonaws.com/highfidelity-public/images/slider.png",
color: { red: 255, green: 255, blue: 255},
alpha: 1
});
var fanoutMinThumbX = 110;
var fanoutMaxThumbX = fanoutMinThumbX + 110;
var fanoutThumbX = fanoutMinThumbX + ((fanoutMaxThumbX - fanoutMinThumbX) * (AudioReflector.getDiffusionFanout() / fanoutScale));
var fanoutThumb = Overlays.addOverlay("image", {
x: fanoutThumbX,
y: fanoutY + 9,
width: 18,
height: 17,
imageURL: "https://s3-us-west-1.amazonaws.com/highfidelity-public/images/thumb.png",
color: { red: 255, green: 255, blue: 0},
alpha: 1
});
var speedY = topY;
topY += sliderHeight;
var speedLabel = Overlays.addOverlay("text", {
x: 40,
y: speedY,
width: 60,
height: sliderHeight,
color: { red: 0, green: 0, blue: 0},
textColor: { red: 255, green: 255, blue: 255},
topMargin: 6,
leftMargin: 5,
text: "Speed\nin ms/m:"
});
var speedSlider = Overlays.addOverlay("image", {
// alternate form of expressing bounds
bounds: { x: 100, y: speedY, width: 150, height: sliderHeight},
subImage: { x: 46, y: 0, width: 200, height: 71 },
imageURL: "https://s3-us-west-1.amazonaws.com/highfidelity-public/images/slider.png",
color: { red: 255, green: 255, blue: 255},
alpha: 1
});
var speedMinThumbX = 110;
var speedMaxThumbX = speedMinThumbX + 110;
var speedThumbX = speedMinThumbX + ((speedMaxThumbX - speedMinThumbX) * (AudioReflector.getSoundMsPerMeter() / speedScale));
var speedThumb = Overlays.addOverlay("image", {
x: speedThumbX,
y: speedY+9,
width: 18,
height: 17,
imageURL: "https://s3-us-west-1.amazonaws.com/highfidelity-public/images/thumb.png",
color: { red: 0, green: 255, blue: 0},
alpha: 1
});
var factorY = topY;
topY += sliderHeight;
var factorLabel = Overlays.addOverlay("text", {
x: 40,
y: factorY,
width: 60,
height: sliderHeight,
color: { red: 0, green: 0, blue: 0},
textColor: { red: 255, green: 255, blue: 255},
topMargin: 6,
leftMargin: 5,
text: "Attenuation\nFactor:"
});
var factorSlider = Overlays.addOverlay("image", {
// alternate form of expressing bounds
bounds: { x: 100, y: factorY, width: 150, height: sliderHeight},
subImage: { x: 46, y: 0, width: 200, height: 71 },
imageURL: "https://s3-us-west-1.amazonaws.com/highfidelity-public/images/slider.png",
color: { red: 255, green: 255, blue: 255},
alpha: 1
});
var factorMinThumbX = 110;
var factorMaxThumbX = factorMinThumbX + 110;
var factorThumbX = factorMinThumbX + ((factorMaxThumbX - factorMinThumbX) * (AudioReflector.getDistanceAttenuationScalingFactor() / factorScale));
var factorThumb = Overlays.addOverlay("image", {
x: factorThumbX,
y: factorY+9,
width: 18,
height: 17,
imageURL: "https://s3-us-west-1.amazonaws.com/highfidelity-public/images/thumb.png",
color: { red: 0, green: 0, blue: 255},
alpha: 1
});
var localFactorY = topY;
topY += sliderHeight;
var localFactorLabel = Overlays.addOverlay("text", {
x: 40,
y: localFactorY,
width: 60,
height: sliderHeight,
color: { red: 0, green: 0, blue: 0},
textColor: { red: 255, green: 255, blue: 255},
topMargin: 6,
leftMargin: 5,
text: "Local\nFactor:"
});
var localFactorSlider = Overlays.addOverlay("image", {
// alternate form of expressing bounds
bounds: { x: 100, y: localFactorY, width: 150, height: sliderHeight},
subImage: { x: 46, y: 0, width: 200, height: 71 },
imageURL: "https://s3-us-west-1.amazonaws.com/highfidelity-public/images/slider.png",
color: { red: 255, green: 255, blue: 255},
alpha: 1
});
var localFactorMinThumbX = 110;
var localFactorMaxThumbX = localFactorMinThumbX + 110;
var localFactorThumbX = localFactorMinThumbX + ((localFactorMaxThumbX - localFactorMinThumbX) * (AudioReflector.getLocalAudioAttenuationFactor() / localFactorScale));
var localFactorThumb = Overlays.addOverlay("image", {
x: localFactorThumbX,
y: localFactorY+9,
width: 18,
height: 17,
imageURL: "https://s3-us-west-1.amazonaws.com/highfidelity-public/images/thumb.png",
color: { red: 0, green: 128, blue: 128},
alpha: 1
});
var combFilterY = topY;
topY += sliderHeight;
var combFilterLabel = Overlays.addOverlay("text", {
x: 40,
y: combFilterY,
width: 60,
height: sliderHeight,
color: { red: 0, green: 0, blue: 0},
textColor: { red: 255, green: 255, blue: 255},
topMargin: 6,
leftMargin: 5,
text: "Comb Filter\nWindow:"
});
var combFilterSlider = Overlays.addOverlay("image", {
// alternate form of expressing bounds
bounds: { x: 100, y: combFilterY, width: 150, height: sliderHeight},
subImage: { x: 46, y: 0, width: 200, height: 71 },
imageURL: "https://s3-us-west-1.amazonaws.com/highfidelity-public/images/slider.png",
color: { red: 255, green: 255, blue: 255},
alpha: 1
});
var combFilterMinThumbX = 110;
var combFilterMaxThumbX = combFilterMinThumbX + 110;
var combFilterThumbX = combFilterMinThumbX + ((combFilterMaxThumbX - combFilterMinThumbX) * (AudioReflector.getCombFilterWindow() / combFilterScale));
var combFilterThumb = Overlays.addOverlay("image", {
x: combFilterThumbX,
y: combFilterY+9,
width: 18,
height: 17,
imageURL: "https://s3-us-west-1.amazonaws.com/highfidelity-public/images/thumb.png",
color: { red: 128, green: 128, blue: 0},
alpha: 1
});
var reflectiveY = topY;
topY += sliderHeight;
var reflectiveLabel = Overlays.addOverlay("text", {
x: 40,
y: reflectiveY,
width: 60,
height: sliderHeight,
color: { red: 0, green: 0, blue: 0},
textColor: { red: 255, green: 255, blue: 255},
topMargin: 6,
leftMargin: 5,
text: "Reflective\nRatio:"
});
var reflectiveSlider = Overlays.addOverlay("image", {
// alternate form of expressing bounds
bounds: { x: 100, y: reflectiveY, width: 150, height: sliderHeight},
subImage: { x: 46, y: 0, width: 200, height: 71 },
imageURL: "https://s3-us-west-1.amazonaws.com/highfidelity-public/images/slider.png",
color: { red: 255, green: 255, blue: 255},
alpha: 1
});
var reflectiveMinThumbX = 110;
var reflectiveMaxThumbX = reflectiveMinThumbX + 110;
reflectiveThumbX = reflectiveMinThumbX + ((reflectiveMaxThumbX - reflectiveMinThumbX) * AudioReflector.getReflectiveRatio());
var reflectiveThumb = Overlays.addOverlay("image", {
x: reflectiveThumbX,
y: reflectiveY+9,
width: 18,
height: 17,
imageURL: "https://s3-us-west-1.amazonaws.com/highfidelity-public/images/thumb.png",
color: { red: 255, green: 255, blue: 255},
alpha: 1
});
var diffusionY = topY;
topY += sliderHeight;
var diffusionLabel = Overlays.addOverlay("text", {
x: 40,
y: diffusionY,
width: 60,
height: sliderHeight,
color: { red: 0, green: 0, blue: 0},
textColor: { red: 255, green: 255, blue: 255},
topMargin: 6,
leftMargin: 5,
text: "Diffusion\nRatio:"
});
var diffusionSlider = Overlays.addOverlay("image", {
// alternate form of expressing bounds
bounds: { x: 100, y: diffusionY, width: 150, height: sliderHeight},
subImage: { x: 46, y: 0, width: 200, height: 71 },
imageURL: "https://s3-us-west-1.amazonaws.com/highfidelity-public/images/slider.png",
color: { red: 255, green: 255, blue: 255},
alpha: 1
});
var diffusionMinThumbX = 110;
var diffusionMaxThumbX = diffusionMinThumbX + 110;
diffusionThumbX = diffusionMinThumbX + ((diffusionMaxThumbX - diffusionMinThumbX) * AudioReflector.getDiffusionRatio());
var diffusionThumb = Overlays.addOverlay("image", {
x: diffusionThumbX,
y: diffusionY+9,
width: 18,
height: 17,
imageURL: "https://s3-us-west-1.amazonaws.com/highfidelity-public/images/thumb.png",
color: { red: 0, green: 255, blue: 255},
alpha: 1
});
var absorptionY = topY;
topY += sliderHeight;
var absorptionLabel = Overlays.addOverlay("text", {
x: 40,
y: absorptionY,
width: 60,
height: sliderHeight,
color: { red: 0, green: 0, blue: 0},
textColor: { red: 255, green: 255, blue: 255},
topMargin: 6,
leftMargin: 5,
text: "Absorption\nRatio:"
});
var absorptionSlider = Overlays.addOverlay("image", {
// alternate form of expressing bounds
bounds: { x: 100, y: absorptionY, width: 150, height: sliderHeight},
subImage: { x: 46, y: 0, width: 200, height: 71 },
imageURL: "https://s3-us-west-1.amazonaws.com/highfidelity-public/images/slider.png",
color: { red: 255, green: 255, blue: 255},
alpha: 1
});
var absorptionMinThumbX = 110;
var absorptionMaxThumbX = absorptionMinThumbX + 110;
absorptionThumbX = absorptionMinThumbX + ((absorptionMaxThumbX - absorptionMinThumbX) * AudioReflector.getAbsorptionRatio());
var absorptionThumb = Overlays.addOverlay("image", {
x: absorptionThumbX,
y: absorptionY+9,
width: 18,
height: 17,
imageURL: "https://s3-us-west-1.amazonaws.com/highfidelity-public/images/thumb.png",
color: { red: 255, green: 0, blue: 255},
alpha: 1
});
// When our script shuts down, we should clean up all of our overlays
function scriptEnding() {
Overlays.deleteOverlay(factorLabel);
Overlays.deleteOverlay(factorThumb);
Overlays.deleteOverlay(factorSlider);
Overlays.deleteOverlay(combFilterLabel);
Overlays.deleteOverlay(combFilterThumb);
Overlays.deleteOverlay(combFilterSlider);
Overlays.deleteOverlay(localFactorLabel);
Overlays.deleteOverlay(localFactorThumb);
Overlays.deleteOverlay(localFactorSlider);
Overlays.deleteOverlay(speedLabel);
Overlays.deleteOverlay(speedThumb);
Overlays.deleteOverlay(speedSlider);
Overlays.deleteOverlay(delayLabel);
Overlays.deleteOverlay(delayThumb);
Overlays.deleteOverlay(delaySlider);
Overlays.deleteOverlay(fanoutLabel);
Overlays.deleteOverlay(fanoutThumb);
Overlays.deleteOverlay(fanoutSlider);
Overlays.deleteOverlay(reflectiveLabel);
Overlays.deleteOverlay(reflectiveThumb);
Overlays.deleteOverlay(reflectiveSlider);
Overlays.deleteOverlay(diffusionLabel);
Overlays.deleteOverlay(diffusionThumb);
Overlays.deleteOverlay(diffusionSlider);
Overlays.deleteOverlay(absorptionLabel);
Overlays.deleteOverlay(absorptionThumb);
Overlays.deleteOverlay(absorptionSlider);
}
Script.scriptEnding.connect(scriptEnding);
var count = 0;
// Our update() function is called at approximately 60fps, and we will use it to animate our various overlays
function update(deltaTime) {
count++;
}
Script.update.connect(update);
// The slider is handled in the mouse event callbacks.
var movingSliderDelay = false;
var movingSliderFanout = false;
var movingSliderSpeed = false;
var movingSliderFactor = false;
var movingSliderCombFilter = false;
var movingSliderLocalFactor = false;
var movingSliderReflective = false;
var movingSliderDiffusion = false;
var movingSliderAbsorption = false;
var thumbClickOffsetX = 0;
function mouseMoveEvent(event) {
if (movingSliderDelay) {
newThumbX = event.x - thumbClickOffsetX;
if (newThumbX < delayMinThumbX) {
newThumbX = delayMinThumbX;
}
if (newThumbX > delayMaxThumbX) {
newThumbX = delayMaxThumbX;
}
Overlays.editOverlay(delayThumb, { x: newThumbX } );
var delay = ((newThumbX - delayMinThumbX) / (delayMaxThumbX - delayMinThumbX)) * delayScale;
AudioReflector.setPreDelay(delay);
}
if (movingSliderFanout) {
newThumbX = event.x - thumbClickOffsetX;
if (newThumbX < fanoutMinThumbX) {
newThumbX = fanoutMinThumbX;
}
if (newThumbX > fanoutMaxThumbX) {
newThumbX = fanoutMaxThumbX;
}
Overlays.editOverlay(fanoutThumb, { x: newThumbX } );
var fanout = Math.round(((newThumbX - fanoutMinThumbX) / (fanoutMaxThumbX - fanoutMinThumbX)) * fanoutScale);
AudioReflector.setDiffusionFanout(fanout);
}
if (movingSliderSpeed) {
newThumbX = event.x - thumbClickOffsetX;
if (newThumbX < speedMinThumbX) {
newThumbX = speedMminThumbX;
}
if (newThumbX > speedMaxThumbX) {
newThumbX = speedMaxThumbX;
}
Overlays.editOverlay(speedThumb, { x: newThumbX } );
var speed = ((newThumbX - speedMinThumbX) / (speedMaxThumbX - speedMinThumbX)) * speedScale;
AudioReflector.setSoundMsPerMeter(speed);
}
if (movingSliderFactor) {
newThumbX = event.x - thumbClickOffsetX;
if (newThumbX < factorMinThumbX) {
newThumbX = factorMminThumbX;
}
if (newThumbX > factorMaxThumbX) {
newThumbX = factorMaxThumbX;
}
Overlays.editOverlay(factorThumb, { x: newThumbX } );
var factor = ((newThumbX - factorMinThumbX) / (factorMaxThumbX - factorMinThumbX)) * factorScale;
AudioReflector.setDistanceAttenuationScalingFactor(factor);
}
if (movingSliderCombFilter) {
newThumbX = event.x - thumbClickOffsetX;
if (newThumbX < combFilterMinThumbX) {
newThumbX = combFilterMminThumbX;
}
if (newThumbX > combFilterMaxThumbX) {
newThumbX = combFilterMaxThumbX;
}
Overlays.editOverlay(combFilterThumb, { x: newThumbX } );
var combFilter = ((newThumbX - combFilterMinThumbX) / (combFilterMaxThumbX - combFilterMinThumbX)) * combFilterScale;
AudioReflector.setCombFilterWindow(combFilter);
}
if (movingSliderLocalFactor) {
newThumbX = event.x - thumbClickOffsetX;
if (newThumbX < localFactorMinThumbX) {
newThumbX = localFactorMminThumbX;
}
if (newThumbX > localFactorMaxThumbX) {
newThumbX = localFactorMaxThumbX;
}
Overlays.editOverlay(localFactorThumb, { x: newThumbX } );
var localFactor = ((newThumbX - localFactorMinThumbX) / (localFactorMaxThumbX - localFactorMinThumbX)) * localFactorScale;
AudioReflector.setLocalAudioAttenuationFactor(localFactor);
}
if (movingSliderAbsorption) {
newThumbX = event.x - thumbClickOffsetX;
if (newThumbX < absorptionMinThumbX) {
newThumbX = absorptionMminThumbX;
}
if (newThumbX > absorptionMaxThumbX) {
newThumbX = absorptionMaxThumbX;
}
Overlays.editOverlay(absorptionThumb, { x: newThumbX } );
var absorption = ((newThumbX - absorptionMinThumbX) / (absorptionMaxThumbX - absorptionMinThumbX)) * absorptionScale;
setAbsorptionRatio(absorption);
}
if (movingSliderReflective) {
newThumbX = event.x - thumbClickOffsetX;
if (newThumbX < reflectiveMinThumbX) {
newThumbX = reflectiveMminThumbX;
}
if (newThumbX > reflectiveMaxThumbX) {
newThumbX = reflectiveMaxThumbX;
}
Overlays.editOverlay(reflectiveThumb, { x: newThumbX } );
var reflective = ((newThumbX - reflectiveMinThumbX) / (reflectiveMaxThumbX - reflectiveMinThumbX)) * reflectiveScale;
setReflectiveRatio(reflective);
}
if (movingSliderDiffusion) {
newThumbX = event.x - thumbClickOffsetX;
if (newThumbX < diffusionMinThumbX) {
newThumbX = diffusionMminThumbX;
}
if (newThumbX > diffusionMaxThumbX) {
newThumbX = diffusionMaxThumbX;
}
Overlays.editOverlay(diffusionThumb, { x: newThumbX } );
var diffusion = ((newThumbX - diffusionMinThumbX) / (diffusionMaxThumbX - diffusionMinThumbX)) * diffusionScale;
setDiffusionRatio(diffusion);
}
}
// we also handle click detection in our mousePressEvent()
function mousePressEvent(event) {
var clickedOverlay = Overlays.getOverlayAtPoint({x: event.x, y: event.y});
if (clickedOverlay == delayThumb) {
movingSliderDelay = true;
thumbClickOffsetX = event.x - delayThumbX;
}
if (clickedOverlay == fanoutThumb) {
movingSliderFanout = true;
thumbClickOffsetX = event.x - fanoutThumbX;
}
if (clickedOverlay == speedThumb) {
movingSliderSpeed = true;
thumbClickOffsetX = event.x - speedThumbX;
}
if (clickedOverlay == factorThumb) {
movingSliderFactor = true;
thumbClickOffsetX = event.x - factorThumbX;
}
if (clickedOverlay == localFactorThumb) {
movingSliderLocalFactor = true;
thumbClickOffsetX = event.x - localFactorThumbX;
}
if (clickedOverlay == combFilterThumb) {
movingSliderCombFilter = true;
thumbClickOffsetX = event.x - combFilterThumbX;
}
if (clickedOverlay == diffusionThumb) {
movingSliderDiffusion = true;
thumbClickOffsetX = event.x - diffusionThumbX;
}
if (clickedOverlay == absorptionThumb) {
movingSliderAbsorption = true;
thumbClickOffsetX = event.x - absorptionThumbX;
}
if (clickedOverlay == reflectiveThumb) {
movingSliderReflective = true;
thumbClickOffsetX = event.x - reflectiveThumbX;
}
}
function mouseReleaseEvent(event) {
if (movingSliderDelay) {
movingSliderDelay = false;
var delay = ((newThumbX - delayMinThumbX) / (delayMaxThumbX - delayMinThumbX)) * delayScale;
AudioReflector.setPreDelay(delay);
delayThumbX = newThumbX;
}
if (movingSliderFanout) {
movingSliderFanout = false;
var fanout = Math.round(((newThumbX - fanoutMinThumbX) / (fanoutMaxThumbX - fanoutMinThumbX)) * fanoutScale);
AudioReflector.setDiffusionFanout(fanout);
fanoutThumbX = newThumbX;
}
if (movingSliderSpeed) {
movingSliderSpeed = false;
var speed = ((newThumbX - speedMinThumbX) / (speedMaxThumbX - speedMinThumbX)) * speedScale;
AudioReflector.setSoundMsPerMeter(speed);
speedThumbX = newThumbX;
}
if (movingSliderFactor) {
movingSliderFactor = false;
var factor = ((newThumbX - factorMinThumbX) / (factorMaxThumbX - factorMinThumbX)) * factorScale;
AudioReflector.setDistanceAttenuationScalingFactor(factor);
factorThumbX = newThumbX;
}
if (movingSliderCombFilter) {
movingSliderCombFilter = false;
var combFilter = ((newThumbX - combFilterMinThumbX) / (combFilterMaxThumbX - combFilterMinThumbX)) * combFilterScale;
AudioReflector.setCombFilterWindow(combFilter);
combFilterThumbX = newThumbX;
}
if (movingSliderLocalFactor) {
movingSliderLocalFactor = false;
var localFactor = ((newThumbX - localFactorMinThumbX) / (localFactorMaxThumbX - localFactorMinThumbX)) * localFactorScale;
AudioReflector.setLocalAudioAttenuationFactor(localFactor);
localFactorThumbX = newThumbX;
}
if (movingSliderReflective) {
movingSliderReflective = false;
var reflective = ((newThumbX - reflectiveMinThumbX) / (reflectiveMaxThumbX - reflectiveMinThumbX)) * reflectiveScale;
setReflectiveRatio(reflective);
reflectiveThumbX = newThumbX;
updateRatioSliders();
}
if (movingSliderDiffusion) {
movingSliderDiffusion = false;
var diffusion = ((newThumbX - diffusionMinThumbX) / (diffusionMaxThumbX - diffusionMinThumbX)) * diffusionScale;
setDiffusionRatio(diffusion);
diffusionThumbX = newThumbX;
updateRatioSliders();
}
if (movingSliderAbsorption) {
movingSliderAbsorption = false;
var absorption = ((newThumbX - absorptionMinThumbX) / (absorptionMaxThumbX - absorptionMinThumbX)) * absorptionScale;
setAbsorptionRatio(absorption);
absorptionThumbX = newThumbX;
updateRatioSliders();
}
}
Controller.mouseMoveEvent.connect(mouseMoveEvent);
Controller.mousePressEvent.connect(mousePressEvent);
Controller.mouseReleaseEvent.connect(mouseReleaseEvent);

