Merge pull request #1164 from ey6es/master

Fix for texture coordinates and normals (seams on Macaw head, Brad's eyes and lips).
This commit is contained in:
Philip Rosedale 2013-11-01 11:27:39 -07:00
commit da1383ef7b
10 changed files with 189 additions and 146 deletions

View file

@ -8,7 +8,7 @@
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved. // Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
// //
const int MAX_CLUSTERS = 64; const int MAX_CLUSTERS = 128;
const int INDICES_PER_VERTEX = 4; const int INDICES_PER_VERTEX = 4;
uniform mat4 clusterMatrices[MAX_CLUSTERS]; uniform mat4 clusterMatrices[MAX_CLUSTERS];

View file

@ -8,7 +8,7 @@
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved. // Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
// //
const int MAX_CLUSTERS = 64; const int MAX_CLUSTERS = 128;
const int INDICES_PER_VERTEX = 4; const int INDICES_PER_VERTEX = 4;
uniform mat4 clusterMatrices[MAX_CLUSTERS]; uniform mat4 clusterMatrices[MAX_CLUSTERS];

View file

@ -126,6 +126,7 @@ public:
VoxelSystem* getSharedVoxelSystem() { return &_sharedVoxelSystem; } VoxelSystem* getSharedVoxelSystem() { return &_sharedVoxelSystem; }
VoxelTree* getClipboard() { return &_clipboard; } VoxelTree* getClipboard() { return &_clipboard; }
Environment* getEnvironment() { return &_environment; } Environment* getEnvironment() { return &_environment; }
bool isMouseHidden() const { return _mouseHidden; }
SerialInterface* getSerialHeadSensor() { return &_serialHeadSensor; } SerialInterface* getSerialHeadSensor() { return &_serialHeadSensor; }
Webcam* getWebcam() { return &_webcam; } Webcam* getWebcam() { return &_webcam; }
Faceshift* getFaceshift() { return &_faceshift; } Faceshift* getFaceshift() { return &_faceshift; }

View file

@ -63,7 +63,7 @@ void FaceModel::maybeUpdateEyeRotation(const JointState& parentState, const FBXJ
glm::vec3 lookAt = glm::vec3(inverse * glm::vec4(_owningHead->getLookAtPosition() + glm::vec3 lookAt = glm::vec3(inverse * glm::vec4(_owningHead->getLookAtPosition() +
_owningHead->getSaccade(), 1.0f)); _owningHead->getSaccade(), 1.0f));
glm::quat between = rotationBetween(front, lookAt); glm::quat between = rotationBetween(front, lookAt);
const float MAX_ANGLE = 22.5f; const float MAX_ANGLE = 30.0f;
state.rotation = glm::angleAxis(glm::clamp(glm::angle(between), -MAX_ANGLE, MAX_ANGLE), glm::axis(between)) * state.rotation = glm::angleAxis(glm::clamp(glm::angle(between), -MAX_ANGLE, MAX_ANGLE), glm::axis(between)) *
joint.rotation; joint.rotation;
} }

View file

@ -102,7 +102,7 @@ void Head::init() {
_eyePositionLocation = _irisProgram.uniformLocation("eyePosition"); _eyePositionLocation = _irisProgram.uniformLocation("eyePosition");
_irisTexture = Application::getInstance()->getTextureCache()->getTexture(QUrl::fromLocalFile(IRIS_TEXTURE_FILENAME), _irisTexture = Application::getInstance()->getTextureCache()->getTexture(QUrl::fromLocalFile(IRIS_TEXTURE_FILENAME),
true).staticCast<DilatableNetworkTexture>(); false, true).staticCast<DilatableNetworkTexture>();
} }
_faceModel.init(); _faceModel.init();
} }

View file

@ -830,7 +830,7 @@ void MyAvatar::updateHandMovementAndTouching(float deltaTime, bool enableHandMov
// reset hand and arm positions according to hand movement // reset hand and arm positions according to hand movement
glm::vec3 up = orientation * IDENTITY_UP; glm::vec3 up = orientation * IDENTITY_UP;
if (enableHandMovement && glm::length(_mouseRayDirection) > EPSILON) { if (enableHandMovement && glm::length(_mouseRayDirection) > EPSILON && !Application::getInstance()->isMouseHidden()) {
// confine to the approximate shoulder plane // confine to the approximate shoulder plane
glm::vec3 pointDirection = _mouseRayDirection; glm::vec3 pointDirection = _mouseRayDirection;
if (glm::dot(_mouseRayDirection, up) > 0.0f) { if (glm::dot(_mouseRayDirection, up) > 0.0f) {