View file

@ -1674,6 +1674,15 @@ void Application::init() {
connect(_rearMirrorTools, SIGNAL(restoreView()), SLOT(restoreMirrorView()));
connect(_rearMirrorTools, SIGNAL(shrinkView()), SLOT(shrinkMirrorView()));
connect(_rearMirrorTools, SIGNAL(resetView()), SLOT(resetSensors()));
// set up our audio reflector
_audioReflector.setMyAvatar(getAvatar());
_audioReflector.setVoxels(_voxels.getTree());
_audioReflector.setAudio(getAudio());
connect(getAudio(), &Audio::processInboundAudio, &_audioReflector, &AudioReflector::processInboundAudio,Qt::DirectConnection);
connect(getAudio(), &Audio::processLocalAudio, &_audioReflector, &AudioReflector::processLocalAudio,Qt::DirectConnection);
// save settings when avatar changes
connect(_myAvatar, &MyAvatar::transformChanged, this, &Application::bumpSettings);
}
@ -2446,6 +2455,9 @@ void Application::displaySide(Camera& whichCamera, bool selfAvatarOnly) {
// disable specular lighting for ground and voxels
glMaterialfv(GL_FRONT, GL_SPECULAR, NO_SPECULAR_COLOR);
// draw the audio reflector overlay
_audioReflector.render();
// Draw voxels
if (Menu::getInstance()->isOptionChecked(MenuOption::Voxels)) {
@ -3385,6 +3397,7 @@ void Application::loadScript(const QString& scriptName) {
scriptEngine->registerGlobalObject("Menu", MenuScriptingInterface::getInstance());
scriptEngine->registerGlobalObject("Settings", SettingsScriptingInterface::getInstance());
scriptEngine->registerGlobalObject("AudioDevice", AudioDeviceScriptingInterface::getInstance());
scriptEngine->registerGlobalObject("AudioReflector", &_audioReflector);
QThread* workerThread = new QThread(this);

View file

@ -38,6 +38,7 @@
#include <VoxelEditPacketSender.h>
#include "Audio.h"
#include "AudioReflector.h"
#include "BuckyBalls.h"
#include "Camera.h"
#include "DatagramProcessor.h"
@ -162,6 +163,7 @@ public:
bool isThrottleRendering() const { return _glWidget->isThrottleRendering(); }
MyAvatar* getAvatar() { return _myAvatar; }
Audio* getAudio() { return &_audio; }
const AudioReflector* getAudioReflector() const { return &_audioReflector; }
Camera* getCamera() { return &_myCamera; }
ViewFrustum* getViewFrustum() { return &_viewFrustum; }
ViewFrustum* getShadowViewFrustum() { return &_shadowViewFrustum; }
@ -513,7 +515,7 @@ private:
TouchEvent _lastTouchEvent;
Overlays _overlays;
AudioReflector _audioReflector;
RunningScriptsWidget* _runningScriptsWidget;
QHash<QString, ScriptEngine*> _scriptEnginesHash;
};

View file

@ -37,6 +37,7 @@
#include <SharedUtil.h>
#include <StdDev.h>
#include <UUID.h>
#include <glm/glm.hpp>
#include "Application.h"
#include "Audio.h"
@ -87,7 +88,11 @@ Audio::Audio(int16_t initialJitterBufferSamples, QObject* parent) :
_collisionSoundDuration(0.0f),
_proceduralEffectSample(0),
_numFramesDisplayStarve(0),
_muted(false)
_muted(false),
_processSpatialAudio(false),
_spatialAudioStart(0),
_spatialAudioFinish(0),
_spatialAudioRingBuffer(NETWORK_BUFFER_LENGTH_BYTES_PER_CHANNEL, true) // random access mode
{
// clear the array of locally injected samples
memset(_localProceduralSamples, 0, NETWORK_BUFFER_LENGTH_BYTES_PER_CHANNEL);
@ -398,7 +403,7 @@ void Audio::handleAudioInput() {
unsigned int inputSamplesRequired = NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL * inputToNetworkInputRatio;
QByteArray inputByteArray = _inputDevice->readAll();
if (Menu::getInstance()->isOptionChecked(MenuOption::EchoLocalAudio) && !_muted && _audioOutput) {
// if this person wants local loopback add that to the locally injected audio
@ -406,7 +411,7 @@ void Audio::handleAudioInput() {
// we didn't have the loopback output device going so set that up now
_loopbackOutputDevice = _loopbackAudioOutput->start();
}
if (_inputFormat == _outputFormat) {
if (_loopbackOutputDevice) {
_loopbackOutputDevice->write(inputByteArray);
@ -559,6 +564,13 @@ void Audio::handleAudioInput() {
_lastInputLoudness = 0;
}
// at this point we have clean monoAudioSamples, which match our target output...
// this is what we should send to our interested listeners
if (_processSpatialAudio && !_muted && _audioOutput) {
QByteArray monoInputData((char*)monoAudioSamples, NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL * sizeof(int16_t));
emit processLocalAudio(_spatialAudioStart, monoInputData, _desiredInputFormat);
}
if (_proceduralAudioOutput) {
processProceduralAudio(monoAudioSamples, NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL);
}
@ -622,7 +634,7 @@ void Audio::addReceivedAudioToBuffer(const QByteArray& audioByteArray) {
_totalPacketsReceived++;
double timeDiff = diffclock(&_lastReceiveTime, &currentReceiveTime);
// Discard first few received packets for computing jitter (often they pile up on start)
if (_totalPacketsReceived > NUM_INITIAL_PACKETS_DISCARD) {
_stdev.addValue(timeDiff);
@ -650,6 +662,69 @@ void Audio::addReceivedAudioToBuffer(const QByteArray& audioByteArray) {
_lastReceiveTime = currentReceiveTime;
}
// NOTE: numSamples is the total number of single channel samples, since callers will always call this with stereo
// data we know that we will have 2x samples for each stereo time sample at the format's sample rate
void Audio::addSpatialAudioToBuffer(unsigned int sampleTime, const QByteArray& spatialAudio, unsigned int numSamples) {
// Calculate the number of remaining samples available. The source spatial audio buffer will get
// clipped if there are insufficient samples available in the accumulation buffer.
unsigned int remaining = _spatialAudioRingBuffer.getSampleCapacity() - _spatialAudioRingBuffer.samplesAvailable();
// Locate where in the accumulation buffer the new samples need to go
if (sampleTime >= _spatialAudioFinish) {
if (_spatialAudioStart == _spatialAudioFinish) {
// Nothing in the spatial audio ring buffer yet, Just do a straight copy, clipping if necessary
unsigned int sampleCount = (remaining < numSamples) ? remaining : numSamples;
if (sampleCount) {
_spatialAudioRingBuffer.writeSamples((int16_t*)spatialAudio.data(), sampleCount);
}
_spatialAudioFinish = _spatialAudioStart + sampleCount / _desiredOutputFormat.channelCount();
} else {
// Spatial audio ring buffer already has data, but there is no overlap with the new sample.
// Compute the appropriate time delay and pad with silence until the new start time.
unsigned int delay = sampleTime - _spatialAudioFinish;
unsigned int delayCount = delay * _desiredOutputFormat.channelCount();
unsigned int silentCount = (remaining < delayCount) ? remaining : delayCount;
if (silentCount) {
_spatialAudioRingBuffer.addSilentFrame(silentCount);
}
// Recalculate the number of remaining samples
remaining -= silentCount;
unsigned int sampleCount = (remaining < numSamples) ? remaining : numSamples;
// Copy the new spatial audio to the accumulation ring buffer
if (sampleCount) {
_spatialAudioRingBuffer.writeSamples((int16_t*)spatialAudio.data(), sampleCount);
}
_spatialAudioFinish += (sampleCount + silentCount) / _desiredOutputFormat.channelCount();
}
} else {
// There is overlap between the spatial audio buffer and the new sample, mix the overlap
// Calculate the offset from the buffer's current read position, which should be located at _spatialAudioStart
unsigned int offset = (sampleTime - _spatialAudioStart) * _desiredOutputFormat.channelCount();
unsigned int mixedSamplesCount = (_spatialAudioFinish - sampleTime) * _desiredOutputFormat.channelCount();
mixedSamplesCount = (mixedSamplesCount < numSamples) ? mixedSamplesCount : numSamples;
const int16_t* spatial = reinterpret_cast<const int16_t*>(spatialAudio.data());
for (int i = 0; i < mixedSamplesCount; i++) {
int existingSample = _spatialAudioRingBuffer[i + offset];
int newSample = spatial[i];
int sumOfSamples = existingSample + newSample;
_spatialAudioRingBuffer[i + offset] = static_cast<int16_t>(glm::clamp<int>(sumOfSamples,
std::numeric_limits<short>::min(), std::numeric_limits<short>::max()));
}
// Copy the remaining unoverlapped spatial audio to the spatial audio buffer, if any
unsigned int nonMixedSampleCount = numSamples - mixedSamplesCount;
nonMixedSampleCount = (remaining < nonMixedSampleCount) ? remaining : nonMixedSampleCount;
if (nonMixedSampleCount) {
_spatialAudioRingBuffer.writeSamples((int16_t*)spatialAudio.data() + mixedSamplesCount, nonMixedSampleCount);
// Extend the finish time by the amount of unoverlapped samples
_spatialAudioFinish += nonMixedSampleCount / _desiredOutputFormat.channelCount();
}
}
}
bool Audio::mousePressEvent(int x, int y) {
if (_iconBounds.contains(x, y)) {
toggleMute();
@ -669,7 +744,7 @@ void Audio::toggleAudioNoiseReduction() {
void Audio::processReceivedAudio(const QByteArray& audioByteArray) {
_ringBuffer.parseData(audioByteArray);
float networkOutputToOutputRatio = (_desiredOutputFormat.sampleRate() / (float) _outputFormat.sampleRate())
* (_desiredOutputFormat.channelCount() / (float) _outputFormat.channelCount());
@ -700,13 +775,32 @@ void Audio::processReceivedAudio(const QByteArray& audioByteArray) {
//qDebug() << "pushing " << numNetworkOutputSamples;
_ringBuffer.setIsStarved(false);
// copy the samples we'll resample from the ring buffer - this also
// pushes the read pointer of the ring buffer forwards
int16_t* ringBufferSamples= new int16_t[numNetworkOutputSamples];
_ringBuffer.readSamples(ringBufferSamples, numNetworkOutputSamples);
// add the next numNetworkOutputSamples from each QByteArray
// in our _localInjectionByteArrays QVector to the localInjectedSamples
int16_t* ringBufferSamples = new int16_t[numNetworkOutputSamples];
if (_processSpatialAudio) {
unsigned int sampleTime = _spatialAudioStart;
QByteArray buffer;
buffer.resize(numNetworkOutputSamples * sizeof(int16_t));
_ringBuffer.readSamples((int16_t*)buffer.data(), numNetworkOutputSamples);
// Accumulate direct transmission of audio from sender to receiver
if (Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingIncludeOriginal)) {
addSpatialAudioToBuffer(sampleTime, buffer, numNetworkOutputSamples);
}
// Send audio off for spatial processing
emit processInboundAudio(sampleTime, buffer, _desiredOutputFormat);
// copy the samples we'll resample from the spatial audio ring buffer - this also
// pushes the read pointer of the spatial audio ring buffer forwards
_spatialAudioRingBuffer.readSamples(ringBufferSamples, numNetworkOutputSamples);
// Advance the start point for the next packet of audio to arrive
_spatialAudioStart += numNetworkOutputSamples / _desiredOutputFormat.channelCount();
} else {
// copy the samples we'll resample from the ring buffer - this also
// pushes the read pointer of the ring buffer forwards
_ringBuffer.readSamples(ringBufferSamples, numNetworkOutputSamples);
}
// copy the packet from the RB to the output
linearResampling(ringBufferSamples,
@ -756,6 +850,15 @@ void Audio::toggleToneInjection() {
_toneInjectionEnabled = !_toneInjectionEnabled;
}
void Audio::toggleAudioSpatialProcessing() {
_processSpatialAudio = !_processSpatialAudio;
if (_processSpatialAudio) {
_spatialAudioStart = 0;
_spatialAudioFinish = 0;
_spatialAudioRingBuffer.reset();
}
}
// Take a pointer to the acquired microphone input samples and add procedural sounds
void Audio::addProceduralSounds(int16_t* monoInput, int numSamples) {
float sample;
@ -996,6 +1099,12 @@ bool Audio::switchOutputToAudioDevice(const QAudioDeviceInfo& outputDeviceInfo)
_proceduralAudioOutput = new QAudioOutput(outputDeviceInfo, _outputFormat, this);
gettimeofday(&_lastReceiveTime, NULL);
// setup spatial audio ringbuffer
int numFrameSamples = _outputFormat.sampleRate() * _desiredOutputFormat.channelCount();
_spatialAudioRingBuffer.resizeForFrameSize(numFrameSamples);
_spatialAudioStart = _spatialAudioFinish = 0;
supportedFormat = true;
}
}

View file

@ -54,8 +54,6 @@ public:
void setJitterBufferSamples(int samples) { _jitterBufferSamples = samples; }
int getJitterBufferSamples() { return _jitterBufferSamples; }
void lowPassFilter(int16_t* inputBuffer);
virtual void startCollisionSound(float magnitude, float frequency, float noise, float duration, bool flashScreen);
virtual void startDrumSound(float volume, float frequency, float duration, float decay);
@ -73,15 +71,19 @@ public:
int getNetworkSampleRate() { return SAMPLE_RATE; }
int getNetworkBufferLengthSamplesPerChannel() { return NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL; }
bool getProcessSpatialAudio() const { return _processSpatialAudio; }
public slots:
void start();
void stop();
void addReceivedAudioToBuffer(const QByteArray& audioByteArray);
void addSpatialAudioToBuffer(unsigned int sampleTime, const QByteArray& spatialAudio, unsigned int numSamples);
void handleAudioInput();
void reset();
void toggleMute();
void toggleAudioNoiseReduction();
void toggleToneInjection();
void toggleAudioSpatialProcessing();
virtual void handleAudioByteArray(const QByteArray& audioByteArray);
@ -97,6 +99,8 @@ public slots:
signals:
bool muteToggled();
void processInboundAudio(unsigned int sampleTime, const QByteArray& samples, const QAudioFormat& format);
void processLocalAudio(unsigned int sampleTime, const QByteArray& samples, const QAudioFormat& format);
private:
@ -162,9 +166,15 @@ private:
GLuint _boxTextureId;
QRect _iconBounds;
// Audio callback in class context.
/// Audio callback in class context.
inline void performIO(int16_t* inputLeft, int16_t* outputLeft, int16_t* outputRight);
bool _processSpatialAudio; /// Process received audio by spatial audio hooks
unsigned int _spatialAudioStart; /// Start of spatial audio interval (in sample rate time base)
unsigned int _spatialAudioFinish; /// End of spatial audio interval (in sample rate time base)
AudioRingBuffer _spatialAudioRingBuffer; /// Spatially processed audio
// Process procedural audio by
// 1. Echo to the local procedural output device
// 2. Mix with the audio input