View file

@ -560,50 +560,122 @@ void appendModelIDs(const QString& parentID, const QMultiHash<QString, QString>&
} }
} }
FBXMesh extractMesh(const FBXNode& object) { class Vertex {
public:
int originalIndex;
glm::vec2 texCoord;
};
uint qHash(const Vertex& vertex, uint seed = 0) {
return qHash(vertex.originalIndex, seed);
}
bool operator==(const Vertex& v1, const Vertex& v2) {
return v1.originalIndex == v2.originalIndex && v1.texCoord == v2.texCoord;
}
class ExtractedMesh {
public:
FBXMesh mesh; FBXMesh mesh;
QMultiHash<int, int> newIndices;
};
class MeshData {
public:
ExtractedMesh extracted;
QVector<glm::vec3> vertices;
QVector<int> polygonIndices; QVector<int> polygonIndices;
bool normalsByVertex;
QVector<glm::vec3> normals; QVector<glm::vec3> normals;
QVector<int> normalIndices; QVector<int> normalIndices;
QVector<glm::vec2> texCoords; QVector<glm::vec2> texCoords;
QVector<int> texCoordIndices; QVector<int> texCoordIndices;
QVector<int> materials;
foreach (const FBXNode& data, object.children) { QHash<Vertex, int> indices;
if (data.name == "Vertices") { };
mesh.vertices = createVec3Vector(getDoubleVector(data.properties, 0));
void appendIndex(MeshData& data, QVector<int>& indices, int index) {
} else if (data.name == "PolygonVertexIndex") { int vertexIndex = data.polygonIndices.at(index);
polygonIndices = getIntVector(data.properties, 0); if (vertexIndex < 0) {
vertexIndex = -vertexIndex - 1;
}
Vertex vertex;
vertex.originalIndex = vertexIndex;
glm::vec3 normal;
if (data.normalIndices.isEmpty()) {
normal = data.normals.at(data.normalsByVertex ? vertexIndex : index);
} else if (data.name == "LayerElementNormal") { } else {
bool byVertex = false; int normalIndex = data.normalIndices.at(data.normalsByVertex ? vertexIndex : index);
foreach (const FBXNode& subdata, data.children) { if (normalIndex >= 0) {
normal = data.normals.at(normalIndex);
}
}
if (data.texCoordIndices.isEmpty()) {
if (index < data.texCoords.size()) {
vertex.texCoord = data.texCoords.at(index);
}
} else {
int texCoordIndex = data.texCoordIndices.at(index);
if (texCoordIndex >= 0) {
vertex.texCoord = data.texCoords.at(texCoordIndex);
}
}
QHash<Vertex, int>::const_iterator it = data.indices.find(vertex);
if (it == data.indices.constEnd()) {
int newIndex = data.extracted.mesh.vertices.size();
indices.append(newIndex);
data.indices.insert(vertex, newIndex);
data.extracted.newIndices.insert(vertexIndex, newIndex);
data.extracted.mesh.vertices.append(data.vertices.at(vertexIndex));
data.extracted.mesh.normals.append(normal);
data.extracted.mesh.texCoords.append(vertex.texCoord);
} else {
indices.append(*it);
data.extracted.mesh.normals[*it] += normal;
}
}
ExtractedMesh extractMesh(const FBXNode& object) {
MeshData data;
QVector<int> materials;
foreach (const FBXNode& child, object.children) {
if (child.name == "Vertices") {
data.vertices = createVec3Vector(getDoubleVector(child.properties, 0));
} else if (child.name == "PolygonVertexIndex") {
data.polygonIndices = getIntVector(child.properties, 0);
} else if (child.name == "LayerElementNormal") {
data.normalsByVertex = false;
foreach (const FBXNode& subdata, child.children) {
if (subdata.name == "Normals") { if (subdata.name == "Normals") {
normals = createVec3Vector(getDoubleVector(subdata.properties, 0)); data.normals = createVec3Vector(getDoubleVector(subdata.properties, 0));
} else if (subdata.name == "NormalsIndex") { } else if (subdata.name == "NormalsIndex") {
normalIndices = getIntVector(subdata.properties, 0); data.normalIndices = getIntVector(subdata.properties, 0);