View file

@ -0,0 +1,762 @@
//
// AudioReflector.cpp
// interface
//
// Created by Brad Hefta-Gaub on 4/2/2014
// Copyright (c) 2014 High Fidelity, Inc. All rights reserved.
//
#include <QMutexLocker>
#include "AudioReflector.h"
#include "Menu.h"
const float DEFAULT_PRE_DELAY = 20.0f; // this delay in msecs will always be added to all reflections
const float DEFAULT_MS_DELAY_PER_METER = 3.0f;
const float MINIMUM_ATTENUATION_TO_REFLECT = 1.0f / 256.0f;
const float DEFAULT_DISTANCE_SCALING_FACTOR = 2.0f;
const float MAXIMUM_DELAY_MS = 1000.0 * 20.0f; // stop reflecting after path is this long
const int DEFAULT_DIFFUSION_FANOUT = 5;
const int ABSOLUTE_MAXIMUM_BOUNCE_COUNT = 10;
const float DEFAULT_LOCAL_ATTENUATION_FACTOR = 0.125;
const float DEFAULT_COMB_FILTER_WINDOW = 0.05f; //ms delay differential to avoid
const float SLIGHTLY_SHORT = 0.999f; // slightly inside the distance so we're on the inside of the reflection point
const float DEFAULT_ABSORPTION_RATIO = 0.125; // 12.5% is absorbed
const float DEFAULT_DIFFUSION_RATIO = 0.125; // 12.5% is diffused
AudioReflector::AudioReflector(QObject* parent) :
QObject(parent),
_preDelay(DEFAULT_PRE_DELAY),
_soundMsPerMeter(DEFAULT_MS_DELAY_PER_METER),
_distanceAttenuationScalingFactor(DEFAULT_DISTANCE_SCALING_FACTOR),
_localAudioAttenuationFactor(DEFAULT_LOCAL_ATTENUATION_FACTOR),
_combFilterWindow(DEFAULT_COMB_FILTER_WINDOW),
_diffusionFanout(DEFAULT_DIFFUSION_FANOUT),
_absorptionRatio(DEFAULT_ABSORPTION_RATIO),
_diffusionRatio(DEFAULT_DIFFUSION_RATIO),
_withDiffusion(false),
_lastPreDelay(DEFAULT_PRE_DELAY),
_lastSoundMsPerMeter(DEFAULT_MS_DELAY_PER_METER),
_lastDistanceAttenuationScalingFactor(DEFAULT_DISTANCE_SCALING_FACTOR),
_lastLocalAudioAttenuationFactor(DEFAULT_LOCAL_ATTENUATION_FACTOR),
_lastDiffusionFanout(DEFAULT_DIFFUSION_FANOUT),
_lastAbsorptionRatio(DEFAULT_ABSORPTION_RATIO),
_lastDiffusionRatio(DEFAULT_DIFFUSION_RATIO)
{
_reflections = 0;
_diffusionPathCount = 0;
_averageAttenuation = 0.0f;
_maxAttenuation = 0.0f;
_minAttenuation = 0.0f;
_averageDelay = 0;
_maxDelay = 0;
_minDelay = 0;
}
bool AudioReflector::haveAttributesChanged() {
bool withDiffusion = Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingWithDiffusions);
bool attributesChange = (_withDiffusion != withDiffusion
|| _lastPreDelay != _preDelay
|| _lastSoundMsPerMeter != _soundMsPerMeter
|| _lastDistanceAttenuationScalingFactor != _distanceAttenuationScalingFactor
|| _lastDiffusionFanout != _diffusionFanout
|| _lastAbsorptionRatio != _absorptionRatio
|| _lastDiffusionRatio != _diffusionRatio);
if (attributesChange) {
_withDiffusion = withDiffusion;
_lastPreDelay = _preDelay;
_lastSoundMsPerMeter = _soundMsPerMeter;
_lastDistanceAttenuationScalingFactor = _distanceAttenuationScalingFactor;
_lastDiffusionFanout = _diffusionFanout;
_lastAbsorptionRatio = _absorptionRatio;
_lastDiffusionRatio = _diffusionRatio;
}
return attributesChange;
}
void AudioReflector::render() {
// if we're not set up yet, or we're not processing spatial audio, then exit early
if (!_myAvatar || !_audio->getProcessSpatialAudio()) {
return;
}
// use this oportunity to calculate our reflections
calculateAllReflections();
// only render if we've been asked to do so
if (Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingRenderPaths)) {
drawRays();
}
}
// delay = 1ms per foot
// = 3ms per meter
float AudioReflector::getDelayFromDistance(float distance) {
float delay = (_soundMsPerMeter * distance);
if (Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingPreDelay)) {
delay += _preDelay;
}
return delay;
}
// attenuation = from the Audio Mixer
float AudioReflector::getDistanceAttenuationCoefficient(float distance) {
const float DISTANCE_SCALE = 2.5f;
const float GEOMETRIC_AMPLITUDE_SCALAR = 0.3f;
const float DISTANCE_LOG_BASE = 2.5f;
const float DISTANCE_SCALE_LOG = logf(DISTANCE_SCALE) / logf(DISTANCE_LOG_BASE);
float distanceSquareToSource = distance * distance;
// calculate the distance coefficient using the distance to this node
float distanceCoefficient = powf(GEOMETRIC_AMPLITUDE_SCALAR,
DISTANCE_SCALE_LOG +
(0.5f * logf(distanceSquareToSource) / logf(DISTANCE_LOG_BASE)) - 1);
distanceCoefficient = std::min(1.0f, distanceCoefficient * getDistanceAttenuationScalingFactor());
return distanceCoefficient;
}
glm::vec3 AudioReflector::getFaceNormal(BoxFace face) {
bool wantSlightRandomness = Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingSlightlyRandomSurfaces);
glm::vec3 faceNormal;
const float MIN_RANDOM_LENGTH = 0.99f;
const float MAX_RANDOM_LENGTH = 1.0f;
const float NON_RANDOM_LENGTH = 1.0f;
float normalLength = wantSlightRandomness ? randFloatInRange(MIN_RANDOM_LENGTH, MAX_RANDOM_LENGTH) : NON_RANDOM_LENGTH;
float remainder = (1.0f - normalLength)/2.0f;
float remainderSignA = randomSign();
float remainderSignB = randomSign();
if (face == MIN_X_FACE) {
faceNormal = glm::vec3(-normalLength, remainder * remainderSignA, remainder * remainderSignB);
} else if (face == MAX_X_FACE) {
faceNormal = glm::vec3(normalLength, remainder * remainderSignA, remainder * remainderSignB);
} else if (face == MIN_Y_FACE) {
faceNormal = glm::vec3(remainder * remainderSignA, -normalLength, remainder * remainderSignB);
} else if (face == MAX_Y_FACE) {
faceNormal = glm::vec3(remainder * remainderSignA, normalLength, remainder * remainderSignB);
} else if (face == MIN_Z_FACE) {
faceNormal = glm::vec3(remainder * remainderSignA, remainder * remainderSignB, -normalLength);
} else if (face == MAX_Z_FACE) {
faceNormal = glm::vec3(remainder * remainderSignA, remainder * remainderSignB, normalLength);
}
return faceNormal;
}
// set up our buffers for our attenuated and delayed samples
const int NUMBER_OF_CHANNELS = 2;
void AudioReflector::injectAudiblePoint(AudioSource source, const AudiblePoint& audiblePoint,
const QByteArray& samples, unsigned int sampleTime, int sampleRate) {
bool wantEarSeparation = Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingSeparateEars);
bool wantStereo = Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingStereoSource);
glm::vec3 rightEarPosition = wantEarSeparation ? _myAvatar->getHead()->getRightEarPosition() :
_myAvatar->getHead()->getPosition();
glm::vec3 leftEarPosition = wantEarSeparation ? _myAvatar->getHead()->getLeftEarPosition() :
_myAvatar->getHead()->getPosition();
int totalNumberOfSamples = samples.size() / sizeof(int16_t);
int totalNumberOfStereoSamples = samples.size() / (sizeof(int16_t) * NUMBER_OF_CHANNELS);
const int16_t* originalSamplesData = (const int16_t*)samples.constData();
QByteArray attenuatedLeftSamples;
QByteArray attenuatedRightSamples;
attenuatedLeftSamples.resize(samples.size());
attenuatedRightSamples.resize(samples.size());
int16_t* attenuatedLeftSamplesData = (int16_t*)attenuatedLeftSamples.data();
int16_t* attenuatedRightSamplesData = (int16_t*)attenuatedRightSamples.data();
// calculate the distance to the ears
float rightEarDistance = glm::distance(audiblePoint.location, rightEarPosition);
float leftEarDistance = glm::distance(audiblePoint.location, leftEarPosition);
float rightEarDelayMsecs = getDelayFromDistance(rightEarDistance) + audiblePoint.delay;
float leftEarDelayMsecs = getDelayFromDistance(leftEarDistance) + audiblePoint.delay;
float averageEarDelayMsecs = (leftEarDelayMsecs + rightEarDelayMsecs) / 2.0f;
bool safeToInject = true; // assume the best
// check to see if this new injection point would be within the comb filter
// suppression window for any of the existing known delays
QMap<float, float>& knownDelays = (source == INBOUND_AUDIO) ? _inboundAudioDelays : _localAudioDelays;
QMap<float, float>::const_iterator lowerBound = knownDelays.lowerBound(averageEarDelayMsecs - _combFilterWindow);
if (lowerBound != knownDelays.end()) {
float closestFound = lowerBound.value();
float deltaToClosest = (averageEarDelayMsecs - closestFound);
if (deltaToClosest > -_combFilterWindow && deltaToClosest < _combFilterWindow) {
safeToInject = false;
}
}
// keep track of any of our suppressed echoes so we can report them in our statistics
if (!safeToInject) {
QVector<float>& suppressedEchoes = (source == INBOUND_AUDIO) ? _inboundEchoesSuppressed : _localEchoesSuppressed;
suppressedEchoes << averageEarDelayMsecs;
} else {
knownDelays[averageEarDelayMsecs] = averageEarDelayMsecs;
_totalDelay += rightEarDelayMsecs + leftEarDelayMsecs;
_delayCount += 2;
_maxDelay = std::max(_maxDelay,rightEarDelayMsecs);
_maxDelay = std::max(_maxDelay,leftEarDelayMsecs);
_minDelay = std::min(_minDelay,rightEarDelayMsecs);
_minDelay = std::min(_minDelay,leftEarDelayMsecs);
int rightEarDelay = rightEarDelayMsecs * sampleRate / MSECS_PER_SECOND;
int leftEarDelay = leftEarDelayMsecs * sampleRate / MSECS_PER_SECOND;
float rightEarAttenuation = audiblePoint.attenuation *
getDistanceAttenuationCoefficient(rightEarDistance + audiblePoint.distance);
float leftEarAttenuation = audiblePoint.attenuation *
getDistanceAttenuationCoefficient(leftEarDistance + audiblePoint.distance);
_totalAttenuation += rightEarAttenuation + leftEarAttenuation;
_attenuationCount += 2;
_maxAttenuation = std::max(_maxAttenuation,rightEarAttenuation);
_maxAttenuation = std::max(_maxAttenuation,leftEarAttenuation);
_minAttenuation = std::min(_minAttenuation,rightEarAttenuation);
_minAttenuation = std::min(_minAttenuation,leftEarAttenuation);
// run through the samples, and attenuate them
for (int sample = 0; sample < totalNumberOfStereoSamples; sample++) {
int16_t leftSample = originalSamplesData[sample * NUMBER_OF_CHANNELS];
int16_t rightSample = leftSample;
if (wantStereo) {
rightSample = originalSamplesData[(sample * NUMBER_OF_CHANNELS) + 1];
}
attenuatedLeftSamplesData[sample * NUMBER_OF_CHANNELS] = leftSample * leftEarAttenuation;
attenuatedLeftSamplesData[sample * NUMBER_OF_CHANNELS + 1] = 0;
attenuatedRightSamplesData[sample * NUMBER_OF_CHANNELS] = 0;
attenuatedRightSamplesData[sample * NUMBER_OF_CHANNELS + 1] = rightSample * rightEarAttenuation;
}
// now inject the attenuated array with the appropriate delay
unsigned int sampleTimeLeft = sampleTime + leftEarDelay;
unsigned int sampleTimeRight = sampleTime + rightEarDelay;
_audio->addSpatialAudioToBuffer(sampleTimeLeft, attenuatedLeftSamples, totalNumberOfSamples);
_audio->addSpatialAudioToBuffer(sampleTimeRight, attenuatedRightSamples, totalNumberOfSamples);
}
}
void AudioReflector::processLocalAudio(unsigned int sampleTime, const QByteArray& samples, const QAudioFormat& format) {
if (Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingProcessLocalAudio)) {
const int NUM_CHANNELS_INPUT = 1;
const int NUM_CHANNELS_OUTPUT = 2;
const int EXPECTED_SAMPLE_RATE = 24000;
if (format.channelCount() == NUM_CHANNELS_INPUT && format.sampleRate() == EXPECTED_SAMPLE_RATE) {
QAudioFormat outputFormat = format;
outputFormat.setChannelCount(NUM_CHANNELS_OUTPUT);
QByteArray stereoInputData(samples.size() * NUM_CHANNELS_OUTPUT, 0);
int numberOfSamples = (samples.size() / sizeof(int16_t));
int16_t* monoSamples = (int16_t*)samples.data();
int16_t* stereoSamples = (int16_t*)stereoInputData.data();
for (int i = 0; i < numberOfSamples; i++) {
stereoSamples[i* NUM_CHANNELS_OUTPUT] = monoSamples[i] * _localAudioAttenuationFactor;
stereoSamples[(i * NUM_CHANNELS_OUTPUT) + 1] = monoSamples[i] * _localAudioAttenuationFactor;
}
_localAudioDelays.clear();
_localEchoesSuppressed.clear();
echoAudio(LOCAL_AUDIO, sampleTime, stereoInputData, outputFormat);
}
}
}
void AudioReflector::processInboundAudio(unsigned int sampleTime, const QByteArray& samples, const QAudioFormat& format) {
_inboundAudioDelays.clear();
_inboundEchoesSuppressed.clear();
echoAudio(INBOUND_AUDIO, sampleTime, samples, format);
}
void AudioReflector::echoAudio(AudioSource source, unsigned int sampleTime, const QByteArray& samples, const QAudioFormat& format) {
_maxDelay = 0;
_maxAttenuation = 0.0f;
_minDelay = std::numeric_limits<int>::max();
_minAttenuation = std::numeric_limits<float>::max();
_totalDelay = 0.0f;
_delayCount = 0;
_totalAttenuation = 0.0f;
_attenuationCount = 0;
QMutexLocker locker(&_mutex);
// depending on if we're processing local or external audio, pick the correct points vector
QVector<AudiblePoint>& audiblePoints = source == INBOUND_AUDIO ? _inboundAudiblePoints : _localAudiblePoints;
foreach(const AudiblePoint& audiblePoint, audiblePoints) {
injectAudiblePoint(source, audiblePoint, samples, sampleTime, format.sampleRate());
}
_averageDelay = _delayCount == 0 ? 0 : _totalDelay / _delayCount;
_averageAttenuation = _attenuationCount == 0 ? 0 : _totalAttenuation / _attenuationCount;
if (_reflections == 0) {
_minDelay = 0.0f;
_minAttenuation = 0.0f;
}
}
void AudioReflector::drawVector(const glm::vec3& start, const glm::vec3& end, const glm::vec3& color) {
glDisable(GL_LIGHTING);
glLineWidth(2.0);
// Draw the vector itself
glBegin(GL_LINES);
glColor3f(color.x,color.y,color.z);
glVertex3f(start.x, start.y, start.z);
glVertex3f(end.x, end.y, end.z);
glEnd();
glEnable(GL_LIGHTING);
}
AudioPath::AudioPath(AudioSource source, const glm::vec3& origin, const glm::vec3& direction,
float attenuation, float delay, float distance,bool isDiffusion, int bounceCount) :
source(source),
isDiffusion(isDiffusion),
startPoint(origin),
startDirection(direction),
startDelay(delay),
startAttenuation(attenuation),
lastPoint(origin),
lastDirection(direction),
lastDistance(distance),
lastDelay(delay),
lastAttenuation(attenuation),
bounceCount(bounceCount),
finalized(false),
reflections()
{
}
void AudioReflector::addAudioPath(AudioSource source, const glm::vec3& origin, const glm::vec3& initialDirection,
float initialAttenuation, float initialDelay, float initialDistance, bool isDiffusion) {
AudioPath* path = new AudioPath(source, origin, initialDirection, initialAttenuation, initialDelay,
initialDistance, isDiffusion, 0);
QVector<AudioPath*>& audioPaths = source == INBOUND_AUDIO ? _inboundAudioPaths : _localAudioPaths;
audioPaths.push_back(path);
}
void AudioReflector::calculateAllReflections() {
// only recalculate when we've moved, or if the attributes have changed
// TODO: what about case where new voxels are added in front of us???
bool wantHeadOrientation = Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingHeadOriented);
glm::quat orientation = wantHeadOrientation ? _myAvatar->getHead()->getFinalOrientation() : _myAvatar->getOrientation();
glm::vec3 origin = _myAvatar->getHead()->getPosition();
glm::vec3 listenerPosition = _myAvatar->getHead()->getPosition();
bool shouldRecalc = _reflections == 0
|| !isSimilarPosition(origin, _origin)
|| !isSimilarOrientation(orientation, _orientation)
|| !isSimilarPosition(listenerPosition, _listenerPosition)
|| haveAttributesChanged();
if (shouldRecalc) {
QMutexLocker locker(&_mutex);
quint64 start = usecTimestampNow();
_origin = origin;
_orientation = orientation;
_listenerPosition = listenerPosition;
analyzePaths(); // actually does the work
quint64 end = usecTimestampNow();
const bool wantDebugging = false;
if (wantDebugging) {
qDebug() << "newCalculateAllReflections() elapsed=" << (end - start);
}
}
}
void AudioReflector::drawRays() {
const glm::vec3 RED(1,0,0);
const glm::vec3 GREEN(0,1,0);
const glm::vec3 BLUE(0,0,1);
const glm::vec3 CYAN(0,1,1);
int diffusionNumber = 0;
QMutexLocker locker(&_mutex);
// draw the paths for inbound audio
foreach(AudioPath* const& path, _inboundAudioPaths) {
// if this is an original reflection, draw it in RED
if (path->isDiffusion) {
diffusionNumber++;
drawPath(path, GREEN);
} else {
drawPath(path, RED);
}
}
if (Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingProcessLocalAudio)) {
// draw the paths for local audio
foreach(AudioPath* const& path, _localAudioPaths) {
// if this is an original reflection, draw it in RED
if (path->isDiffusion) {
diffusionNumber++;
drawPath(path, CYAN);
} else {
drawPath(path, BLUE);
}
}
}
}
void AudioReflector::drawPath(AudioPath* path, const glm::vec3& originalColor) {
glm::vec3 start = path->startPoint;
glm::vec3 color = originalColor;
const float COLOR_ADJUST_PER_BOUNCE = 0.75f;
foreach (glm::vec3 end, path->reflections) {
drawVector(start, end, color);
start = end;
color = color * COLOR_ADJUST_PER_BOUNCE;
}
}
void AudioReflector::clearPaths() {
// clear our inbound audio paths
foreach(AudioPath* const& path, _inboundAudioPaths) {
delete path;
}
_inboundAudioPaths.clear();
_inboundAudiblePoints.clear(); // clear our inbound audible points
// clear our local audio paths
foreach(AudioPath* const& path, _localAudioPaths) {
delete path;
}
_localAudioPaths.clear();
_localAudiblePoints.clear(); // clear our local audible points
}
// Here's how this works: we have an array of AudioPaths, we loop on all of our currently calculating audio
// paths, and calculate one ray per path. If that ray doesn't reflect, or reaches a max distance/attenuation, then it
// is considered finalized.
// If the ray hits a surface, then, based on the characteristics of that surface, it will calculate the new
// attenuation, path length, and delay for the primary path. For surfaces that have diffusion, it will also create
// fanout number of new paths, those new paths will have an origin of the reflection point, and an initial attenuation
// of their diffusion ratio. Those new paths will be added to the active audio paths, and be analyzed for the next loop.
void AudioReflector::analyzePaths() {
clearPaths();
// add our initial paths
glm::vec3 right = glm::normalize(_orientation * IDENTITY_RIGHT);
glm::vec3 up = glm::normalize(_orientation * IDENTITY_UP);
glm::vec3 front = glm::normalize(_orientation * IDENTITY_FRONT);
glm::vec3 left = -right;
glm::vec3 down = -up;
glm::vec3 back = -front;
glm::vec3 frontRightUp = glm::normalize(front + right + up);
glm::vec3 frontLeftUp = glm::normalize(front + left + up);
glm::vec3 backRightUp = glm::normalize(back + right + up);
glm::vec3 backLeftUp = glm::normalize(back + left + up);
glm::vec3 frontRightDown = glm::normalize(front + right + down);
glm::vec3 frontLeftDown = glm::normalize(front + left + down);
glm::vec3 backRightDown = glm::normalize(back + right + down);
glm::vec3 backLeftDown = glm::normalize(back + left + down);
float initialAttenuation = 1.0f;
float preDelay = Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingPreDelay) ? _preDelay : 0.0f;
// NOTE: we're still calculating our initial paths based on the listeners position. But the analysis code has been
// updated to support individual sound sources (which is how we support diffusion), we can use this new paradigm to
// add support for individual sound sources, and more directional sound sources
addAudioPath(INBOUND_AUDIO, _origin, front, initialAttenuation, preDelay);
addAudioPath(INBOUND_AUDIO, _origin, right, initialAttenuation, preDelay);
addAudioPath(INBOUND_AUDIO, _origin, up, initialAttenuation, preDelay);
addAudioPath(INBOUND_AUDIO, _origin, down, initialAttenuation, preDelay);
addAudioPath(INBOUND_AUDIO, _origin, back, initialAttenuation, preDelay);
addAudioPath(INBOUND_AUDIO, _origin, left, initialAttenuation, preDelay);
addAudioPath(INBOUND_AUDIO, _origin, frontRightUp, initialAttenuation, preDelay);
addAudioPath(INBOUND_AUDIO, _origin, frontLeftUp, initialAttenuation, preDelay);
addAudioPath(INBOUND_AUDIO, _origin, backRightUp, initialAttenuation, preDelay);
addAudioPath(INBOUND_AUDIO, _origin, backLeftUp, initialAttenuation, preDelay);
addAudioPath(INBOUND_AUDIO, _origin, frontRightDown, initialAttenuation, preDelay);
addAudioPath(INBOUND_AUDIO, _origin, frontLeftDown, initialAttenuation, preDelay);
addAudioPath(INBOUND_AUDIO, _origin, backRightDown, initialAttenuation, preDelay);
addAudioPath(INBOUND_AUDIO, _origin, backLeftDown, initialAttenuation, preDelay);
// the original paths for the local audio are directional to the front of the origin
addAudioPath(LOCAL_AUDIO, _origin, front, initialAttenuation, preDelay);
addAudioPath(LOCAL_AUDIO, _origin, frontRightUp, initialAttenuation, preDelay);
addAudioPath(LOCAL_AUDIO, _origin, frontLeftUp, initialAttenuation, preDelay);
addAudioPath(LOCAL_AUDIO, _origin, frontRightDown, initialAttenuation, preDelay);
addAudioPath(LOCAL_AUDIO, _origin, frontLeftDown, initialAttenuation, preDelay);
// loop through all our audio paths and keep analyzing them until they complete
int steps = 0;
int acitvePaths = _inboundAudioPaths.size() + _localAudioPaths.size(); // when we start, all paths are active
while(acitvePaths > 0) {
acitvePaths = analyzePathsSingleStep();
steps++;
}
_reflections = _inboundAudiblePoints.size() + _localAudiblePoints.size();
_diffusionPathCount = countDiffusionPaths();
}
int AudioReflector::countDiffusionPaths() {
int diffusionCount = 0;