} else if (subdata.name == "MappingInformationType" && } else if (subdata.name == "MappingInformationType" &&
subdata.properties.at(0) == "ByVertice") { subdata.properties.at(0) == "ByVertice") {
byVertex = true; data.normalsByVertex = true;
} }
} }
if (byVertex) { } else if (child.name == "LayerElementUV" && child.properties.at(0).toInt() == 0) {
mesh.normals = normals; foreach (const FBXNode& subdata, child.children) {
}
} else if (data.name == "LayerElementUV" && data.properties.at(0).toInt() == 0) {
foreach (const FBXNode& subdata, data.children) {
if (subdata.name == "UV") { if (subdata.name == "UV") {
texCoords = createVec2Vector(getDoubleVector(subdata.properties, 0)); data.texCoords = createVec2Vector(getDoubleVector(subdata.properties, 0));
} else if (subdata.name == "UVIndex") { } else if (subdata.name == "UVIndex") {
texCoordIndices = getIntVector(subdata.properties, 0); data.texCoordIndices = getIntVector(subdata.properties, 0);
} }
} }
} else if (data.name == "LayerElementMaterial") { } else if (child.name == "LayerElementMaterial") {
foreach (const FBXNode& subdata, data.children) { foreach (const FBXNode& subdata, child.children) {
if (subdata.name == "Materials") { if (subdata.name == "Materials") {
materials = getIntVector(subdata.properties, 0); materials = getIntVector(subdata.properties, 0);
} }
@ -611,62 +683,28 @@ FBXMesh extractMesh(const FBXNode& object) {
} }
} }
// convert normals from per-index to per-vertex if necessary
if (mesh.normals.isEmpty()) {
mesh.normals.resize(mesh.vertices.size());
if (normalIndices.isEmpty()) {
for (int i = 0, n = polygonIndices.size(); i < n; i++) {
int index = polygonIndices.at(i);
mesh.normals[index < 0 ? (-index - 1) : index] = normals.at(i);
}
} else {
for (int i = 0, n = polygonIndices.size(); i < n; i++) {
int index = polygonIndices.at(i);
int normalIndex = normalIndices.at(i);
if (normalIndex >= 0) {
mesh.normals[index < 0 ? (-index - 1) : index] = normals.at(normalIndex);
}
}
}
}
// same with the tex coords
if (!texCoordIndices.isEmpty()) {
mesh.texCoords.resize(mesh.vertices.size());
for (int i = 0, n = polygonIndices.size(); i < n; i++) {
int index = polygonIndices.at(i);
int texCoordIndex = texCoordIndices.at(i);
if (texCoordIndex >= 0) {
mesh.texCoords[index < 0 ? (-index - 1) : index] = texCoords.at(texCoordIndex);
}
}
}
// convert the polygons to quads and triangles // convert the polygons to quads and triangles
int polygonIndex = 0; int polygonIndex = 0;
for (const int* beginIndex = polygonIndices.constData(), *end = beginIndex + polygonIndices.size(); for (int beginIndex = 0; beginIndex < data.polygonIndices.size(); polygonIndex++) {
beginIndex != end; polygonIndex++) { int endIndex = beginIndex;
const int* endIndex = beginIndex; while (data.polygonIndices.at(endIndex++) >= 0);
while (*endIndex++ >= 0);
int materialIndex = (polygonIndex < materials.size()) ? materials.at(polygonIndex) : 0; int materialIndex = (polygonIndex < materials.size()) ? materials.at(polygonIndex) : 0;
mesh.parts.resize(max(mesh.parts.size(), materialIndex + 1)); data.extracted.mesh.parts.resize(max(data.extracted.mesh.parts.size(), materialIndex + 1));
FBXMeshPart& part = mesh.parts[materialIndex]; FBXMeshPart& part = data.extracted.mesh.parts[materialIndex];
if (endIndex - beginIndex == 4) { if (endIndex - beginIndex == 4) {
part.quadIndices.append(*beginIndex++); appendIndex(data, part.quadIndices, beginIndex++);
part.quadIndices.append(*beginIndex++); appendIndex(data, part.quadIndices, beginIndex++);