foreach(AudioPath* const& path, _inboundAudioPaths) {
if (path->isDiffusion) {
diffusionCount++;
}
}
foreach(AudioPath* const& path, _localAudioPaths) {
if (path->isDiffusion) {
diffusionCount++;
}
}
return diffusionCount;
}
int AudioReflector::analyzePathsSingleStep() {
// iterate all the active sound paths, calculate one step per active path
int activePaths = 0;
QVector<AudioPath*>* pathsLists[] = { &_inboundAudioPaths, &_localAudioPaths };
for(int i = 0; i < sizeof(pathsLists) / sizeof(pathsLists[0]); i ++) {
QVector<AudioPath*>& pathList = *pathsLists[i];
foreach(AudioPath* const& path, pathList) {
glm::vec3 start = path->lastPoint;
glm::vec3 direction = path->lastDirection;
OctreeElement* elementHit; // output from findRayIntersection
float distance; // output from findRayIntersection
BoxFace face; // output from findRayIntersection
if (!path->finalized) {
activePaths++;
if (path->bounceCount > ABSOLUTE_MAXIMUM_BOUNCE_COUNT) {
path->finalized = true;
} else if (_voxels->findRayIntersection(start, direction, elementHit, distance, face)) {
// TODO: we need to decide how we want to handle locking on the ray intersection, if we force lock,
// we get an accurate picture, but it could prevent rendering of the voxels. If we trylock (default),
// we might not get ray intersections where they may exist, but we can't really detect that case...
// add last parameter of Octree::Lock to force locking
handlePathPoint(path, distance, elementHit, face);
} else {
// If we didn't intersect, but this was a diffusion ray, then we will go ahead and cast a short ray out
// from our last known point, in the last known direction, and leave that sound source hanging there
if (path->isDiffusion) {
const float MINIMUM_RANDOM_DISTANCE = 0.25f;
const float MAXIMUM_RANDOM_DISTANCE = 0.5f;
float distance = randFloatInRange(MINIMUM_RANDOM_DISTANCE, MAXIMUM_RANDOM_DISTANCE);
handlePathPoint(path, distance, NULL, UNKNOWN_FACE);
} else {
path->finalized = true; // if it doesn't intersect, then it is finished
}
}
}
}
}
return activePaths;
}
void AudioReflector::handlePathPoint(AudioPath* path, float distance, OctreeElement* elementHit, BoxFace face) {
glm::vec3 start = path->lastPoint;
glm::vec3 direction = path->lastDirection;
glm::vec3 end = start + (direction * (distance * SLIGHTLY_SHORT));
float currentReflectiveAttenuation = path->lastAttenuation; // only the reflective components
float currentDelay = path->lastDelay; // start with our delay so far
float pathDistance = path->lastDistance;
pathDistance += glm::distance(start, end);
float toListenerDistance = glm::distance(end, _listenerPosition);
// adjust our current delay by just the delay from the most recent ray
currentDelay += getDelayFromDistance(distance);
// now we know the current attenuation for the "perfect" reflection case, but we now incorporate
// our surface materials to determine how much of this ray is absorbed, reflected, and diffused
SurfaceCharacteristics material = getSurfaceCharacteristics(elementHit);
float reflectiveAttenuation = currentReflectiveAttenuation * material.reflectiveRatio;
float totalDiffusionAttenuation = currentReflectiveAttenuation * material.diffusionRatio;
bool wantDiffusions = Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingWithDiffusions);
int fanout = wantDiffusions ? _diffusionFanout : 0;
float partialDiffusionAttenuation = fanout < 1 ? 0.0f : totalDiffusionAttenuation / (float)fanout;
// total delay includes the bounce back to listener
float totalDelay = currentDelay + getDelayFromDistance(toListenerDistance);
float toListenerAttenuation = getDistanceAttenuationCoefficient(toListenerDistance + pathDistance);
// if our resulting partial diffusion attenuation, is still above our minimum attenuation
// then we add new paths for each diffusion point
if ((partialDiffusionAttenuation * toListenerAttenuation) > MINIMUM_ATTENUATION_TO_REFLECT
&& totalDelay < MAXIMUM_DELAY_MS) {
// diffusions fan out from random places on the semisphere of the collision point
for(int i = 0; i < fanout; i++) {
glm::vec3 diffusion;
// We're creating a random normal here. But we want it to be relatively dramatic compared to how we handle
// our slightly random surface normals.
const float MINIMUM_RANDOM_LENGTH = 0.5f;
const float MAXIMUM_RANDOM_LENGTH = 1.0f;
float randomness = randFloatInRange(MINIMUM_RANDOM_LENGTH, MAXIMUM_RANDOM_LENGTH);
float remainder = (1.0f - randomness)/2.0f;
float remainderSignA = randomSign();
float remainderSignB = randomSign();
if (face == MIN_X_FACE) {
diffusion = glm::vec3(-randomness, remainder * remainderSignA, remainder * remainderSignB);
} else if (face == MAX_X_FACE) {
diffusion = glm::vec3(randomness, remainder * remainderSignA, remainder * remainderSignB);
} else if (face == MIN_Y_FACE) {
diffusion = glm::vec3(remainder * remainderSignA, -randomness, remainder * remainderSignB);
} else if (face == MAX_Y_FACE) {
diffusion = glm::vec3(remainder * remainderSignA, randomness, remainder * remainderSignB);
} else if (face == MIN_Z_FACE) {
diffusion = glm::vec3(remainder * remainderSignA, remainder * remainderSignB, -randomness);
} else if (face == MAX_Z_FACE) {
diffusion = glm::vec3(remainder * remainderSignA, remainder * remainderSignB, randomness);
} else if (face == UNKNOWN_FACE) {
float randomnessX = randFloatInRange(MINIMUM_RANDOM_LENGTH, MAXIMUM_RANDOM_LENGTH);
float randomnessY = randFloatInRange(MINIMUM_RANDOM_LENGTH, MAXIMUM_RANDOM_LENGTH);
float randomnessZ = randFloatInRange(MINIMUM_RANDOM_LENGTH, MAXIMUM_RANDOM_LENGTH);
diffusion = glm::vec3(direction.x * randomnessX, direction.y * randomnessY, direction.z * randomnessZ);
}
diffusion = glm::normalize(diffusion);
// add new audio path for these diffusions, the new path's source is the same as the original source
addAudioPath(path->source, end, diffusion, partialDiffusionAttenuation, currentDelay, pathDistance, true);
}
} else {
const bool wantDebugging = false;
if (wantDebugging) {
if ((partialDiffusionAttenuation * toListenerAttenuation) <= MINIMUM_ATTENUATION_TO_REFLECT) {
qDebug() << "too quiet to diffuse";
qDebug() << " partialDiffusionAttenuation=" << partialDiffusionAttenuation;
qDebug() << " toListenerAttenuation=" << toListenerAttenuation;
qDebug() << " result=" << (partialDiffusionAttenuation * toListenerAttenuation);
qDebug() << " MINIMUM_ATTENUATION_TO_REFLECT=" << MINIMUM_ATTENUATION_TO_REFLECT;
}
if (totalDelay > MAXIMUM_DELAY_MS) {
qDebug() << "too delayed to diffuse";
qDebug() << " totalDelay=" << totalDelay;
qDebug() << " MAXIMUM_DELAY_MS=" << MAXIMUM_DELAY_MS;
}
}
}
// if our reflective attenuation is above our minimum, then add our reflection point and
// allow our path to continue
if (((reflectiveAttenuation + totalDiffusionAttenuation) * toListenerAttenuation) > MINIMUM_ATTENUATION_TO_REFLECT
&& totalDelay < MAXIMUM_DELAY_MS) {
// add this location, as the reflective attenuation as well as the total diffusion attenuation
// NOTE: we add the delay to the audible point, not back to the listener. The additional delay
// and attenuation to the listener is recalculated at the point where we actually inject the
// audio so that it can be adjusted to ear position
AudiblePoint point = {end, currentDelay, (reflectiveAttenuation + totalDiffusionAttenuation), pathDistance};
QVector<AudiblePoint>& audiblePoints = path->source == INBOUND_AUDIO ? _inboundAudiblePoints : _localAudiblePoints;
audiblePoints.push_back(point);
// add this location to the path points, so we can visualize it
path->reflections.push_back(end);
// now, if our reflective attenuation is over our minimum then keep going...
if (reflectiveAttenuation * toListenerAttenuation > MINIMUM_ATTENUATION_TO_REFLECT) {
glm::vec3 faceNormal = getFaceNormal(face);
path->lastDirection = glm::normalize(glm::reflect(direction,faceNormal));
path->lastPoint = end;
path->lastAttenuation = reflectiveAttenuation;
path->lastDelay = currentDelay;
path->lastDistance = pathDistance;
path->bounceCount++;
} else {
path->finalized = true; // if we're too quiet, then we're done
}
} else {
const bool wantDebugging = false;
if (wantDebugging) {
if (((reflectiveAttenuation + totalDiffusionAttenuation) * toListenerAttenuation) <= MINIMUM_ATTENUATION_TO_REFLECT) {
qDebug() << "too quiet to add audible point";
qDebug() << " reflectiveAttenuation + totalDiffusionAttenuation=" << (reflectiveAttenuation + totalDiffusionAttenuation);
qDebug() << " toListenerAttenuation=" << toListenerAttenuation;
qDebug() << " result=" << ((reflectiveAttenuation + totalDiffusionAttenuation) * toListenerAttenuation);
qDebug() << " MINIMUM_ATTENUATION_TO_REFLECT=" << MINIMUM_ATTENUATION_TO_REFLECT;
}
if (totalDelay > MAXIMUM_DELAY_MS) {
qDebug() << "too delayed to add audible point";
qDebug() << " totalDelay=" << totalDelay;
qDebug() << " MAXIMUM_DELAY_MS=" << MAXIMUM_DELAY_MS;
}
}
path->finalized = true; // if we're too quiet, then we're done
}
}
// TODO: eventually we will add support for different surface characteristics based on the element
// that is hit, which is why we pass in the elementHit to this helper function. But for now, all
// surfaces have the same characteristics
SurfaceCharacteristics AudioReflector::getSurfaceCharacteristics(OctreeElement* elementHit) {
SurfaceCharacteristics result = { getReflectiveRatio(), _absorptionRatio, _diffusionRatio };
return result;
}
void AudioReflector::setReflectiveRatio(float ratio) {
float safeRatio = std::max(0.0f, std::min(ratio, 1.0f));
float currentReflectiveRatio = (1.0f - (_absorptionRatio + _diffusionRatio));
float halfDifference = (safeRatio - currentReflectiveRatio) / 2.0f;
// evenly distribute the difference between the two other ratios
_absorptionRatio -= halfDifference;
_diffusionRatio -= halfDifference;
}
void AudioReflector::setAbsorptionRatio(float ratio) {
float safeRatio = std::max(0.0f, std::min(ratio, 1.0f));
_absorptionRatio = safeRatio;
const float MAX_COMBINED_RATIO = 1.0f;
if (_absorptionRatio + _diffusionRatio > MAX_COMBINED_RATIO) {
_diffusionRatio = MAX_COMBINED_RATIO - _absorptionRatio;
}
}
void AudioReflector::setDiffusionRatio(float ratio) {
float safeRatio = std::max(0.0f, std::min(ratio, 1.0f));
_diffusionRatio = safeRatio;
const float MAX_COMBINED_RATIO = 1.0f;
if (_absorptionRatio + _diffusionRatio > MAX_COMBINED_RATIO) {
_absorptionRatio = MAX_COMBINED_RATIO - _diffusionRatio;
}
}