part.quadIndices.append(*beginIndex++); appendIndex(data, part.quadIndices, beginIndex++);
part.quadIndices.append(-*beginIndex++ - 1); appendIndex(data, part.quadIndices, beginIndex++);
} else { } else {
for (const int* nextIndex = beginIndex + 1;; ) { for (int nextIndex = beginIndex + 1;; ) {
part.triangleIndices.append(*beginIndex); appendIndex(data, part.triangleIndices, beginIndex);
part.triangleIndices.append(*nextIndex++); appendIndex(data, part.triangleIndices, nextIndex++);
if (*nextIndex >= 0) { appendIndex(data, part.triangleIndices, nextIndex);
part.triangleIndices.append(*nextIndex); if (data.polygonIndices.at(nextIndex) < 0) {
} else {
part.triangleIndices.append(-*nextIndex - 1);
break; break;
} }
} }
@ -674,11 +712,11 @@ FBXMesh extractMesh(const FBXNode& object) {
} }
} }
return mesh; return data.extracted;
} }
void setTangents(FBXMesh& mesh, int firstIndex, int secondIndex) { void setTangents(FBXMesh& mesh, int firstIndex, int secondIndex) {
glm::vec3 normal = mesh.normals.at(firstIndex); glm::vec3 normal = glm::normalize(mesh.normals.at(firstIndex));
glm::vec3 bitangent = glm::cross(normal, mesh.vertices.at(secondIndex) - mesh.vertices.at(firstIndex)); glm::vec3 bitangent = glm::cross(normal, mesh.vertices.at(secondIndex) - mesh.vertices.at(firstIndex));
if (glm::length(bitangent) < EPSILON) { if (glm::length(bitangent) < EPSILON) {
return; return;
@ -689,7 +727,7 @@ void setTangents(FBXMesh& mesh, int firstIndex, int secondIndex) {
} }
FBXGeometry extractFBXGeometry(const FBXNode& node, const QVariantHash& mapping) { FBXGeometry extractFBXGeometry(const FBXNode& node, const QVariantHash& mapping) {
QHash<QString, FBXMesh> meshes; QHash<QString, ExtractedMesh> meshes;
QVector<ExtractedBlendshape> blendshapes; QVector<ExtractedBlendshape> blendshapes;
QMultiHash<QString, QString> parentMap; QMultiHash<QString, QString> parentMap;
QMultiHash<QString, QString> childMap; QMultiHash<QString, QString> childMap;
@ -957,17 +995,17 @@ FBXGeometry extractFBXGeometry(const FBXNode& node, const QVariantHash& mapping)
QPair<int, float> index = blendshapeChannelIndices.value(blendshapeChannelID); QPair<int, float> index = blendshapeChannelIndices.value(blendshapeChannelID);
QString blendshapeID = parentMap.value(blendshapeChannelID); QString blendshapeID = parentMap.value(blendshapeChannelID);
QString meshID = parentMap.value(blendshapeID); QString meshID = parentMap.value(blendshapeID);
FBXMesh& mesh = meshes[meshID]; ExtractedMesh& extractedMesh = meshes[meshID];
mesh.blendshapes.resize(max(mesh.blendshapes.size(), index.first + 1)); extractedMesh.mesh.blendshapes.resize(max(extractedMesh.mesh.blendshapes.size(), index.first + 1));
mesh.blendshapes[index.first] = extracted.blendshape; FBXBlendshape& blendshape = extractedMesh.mesh.blendshapes[index.first];
for (int i = 0; i < extracted.blendshape.indices.size(); i++) {
// apply scale if non-unity int oldIndex = extracted.blendshape.indices.at(i);
if (index.second != 1.0f) { for (QMultiHash<int, int>::const_iterator it = extractedMesh.newIndices.constFind(oldIndex);
FBXBlendshape& blendshape = mesh.blendshapes[index.first]; it != extractedMesh.newIndices.constEnd() && it.key() == oldIndex; it++) {
for (int i = 0; i < blendshape.vertices.size(); i++) { blendshape.indices.append(it.value());
blendshape.vertices[i] *= index.second; blendshape.vertices.append(extracted.blendshape.vertices.at(i) * index.second);
blendshape.normals[i] *= index.second; blendshape.normals.append(extracted.blendshape.normals.at(i) * index.second);
} }
} }
} }