View file

@ -0,0 +1,222 @@
//
// AudioReflector.h
// interface
//
// Created by Brad Hefta-Gaub on 4/2/2014
// Copyright (c) 2014 High Fidelity, Inc. All rights reserved.
//
#ifndef interface_AudioReflector_h
#define interface_AudioReflector_h
#include <QMutex>
#include <VoxelTree.h>
#include "Audio.h"
#include "avatar/MyAvatar.h"
enum AudioSource {
LOCAL_AUDIO,
INBOUND_AUDIO
};
class AudioPath {
public:
AudioPath(AudioSource source = INBOUND_AUDIO, const glm::vec3& origin = glm::vec3(0.0f),
const glm::vec3& direction = glm::vec3(0.0f), float attenuation = 1.0f,
float delay = 0.0f, float distance = 0.0f, bool isDiffusion = false, int bounceCount = 0);
AudioSource source;
bool isDiffusion;
glm::vec3 startPoint;
glm::vec3 startDirection;
float startDelay;
float startAttenuation;
glm::vec3 lastPoint;
glm::vec3 lastDirection;
float lastDistance;
float lastDelay;
float lastAttenuation;
unsigned int bounceCount;
bool finalized;
QVector<glm::vec3> reflections;
};
class AudiblePoint {
public:
glm::vec3 location; /// location of the audible point
float delay; /// includes total delay including pre delay to the point of the audible location, not to the listener's ears
float attenuation; /// only the reflective & diffusive portion of attenuation, doesn't include distance attenuation
float distance; /// includes total distance to the point of the audible location, not to the listener's ears
};
class SurfaceCharacteristics {
public:
float reflectiveRatio;
float absorptionRatio;
float diffusionRatio;
};
class AudioReflector : public QObject {
Q_OBJECT
public:
AudioReflector(QObject* parent = NULL);
// setup functions to configure the resources used by the AudioReflector
void setVoxels(VoxelTree* voxels) { _voxels = voxels; }
void setMyAvatar(MyAvatar* myAvatar) { _myAvatar = myAvatar; }
void setAudio(Audio* audio) { _audio = audio; }
void render(); /// must be called in the application render loop
void processInboundAudio(unsigned int sampleTime, const QByteArray& samples, const QAudioFormat& format);
void processLocalAudio(unsigned int sampleTime, const QByteArray& samples, const QAudioFormat& format);
public slots:
// statistics
int getReflections() const { return _reflections; }
float getAverageDelayMsecs() const { return _averageDelay; }
float getAverageAttenuation() const { return _averageAttenuation; }
float getMaxDelayMsecs() const { return _maxDelay; }
float getMaxAttenuation() const { return _maxAttenuation; }
float getMinDelayMsecs() const { return _minDelay; }
float getMinAttenuation() const { return _minAttenuation; }
float getDelayFromDistance(float distance);
int getDiffusionPathCount() const { return _diffusionPathCount; }
int getEchoesInjected() const { return _inboundAudioDelays.size() + _localAudioDelays.size(); }
int getEchoesSuppressed() const { return _inboundEchoesSuppressed.size() + _localEchoesSuppressed.size(); }
/// ms of delay added to all echos
float getPreDelay() const { return _preDelay; }
void setPreDelay(float preDelay) { _preDelay = preDelay; }
/// ms per meter that sound travels, larger means slower, which sounds bigger
float getSoundMsPerMeter() const { return _soundMsPerMeter; }
void setSoundMsPerMeter(float soundMsPerMeter) { _soundMsPerMeter = soundMsPerMeter; }
/// scales attenuation to be louder or softer than the default distance attenuation
float getDistanceAttenuationScalingFactor() const { return _distanceAttenuationScalingFactor; }
void setDistanceAttenuationScalingFactor(float factor) { _distanceAttenuationScalingFactor = factor; }
/// scales attenuation of local audio to be louder or softer than the default attenuation
float getLocalAudioAttenuationFactor() const { return _localAudioAttenuationFactor; }
void setLocalAudioAttenuationFactor(float factor) { _localAudioAttenuationFactor = factor; }
/// ms window in which we will suppress echoes to reduce comb filter effects
float getCombFilterWindow() const { return _combFilterWindow; }
void setCombFilterWindow(float value) { _combFilterWindow = value; }
/// number of points of diffusion from each reflection point, as fanout increases there are more chances for secondary
/// echoes, but each diffusion ray is quieter and therefore more likely to be below the sound floor
int getDiffusionFanout() const { return _diffusionFanout; }
void setDiffusionFanout(int fanout) { _diffusionFanout = fanout; }
/// ratio 0.0 - 1.0 of amount of each ray that is absorbed upon hitting a surface
float getAbsorptionRatio() const { return _absorptionRatio; }
void setAbsorptionRatio(float ratio);
// ratio 0.0 - 1.0 of amount of each ray that is diffused upon hitting a surface
float getDiffusionRatio() const { return _diffusionRatio; }
void setDiffusionRatio(float ratio);
// remaining ratio 0.0 - 1.0 of amount of each ray that is cleanly reflected upon hitting a surface
float getReflectiveRatio() const { return (1.0f - (_absorptionRatio + _diffusionRatio)); }
void setReflectiveRatio(float ratio);
signals:
private:
VoxelTree* _voxels; // used to access voxel scene
MyAvatar* _myAvatar; // access to listener
Audio* _audio; // access to audio API
// Helpers for drawing
void drawVector(const glm::vec3& start, const glm::vec3& end, const glm::vec3& color);
// helper for generically calculating attenuation based on distance
float getDistanceAttenuationCoefficient(float distance);
// statistics
int _reflections;
int _diffusionPathCount;
int _delayCount;
float _totalDelay;
float _averageDelay;
float _maxDelay;
float _minDelay;
int _attenuationCount;
float _totalAttenuation;
float _averageAttenuation;
float _maxAttenuation;
float _minAttenuation;
glm::vec3 _listenerPosition;
glm::vec3 _origin;
glm::quat _orientation;
QVector<AudioPath*> _inboundAudioPaths; /// audio paths we're processing for inbound audio
QVector<AudiblePoint> _inboundAudiblePoints; /// the audible points that have been calculated from the inbound audio paths
QMap<float, float> _inboundAudioDelays; /// delay times for currently injected audio points
QVector<float> _inboundEchoesSuppressed; /// delay times for currently injected audio points
QVector<AudioPath*> _localAudioPaths; /// audio paths we're processing for local audio
QVector<AudiblePoint> _localAudiblePoints; /// the audible points that have been calculated from the local audio paths
QMap<float, float> _localAudioDelays; /// delay times for currently injected audio points
QVector<float> _localEchoesSuppressed; /// delay times for currently injected audio points
// adds a sound source to begin an audio path trace, these can be the initial sound sources with their directional properties,
// as well as diffusion sound sources
void addAudioPath(AudioSource source, const glm::vec3& origin, const glm::vec3& initialDirection, float initialAttenuation,
float initialDelay, float initialDistance = 0.0f, bool isDiffusion = false);
// helper that handles audioPath analysis
int analyzePathsSingleStep();
void handlePathPoint(AudioPath* path, float distance, OctreeElement* elementHit, BoxFace face);
void clearPaths();
void analyzePaths();
void drawRays();
void drawPath(AudioPath* path, const glm::vec3& originalColor);
void calculateAllReflections();
int countDiffusionPaths();
glm::vec3 getFaceNormal(BoxFace face);
void injectAudiblePoint(AudioSource source, const AudiblePoint& audiblePoint, const QByteArray& samples, unsigned int sampleTime, int sampleRate);
void echoAudio(AudioSource source, unsigned int sampleTime, const QByteArray& samples, const QAudioFormat& format);
// return the surface characteristics of the element we hit
SurfaceCharacteristics getSurfaceCharacteristics(OctreeElement* elementHit = NULL);
QMutex _mutex;
float _preDelay;
float _soundMsPerMeter;
float _distanceAttenuationScalingFactor;
float _localAudioAttenuationFactor;
float _combFilterWindow;
int _diffusionFanout; // number of points of diffusion from each reflection point
// all elements have the same material for now...
float _absorptionRatio;
float _diffusionRatio;
float _reflectiveRatio;
// remember the last known values at calculation
bool haveAttributesChanged();
bool _withDiffusion;
float _lastPreDelay;
float _lastSoundMsPerMeter;
float _lastDistanceAttenuationScalingFactor;
float _lastLocalAudioAttenuationFactor;
int _lastDiffusionFanout;
float _lastAbsorptionRatio;
float _lastDiffusionRatio;
};
#endif // interface_AudioReflector_h

View file

@ -349,8 +349,8 @@ Menu::Menu() :
QMenu* renderDebugMenu = developerMenu->addMenu("Render Debugging Tools");
addCheckableActionToQMenuAndActionHash(renderDebugMenu, MenuOption::PipelineWarnings, Qt::CTRL | Qt::SHIFT | Qt::Key_P);
addCheckableActionToQMenuAndActionHash(renderDebugMenu, MenuOption::SuppressShortTimings, Qt::CTRL | Qt::SHIFT | Qt::Key_S);
addCheckableActionToQMenuAndActionHash(renderDebugMenu, MenuOption::PipelineWarnings);
addCheckableActionToQMenuAndActionHash(renderDebugMenu, MenuOption::SuppressShortTimings);
addCheckableActionToQMenuAndActionHash(renderDebugMenu,
MenuOption::CullSharedFaces,
@ -361,7 +361,7 @@ Menu::Menu() :
addCheckableActionToQMenuAndActionHash(renderDebugMenu,
MenuOption::ShowCulledSharedFaces,
Qt::CTRL | Qt::SHIFT | Qt::Key_X,
0,
false,
appInstance->getVoxels(),
SLOT(showCulledSharedFaces()));
@ -385,6 +385,50 @@ Menu::Menu() :
appInstance->getAudio(),
SLOT(toggleToneInjection()));
QMenu* spatialAudioMenu = audioDebugMenu->addMenu("Spatial Audio");
addCheckableActionToQMenuAndActionHash(spatialAudioMenu, MenuOption::AudioSpatialProcessing,
Qt::CTRL | Qt::SHIFT | Qt::Key_M,
false,
appInstance->getAudio(),
SLOT(toggleAudioSpatialProcessing()));
addCheckableActionToQMenuAndActionHash(spatialAudioMenu, MenuOption::AudioSpatialProcessingIncludeOriginal,
Qt::CTRL | Qt::SHIFT | Qt::Key_O,
true);
addCheckableActionToQMenuAndActionHash(spatialAudioMenu, MenuOption::AudioSpatialProcessingSeparateEars,
Qt::CTRL | Qt::SHIFT | Qt::Key_E,
true);
addCheckableActionToQMenuAndActionHash(spatialAudioMenu, MenuOption::AudioSpatialProcessingPreDelay,
Qt::CTRL | Qt::SHIFT | Qt::Key_D,
true);
addCheckableActionToQMenuAndActionHash(spatialAudioMenu, MenuOption::AudioSpatialProcessingStereoSource,
Qt::CTRL | Qt::SHIFT | Qt::Key_S,
true);
addCheckableActionToQMenuAndActionHash(spatialAudioMenu, MenuOption::AudioSpatialProcessingHeadOriented,
Qt::CTRL | Qt::SHIFT | Qt::Key_H,
true);
addCheckableActionToQMenuAndActionHash(spatialAudioMenu, MenuOption::AudioSpatialProcessingWithDiffusions,
Qt::CTRL | Qt::SHIFT | Qt::Key_W,
true);
addCheckableActionToQMenuAndActionHash(spatialAudioMenu, MenuOption::AudioSpatialProcessingRenderPaths,
Qt::CTRL | Qt::SHIFT | Qt::Key_R,
true);
addCheckableActionToQMenuAndActionHash(spatialAudioMenu, MenuOption::AudioSpatialProcessingSlightlyRandomSurfaces,
Qt::CTRL | Qt::SHIFT | Qt::Key_X,
true);
addCheckableActionToQMenuAndActionHash(spatialAudioMenu, MenuOption::AudioSpatialProcessingProcessLocalAudio,
Qt::CTRL | Qt::SHIFT | Qt::Key_A,
true);
addActionToQMenuAndActionHash(developerMenu, MenuOption::PasteToVoxel,
Qt::CTRL | Qt::SHIFT | Qt::Key_V,
this,

View file

@ -257,6 +257,18 @@ namespace MenuOption {
const QString Atmosphere = "Atmosphere";
const QString AudioNoiseReduction = "Audio Noise Reduction";
const QString AudioToneInjection = "Inject Test Tone";
const QString AudioSpatialProcessing = "Audio Spatial Processing";
const QString AudioSpatialProcessingHeadOriented = "Head Oriented";
const QString AudioSpatialProcessingIncludeOriginal = "Includes Network Original";
const QString AudioSpatialProcessingPreDelay = "Add Pre-Delay";
const QString AudioSpatialProcessingProcessLocalAudio = "Process Local Audio";
const QString AudioSpatialProcessingRenderPaths = "Render Paths";
const QString AudioSpatialProcessingSeparateEars = "Separate Ears";
const QString AudioSpatialProcessingSlightlyRandomSurfaces = "Slightly Random Surfaces";
const QString AudioSpatialProcessingStereoSource = "Stereo Source";
const QString AudioSpatialProcessingWithDiffusions = "With Diffusions";
const QString Avatars = "Avatars";
const QString Bandwidth = "Bandwidth Display";
const QString BandwidthDetails = "Bandwidth Details";

View file

@ -30,6 +30,8 @@ enum eyeContactTargets {
MOUTH
};
const float EYE_EAR_GAP = 0.08f;
class Avatar;
class ProgramObject;
@ -73,6 +75,11 @@ public:
glm::quat getEyeRotation(const glm::vec3& eyePosition) const;
const glm::vec3& getRightEyePosition() const { return _rightEyePosition; }
const glm::vec3& getLeftEyePosition() const { return _leftEyePosition; }
glm::vec3 getRightEarPosition() const { return _rightEyePosition + (getRightDirection() * EYE_EAR_GAP) + (getFrontDirection() * -EYE_EAR_GAP); }
glm::vec3 getLeftEarPosition() const { return _leftEyePosition + (getRightDirection() * -EYE_EAR_GAP) + (getFrontDirection() * -EYE_EAR_GAP); }
FaceModel& getFaceModel() { return _faceModel; }
const FaceModel& getFaceModel() const { return _faceModel; }

View file

@ -293,6 +293,7 @@ void Stats::display(
glm::vec3 avatarPos = myAvatar->getPosition();
lines = _expanded ? 5 : 3;
drawBackground(backgroundColor, horizontalOffset, 0, _geoStatsWidth, lines * STATS_PELS_PER_LINE + 10);
horizontalOffset += 5;
@ -341,6 +342,10 @@ void Stats::display(
VoxelSystem* voxels = Application::getInstance()->getVoxels();
lines = _expanded ? 12 : 3;
if (_expanded && Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessing)) {
lines += 8; // spatial audio processing adds 1 spacing line and 7 extra lines of info
}
drawBackground(backgroundColor, horizontalOffset, 0, glWidget->width() - horizontalOffset, lines * STATS_PELS_PER_LINE + 10);
horizontalOffset += 5;
@ -497,5 +502,89 @@ void Stats::display(
voxelStats << "LOD: You can see " << qPrintable(displayLODDetails.trimmed());
verticalOffset += STATS_PELS_PER_LINE;
drawText(horizontalOffset, verticalOffset, 0.10f, 0.f, 2.f, (char*)voxelStats.str().c_str(), color);
}
}
if (_expanded && Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessing)) {
verticalOffset += STATS_PELS_PER_LINE; // space one line...
const AudioReflector* audioReflector = Application::getInstance()->getAudioReflector();
// add some reflection stats
char reflectionsStatus[128];
sprintf(reflectionsStatus, "Reflections: %d, Original: %s, Ears: %s, Source: %s, Normals: %s",
audioReflector->getReflections(),
(Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingIncludeOriginal)
? "included" : "silent"),
(Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingSeparateEars)
? "two" : "one"),
(Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingStereoSource)
? "stereo" : "mono"),
(Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingSlightlyRandomSurfaces)
? "random" : "regular")
);
verticalOffset += STATS_PELS_PER_LINE;
drawText(horizontalOffset, verticalOffset, 0.10f, 0.f, 2.f, reflectionsStatus, color);
float preDelay = Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingPreDelay) ?
audioReflector->getPreDelay() : 0.0f;
sprintf(reflectionsStatus, "Delay: pre: %6.3f, average %6.3f, max %6.3f, min %6.3f, speed: %6.3f",
preDelay,
audioReflector->getAverageDelayMsecs(),
audioReflector->getMaxDelayMsecs(),
audioReflector->getMinDelayMsecs(),
audioReflector->getSoundMsPerMeter());
verticalOffset += STATS_PELS_PER_LINE;
drawText(horizontalOffset, verticalOffset, 0.10f, 0.f, 2.f, reflectionsStatus, color);
sprintf(reflectionsStatus, "Attenuation: average %5.3f, max %5.3f, min %5.3f, Factor: %5.3f",
audioReflector->getAverageAttenuation(),
audioReflector->getMaxAttenuation(),
audioReflector->getMinAttenuation(),
audioReflector->getDistanceAttenuationScalingFactor());
verticalOffset += STATS_PELS_PER_LINE;
drawText(horizontalOffset, verticalOffset, 0.10f, 0.f, 2.f, reflectionsStatus, color);
sprintf(reflectionsStatus, "Local Audio: %s Attenuation: %5.3f",
(Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingProcessLocalAudio)
? "yes" : "no"),
audioReflector->getLocalAudioAttenuationFactor());
verticalOffset += STATS_PELS_PER_LINE;
drawText(horizontalOffset, verticalOffset, 0.10f, 0.f, 2.f, reflectionsStatus, color);
bool diffusionEnabled = Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingWithDiffusions);
int fanout = diffusionEnabled ? audioReflector->getDiffusionFanout() : 0;
int diffusionPaths = diffusionEnabled ? audioReflector->getDiffusionPathCount() : 0;
sprintf(reflectionsStatus, "Diffusion: %s, Fanout: %d, Paths: %d",
(diffusionEnabled ? "yes" : "no"), fanout, diffusionPaths);
verticalOffset += STATS_PELS_PER_LINE;
drawText(horizontalOffset, verticalOffset, 0.10f, 0.f, 2.f, reflectionsStatus, color);
const float AS_PERCENT = 100.0f;
float reflectiveRatio = audioReflector->getReflectiveRatio() * AS_PERCENT;
float diffusionRatio = audioReflector->getDiffusionRatio() * AS_PERCENT;
float absorptionRatio = audioReflector->getAbsorptionRatio() * AS_PERCENT;
sprintf(reflectionsStatus, "Ratios: Reflective: %5.3f, Diffusion: %5.3f, Absorption: %5.3f",
reflectiveRatio, diffusionRatio, absorptionRatio);
verticalOffset += STATS_PELS_PER_LINE;
drawText(horizontalOffset, verticalOffset, 0.10f, 0.f, 2.f, reflectionsStatus, color);
sprintf(reflectionsStatus, "Comb Filter Window: %5.3f ms, Allowed: %d, Suppressed: %d",
audioReflector->getCombFilterWindow(),
audioReflector->getEchoesInjected(),
audioReflector->getEchoesSuppressed());
verticalOffset += STATS_PELS_PER_LINE;
drawText(horizontalOffset, verticalOffset, 0.10f, 0.f, 2.f, reflectionsStatus, color);
}
}

View file

@ -18,15 +18,19 @@
#include "AudioRingBuffer.h"
AudioRingBuffer::AudioRingBuffer(int numFrameSamples) :
AudioRingBuffer::AudioRingBuffer(int numFrameSamples, bool randomAccessMode) :
NodeData(),
_sampleCapacity(numFrameSamples * RING_BUFFER_LENGTH_FRAMES),
_numFrameSamples(numFrameSamples),
_isStarved(true),
_hasStarted(false)
_hasStarted(false),
_randomAccessMode(randomAccessMode)
{
if (numFrameSamples) {
_buffer = new int16_t[_sampleCapacity];
if (_randomAccessMode) {
memset(_buffer, 0, _sampleCapacity * sizeof(int16_t));
}
_nextOutput = _buffer;
_endOfLastWrite = _buffer;
} else {
@ -50,6 +54,9 @@ void AudioRingBuffer::resizeForFrameSize(qint64 numFrameSamples) {
delete[] _buffer;
_sampleCapacity = numFrameSamples * RING_BUFFER_LENGTH_FRAMES;
_buffer = new int16_t[_sampleCapacity];
if (_randomAccessMode) {
memset(_buffer, 0, _sampleCapacity * sizeof(int16_t));
}
_nextOutput = _buffer;
_endOfLastWrite = _buffer;
}
@ -68,18 +75,34 @@ qint64 AudioRingBuffer::readData(char *data, qint64 maxSize) {
// only copy up to the number of samples we have available
int numReadSamples = std::min((unsigned) (maxSize / sizeof(int16_t)), samplesAvailable());
// If we're in random access mode, then we consider our number of available read samples slightly
// differently. Namely, if anything has been written, we say we have as many samples as they ask for
// otherwise we say we have nothing available
if (_randomAccessMode) {
numReadSamples = _endOfLastWrite ? (maxSize / sizeof(int16_t)) : 0;
}
if (_nextOutput + numReadSamples > _buffer + _sampleCapacity) {
// we're going to need to do two reads to get this data, it wraps around the edge
// read to the end of the buffer
int numSamplesToEnd = (_buffer + _sampleCapacity) - _nextOutput;
memcpy(data, _nextOutput, numSamplesToEnd * sizeof(int16_t));
if (_randomAccessMode) {
memset(_nextOutput, 0, numSamplesToEnd * sizeof(int16_t)); // clear it
}
// read the rest from the beginning of the buffer
memcpy(data + (numSamplesToEnd * sizeof(int16_t)), _buffer, (numReadSamples - numSamplesToEnd) * sizeof(int16_t));
if (_randomAccessMode) {
memset(_buffer, 0, (numReadSamples - numSamplesToEnd) * sizeof(int16_t)); // clear it
}
} else {
// read the data
memcpy(data, _nextOutput, numReadSamples * sizeof(int16_t));
if (_randomAccessMode) {
memset(_nextOutput, 0, numReadSamples * sizeof(int16_t)); // clear it
}
}
// push the position of _nextOutput by the number of samples read
@ -128,6 +151,10 @@ int16_t& AudioRingBuffer::operator[](const int index) {
return *shiftedPositionAccomodatingWrap(_nextOutput, index);
}
const int16_t& AudioRingBuffer::operator[] (const int index) const {
return *shiftedPositionAccomodatingWrap(_nextOutput, index);
}
void AudioRingBuffer::shiftReadPosition(unsigned int numSamples) {
_nextOutput = shiftedPositionAccomodatingWrap(_nextOutput, numSamples);
}

View file

@ -39,7 +39,7 @@ const int MIN_SAMPLE_VALUE = std::numeric_limits<int16_t>::min();
class AudioRingBuffer : public NodeData {
Q_OBJECT
public:
AudioRingBuffer(int numFrameSamples);
AudioRingBuffer(int numFrameSamples, bool randomAccessMode = false);
~AudioRingBuffer();
void reset();
@ -50,8 +50,8 @@ public:
int parseData(const QByteArray& packet);
// assume callers using this will never wrap around the end
const int16_t* getNextOutput() { return _nextOutput; }
const int16_t* getBuffer() { return _buffer; }
const int16_t* getNextOutput() const { return _nextOutput; }
const int16_t* getBuffer() const { return _buffer; }
qint64 readSamples(int16_t* destination, qint64 maxSamples);
qint64 writeSamples(const int16_t* source, qint64 maxSamples);
@ -60,6 +60,7 @@ public:
qint64 writeData(const char* data, qint64 maxSize);
int16_t& operator[](const int index);
const int16_t& operator[] (const int index) const;
void shiftReadPosition(unsigned int numSamples);
@ -87,6 +88,7 @@ protected:
int16_t* _buffer;
bool _isStarved;
bool _hasStarted;
bool _randomAccessMode; /// will this ringbuffer be used for random access? if so, do some special processing
};
#endif // hifi_AudioRingBuffer_h

View file

@ -23,7 +23,8 @@ enum BoxFace {
MIN_Y_FACE,
MAX_Y_FACE,
MIN_Z_FACE,
MAX_Z_FACE
MAX_Z_FACE,
UNKNOWN_FACE
};
enum BoxVertex {

View file

@ -425,10 +425,6 @@ bool ViewFrustum::matches(const ViewFrustum& compareTo, bool debug) const {
return result;
}
bool isNaN(float f) {
return f != f;
}
bool ViewFrustum::isVerySimilar(const ViewFrustum& compareTo, bool debug) const {
// Compute distance between the two positions
@ -450,7 +446,7 @@ bool ViewFrustum::isVerySimilar(const ViewFrustum& compareTo, bool debug) const
float angleEyeOffsetOrientation = compareTo._eyeOffsetOrientation == _eyeOffsetOrientation
? 0.0f : glm::degrees(glm::angle(dQEyeOffsetOrientation));
if (isNaN(angleEyeOffsetOrientation)) {
angleOrientation = 0.0f;
angleEyeOffsetOrientation = 0.0f;
}
bool result =

View file

@ -51,6 +51,10 @@ float randFloatInRange (float min,float max) {
return min + ((rand() % 10000)/10000.f * (max-min));
}
float randomSign() {
return randomBoolean() ? -1.0 : 1.0;
}
unsigned char randomColorValue(int miniumum) {
return miniumum + (rand() % (256 - miniumum));
}
@ -659,3 +663,21 @@ glm::vec3 safeEulerAngles(const glm::quat& q) {
}
}
bool isNaN(float value) {
return value != value;
}
bool isSimilarOrientation(const glm::quat& orientionA, const glm::quat& orientionB, float similarEnough) {
// Compute the angular distance between the two orientations
float angleOrientation = orientionA == orientionB ? 0.0f : glm::degrees(glm::angle(orientionA * glm::inverse(orientionB)));
if (isNaN(angleOrientation)) {
angleOrientation = 0.0f;
}
return (angleOrientation <= similarEnough);
}
bool isSimilarPosition(const glm::vec3& positionA, const glm::vec3& positionB, float similarEnough) {
// Compute the distance between the two points
float positionDistance = glm::distance(positionA, positionB);
return (positionDistance <= similarEnough);
}

View file

@ -73,6 +73,7 @@ void usecTimestampNowForceClockSkew(int clockSkew);
float randFloat();
int randIntInRange (int min, int max);
float randFloatInRange (float min,float max);
float randomSign(); /// \return -1.0 or 1.0
unsigned char randomColorValue(int minimum);
bool randomBoolean();
@ -166,4 +167,14 @@ int unpackFloatVec3FromSignedTwoByteFixed(const unsigned char* sourceBuffer, glm
/// \return vec3 with euler angles in radians
glm::vec3 safeEulerAngles(const glm::quat& q);
/// \return bool are two orientations similar to each other
const float ORIENTATION_SIMILAR_ENOUGH = 5.0f; // 10 degrees in any direction
bool isSimilarOrientation(const glm::quat& orientionA, const glm::quat& orientionB,
float similarEnough = ORIENTATION_SIMILAR_ENOUGH);
const float POSITION_SIMILAR_ENOUGH = 0.1f; // 0.1 meter
bool isSimilarPosition(const glm::vec3& positionA, const glm::vec3& positionB, float similarEnough = POSITION_SIMILAR_ENOUGH);
/// \return bool is the float NaN
bool isNaN(float value);
#endif // hifi_SharedUtil_h

View file

@ -75,6 +75,9 @@ QScriptValue rayToVoxelIntersectionResultToScriptValue(QScriptEngine* engine, co
case MAX_Z_FACE:
faceName = "MAX_Z_FACE";
break;
case UNKNOWN_FACE:
faceName = "UNKNOWN_FACE";
break;
}
obj.setProperty("face", faceName);