@ -1055,22 +1093,22 @@ FBXGeometry extractFBXGeometry(const FBXNode& node, const QVariantHash& mapping)
QVariantHash springs = mapping.value("spring").toHash(); QVariantHash springs = mapping.value("spring").toHash();
QVariant defaultSpring = springs.value("default"); QVariant defaultSpring = springs.value("default");
for (QHash<QString, FBXMesh>::iterator it = meshes.begin(); it != meshes.end(); it++) { for (QHash<QString, ExtractedMesh>::iterator it = meshes.begin(); it != meshes.end(); it++) {
FBXMesh& mesh = it.value(); ExtractedMesh& extracted = it.value();
// accumulate local transforms // accumulate local transforms
QString modelID = models.contains(it.key()) ? it.key() : parentMap.value(it.key()); QString modelID = models.contains(it.key()) ? it.key() : parentMap.value(it.key());
mesh.springiness = springs.value(models.value(modelID).name, defaultSpring).toFloat(); extracted.mesh.springiness = springs.value(models.value(modelID).name, defaultSpring).toFloat();
glm::mat4 modelTransform = getGlobalTransform(parentMap, models, modelID); glm::mat4 modelTransform = getGlobalTransform(parentMap, models, modelID);
// look for textures, material properties // look for textures, material properties
int partIndex = mesh.parts.size() - 1; int partIndex = extracted.mesh.parts.size() - 1;
bool generateTangents = false; bool generateTangents = false;
foreach (const QString& childID, childMap.values(modelID)) { foreach (const QString& childID, childMap.values(modelID)) {
if (partIndex < 0) { if (partIndex < 0) {
break; break;
} }
FBXMeshPart& part = mesh.parts[partIndex]; FBXMeshPart& part = extracted.mesh.parts[partIndex];
if (textureFilenames.contains(childID)) { if (textureFilenames.contains(childID)) {
part.diffuseFilename = textureFilenames.value(childID); part.diffuseFilename = textureFilenames.value(childID);
continue; continue;
@ -1102,25 +1140,25 @@ FBXGeometry extractFBXGeometry(const FBXNode& node, const QVariantHash& mapping)
} }
// if we have a normal map (and texture coordinates), we must compute tangents // if we have a normal map (and texture coordinates), we must compute tangents
if (generateTangents && !mesh.texCoords.isEmpty()) { if (generateTangents && !extracted.mesh.texCoords.isEmpty()) {
mesh.tangents.resize(mesh.vertices.size()); extracted.mesh.tangents.resize(extracted.mesh.vertices.size());
foreach (const FBXMeshPart& part, mesh.parts) { foreach (const FBXMeshPart& part, extracted.mesh.parts) {
for (int i = 0; i < part.quadIndices.size(); i += 4) { for (int i = 0; i < part.quadIndices.size(); i += 4) {
setTangents(mesh, part.quadIndices.at(i), part.quadIndices.at(i + 1)); setTangents(extracted.mesh, part.quadIndices.at(i), part.quadIndices.at(i + 1));
setTangents(mesh, part.quadIndices.at(i + 1), part.quadIndices.at(i + 2)); setTangents(extracted.mesh, part.quadIndices.at(i + 1), part.quadIndices.at(i + 2));
setTangents(mesh, part.quadIndices.at(i + 2), part.quadIndices.at(i + 3)); setTangents(extracted.mesh, part.quadIndices.at(i + 2), part.quadIndices.at(i + 3));
setTangents(mesh, part.quadIndices.at(i + 3), part.quadIndices.at(i)); setTangents(extracted.mesh, part.quadIndices.at(i + 3), part.quadIndices.at(i));
} }
for (int i = 0; i < part.triangleIndices.size(); i += 3) { for (int i = 0; i < part.triangleIndices.size(); i += 3) {
setTangents(mesh, part.triangleIndices.at(i), part.triangleIndices.at(i + 1)); setTangents(extracted.mesh, part.triangleIndices.at(i), part.triangleIndices.at(i + 1));
setTangents(mesh, part.triangleIndices.at(i + 1), part.triangleIndices.at(i + 2)); setTangents(extracted.mesh, part.triangleIndices.at(i + 1), part.triangleIndices.at(i + 2));
setTangents(mesh, part.triangleIndices.at(i + 2), part.triangleIndices.at(i)); setTangents(extracted.mesh, part.triangleIndices.at(i + 2), part.triangleIndices.at(i));
} }
} }
} }
// find the clusters with which the mesh is associated // find the clusters with which the mesh is associated
mesh.isEye = false; extracted.mesh.isEye = false;
QVector<QString> clusterIDs; QVector<QString> clusterIDs;
foreach (const QString& childID, childMap.values(it.key())) { foreach (const QString& childID, childMap.values(it.key())) {
foreach (const QString& clusterID, childMap.values(childID)) { foreach (const QString& clusterID, childMap.values(childID)) {
@ -1133,41 +1171,45 @@ FBXGeometry extractFBXGeometry(const FBXNode& node, const QVariantHash& mapping)
QString jointID = childMap.value(clusterID); QString jointID = childMap.value(clusterID);
if (jointID == jointEyeLeftID || jointID == jointEyeRightID) { if (jointID == jointEyeLeftID || jointID == jointEyeRightID) {
mesh.isEye = true; extracted.mesh.isEye = true;
} }
// see http://stackoverflow.com/questions/13566608/loading-skinning-information-from-fbx for a discussion // see http://stackoverflow.com/questions/13566608/loading-skinning-information-from-fbx for a discussion
// of skinning information in FBX // of skinning information in FBX
fbxCluster.jointIndex = modelIDs.indexOf(jointID); fbxCluster.jointIndex = modelIDs.indexOf(jointID);
fbxCluster.inverseBindMatrix = glm::inverse(cluster.transformLink) * modelTransform; fbxCluster.inverseBindMatrix = glm::inverse(cluster.transformLink) * modelTransform;
mesh.clusters.append(fbxCluster); extracted.mesh.clusters.append(fbxCluster);
} }
} }
// if we don't have a skinned joint, parent to the model itself // if we don't have a skinned joint, parent to the model itself
if (mesh.clusters.isEmpty()) { if (extracted.mesh.clusters.isEmpty()) {
FBXCluster cluster; FBXCluster cluster;
cluster.jointIndex = modelIDs.indexOf(modelID); cluster.jointIndex = modelIDs.indexOf(modelID);
mesh.clusters.append(cluster); extracted.mesh.clusters.append(cluster);
} }
// whether we're skinned depends on how many clusters are attached // whether we're skinned depends on how many clusters are attached
if (clusterIDs.size() > 1) { if (clusterIDs.size() > 1) {
mesh.clusterIndices.resize(mesh.vertices.size()); extracted.mesh.clusterIndices.resize(extracted.mesh.vertices.size());
mesh.clusterWeights.resize(mesh.vertices.size()); extracted.mesh.clusterWeights.resize(extracted.mesh.vertices.size());
for (int i = 0; i < clusterIDs.size(); i++) { for (int i = 0; i < clusterIDs.size(); i++) {
QString clusterID = clusterIDs.at(i); QString clusterID = clusterIDs.at(i);
const Cluster& cluster = clusters[clusterID]; const Cluster& cluster = clusters[clusterID];
for (int j = 0; j < cluster.indices.size(); j++) { for (int j = 0; j < cluster.indices.size(); j++) {
int index = cluster.indices.at(j); int oldIndex = cluster.indices.at(j);
glm::vec4& weights = mesh.clusterWeights[index]; float weight = cluster.weights.at(j);
for (QMultiHash<int, int>::const_iterator it = extracted.newIndices.constFind(oldIndex);
it != extracted.newIndices.end() && it.key() == oldIndex; it++) {
glm::vec4& weights = extracted.mesh.clusterWeights[it.value()];
// look for an unused slot in the weights vector // look for an unused slot in the weights vector
for (int k = 0; k < 4; k++) { for (int k = 0; k < 4; k++) {
if (weights[k] == 0.0f) { if (weights[k] == 0.0f) {
mesh.clusterIndices[index][k] = i; extracted.mesh.clusterIndices[it.value()][k] = i;
weights[k] = cluster.weights.at(j); weights[k] = weight;
break; break;
}
} }
} }
} }
@ -1175,11 +1217,11 @@ FBXGeometry extractFBXGeometry(const FBXNode& node, const QVariantHash& mapping)
} }
// extract spring edges, connections if springy // extract spring edges, connections if springy
if (mesh.springiness > 0.0f) { if (extracted.mesh.springiness > 0.0f) {
QSet<QPair<int, int> > edges; QSet<QPair<int, int> > edges;
mesh.vertexConnections.resize(mesh.vertices.size()); extracted.mesh.vertexConnections.resize(extracted.mesh.vertices.size());
foreach (const FBXMeshPart& part, mesh.parts) { foreach (const FBXMeshPart& part, extracted.mesh.parts) {
for (int i = 0; i < part.quadIndices.size(); i += 4) { for (int i = 0; i < part.quadIndices.size(); i += 4) {
int index0 = part.quadIndices.at(i); int index0 = part.quadIndices.at(i);
int index1 = part.quadIndices.at(i + 1); int index1 = part.quadIndices.at(i + 1);
@ -1191,10 +1233,10 @@ FBXGeometry extractFBXGeometry(const FBXNode& node, const QVariantHash& mapping)
edges.insert(QPair<int, int>(qMin(index2, index3), qMax(index2, index3))); edges.insert(QPair<int, int>(qMin(index2, index3), qMax(index2, index3)));
edges.insert(QPair<int, int>(qMin(index3, index0), qMax(index3, index0))); edges.insert(QPair<int, int>(qMin(index3, index0), qMax(index3, index0)));
mesh.vertexConnections[index0].append(QPair<int, int>(index3, index1)); extracted.mesh.vertexConnections[index0].append(QPair<int, int>(index3, index1));
mesh.vertexConnections[index1].append(QPair<int, int>(index0, index2)); extracted.mesh.vertexConnections[index1].append(QPair<int, int>(index0, index2));
mesh.vertexConnections[index2].append(QPair<int, int>(index1, index3)); extracted.mesh.vertexConnections[index2].append(QPair<int, int>(index1, index3));
mesh.vertexConnections[index3].append(QPair<int, int>(index2, index0)); extracted.mesh.vertexConnections[index3].append(QPair<int, int>(index2, index0));
} }
for (int i = 0; i < part.triangleIndices.size(); i += 3) { for (int i = 0; i < part.triangleIndices.size(); i += 3) {
int index0 = part.triangleIndices.at(i); int index0 = part.triangleIndices.at(i);
@ -1205,18 +1247,18 @@ FBXGeometry extractFBXGeometry(const FBXNode& node, const QVariantHash& mapping)
edges.insert(QPair<int, int>(qMin(index1, index2), qMax(index1, index2))); edges.insert(QPair<int, int>(qMin(index1, index2), qMax(index1, index2)));
edges.insert(QPair<int, int>(qMin(index2, index0), qMax(index2, index0))); edges.insert(QPair<int, int>(qMin(index2, index0), qMax(index2, index0)));
mesh.vertexConnections[index0].append(QPair<int, int>(index2, index1)); extracted.mesh.vertexConnections[index0].append(QPair<int, int>(index2, index1));
mesh.vertexConnections[index1].append(QPair<int, int>(index0, index2)); extracted.mesh.vertexConnections[index1].append(QPair<int, int>(index0, index2));
mesh.vertexConnections[index2].append(QPair<int, int>(index1, index0)); extracted.mesh.vertexConnections[index2].append(QPair<int, int>(index1, index0));
} }
} }
for (QSet<QPair<int, int> >::const_iterator edge = edges.constBegin(); edge != edges.constEnd(); edge++) { for (QSet<QPair<int, int> >::const_iterator edge = edges.constBegin(); edge != edges.constEnd(); edge++) {
mesh.springEdges.append(*edge); extracted.mesh.springEdges.append(*edge);
} }
} }
geometry.meshes.append(mesh); geometry.meshes.append(extracted.mesh);
} }
// process attachments // process attachments

View file

@ -365,11 +365,11 @@ void NetworkGeometry::maybeReadModelWithMapping() {
basePath = basePath.left(basePath.lastIndexOf('/') + 1); basePath = basePath.left(basePath.lastIndexOf('/') + 1);
if (!part.diffuseFilename.isEmpty()) { if (!part.diffuseFilename.isEmpty()) {
url.setPath(basePath + part.diffuseFilename); url.setPath(basePath + part.diffuseFilename);
networkPart.diffuseTexture = Application::getInstance()->getTextureCache()->getTexture(url, mesh.isEye); networkPart.diffuseTexture = Application::getInstance()->getTextureCache()->getTexture(url, false, mesh.isEye);
} }
if (!part.normalFilename.isEmpty()) { if (!part.normalFilename.isEmpty()) {
url.setPath(basePath + part.normalFilename); url.setPath(basePath + part.normalFilename);
networkPart.normalTexture = Application::getInstance()->getTextureCache()->getTexture(url); networkPart.normalTexture = Application::getInstance()->getTextureCache()->getTexture(url, true);
} }
networkMesh.parts.append(networkPart); networkMesh.parts.append(networkPart);

View file

@ -121,18 +121,18 @@ GLuint TextureCache::getFileTextureID(const QString& filename) {
return id; return id;
} }
QSharedPointer<NetworkTexture> TextureCache::getTexture(const QUrl& url, bool dilatable) { QSharedPointer<NetworkTexture> TextureCache::getTexture(const QUrl& url, bool normalMap, bool dilatable) {
QSharedPointer<NetworkTexture> texture; QSharedPointer<NetworkTexture> texture;
if (dilatable) { if (dilatable) {
texture = _dilatableNetworkTextures.value(url); texture = _dilatableNetworkTextures.value(url);
if (texture.isNull()) { if (texture.isNull()) {
texture = QSharedPointer<NetworkTexture>(new DilatableNetworkTexture(url)); texture = QSharedPointer<NetworkTexture>(new DilatableNetworkTexture(url, normalMap));
_dilatableNetworkTextures.insert(url, texture); _dilatableNetworkTextures.insert(url, texture);
} }
} else { } else {
texture = _networkTextures.value(url); texture = _networkTextures.value(url);
if (texture.isNull()) { if (texture.isNull()) {
texture = QSharedPointer<NetworkTexture>(new NetworkTexture(url)); texture = QSharedPointer<NetworkTexture>(new NetworkTexture(url, normalMap));
_networkTextures.insert(url, texture); _networkTextures.insert(url, texture);
} }
} }
@ -219,7 +219,7 @@ Texture::~Texture() {
glDeleteTextures(1, &_id); glDeleteTextures(1, &_id);
} }
NetworkTexture::NetworkTexture(const QUrl& url) : _reply(NULL), _averageColor(1.0f, 1.0f, 1.0f, 1.0f) { NetworkTexture::NetworkTexture(const QUrl& url, bool normalMap) : _reply(NULL), _averageColor(1.0f, 1.0f, 1.0f, 1.0f) {
if (!url.isValid()) { if (!url.isValid()) {
return; return;
} }
@ -230,9 +230,9 @@ NetworkTexture::NetworkTexture(const QUrl& url) : _reply(NULL), _averageColor(1.
connect(_reply, SIGNAL(downloadProgress(qint64,qint64)), SLOT(handleDownloadProgress(qint64,qint64))); connect(_reply, SIGNAL(downloadProgress(qint64,qint64)), SLOT(handleDownloadProgress(qint64,qint64)));
connect(_reply, SIGNAL(error(QNetworkReply::NetworkError)), SLOT(handleReplyError())); connect(_reply, SIGNAL(error(QNetworkReply::NetworkError)), SLOT(handleReplyError()));
// default to white // default to white/blue
glBindTexture(GL_TEXTURE_2D, getID()); glBindTexture(GL_TEXTURE_2D, getID());
loadSingleColorTexture(OPAQUE_WHITE); loadSingleColorTexture(normalMap ? OPAQUE_BLUE : OPAQUE_WHITE);
glBindTexture(GL_TEXTURE_2D, 0); glBindTexture(GL_TEXTURE_2D, 0);
} }
@ -288,8 +288,8 @@ void NetworkTexture::handleReplyError() {
_reply = NULL; _reply = NULL;
} }
DilatableNetworkTexture::DilatableNetworkTexture(const QUrl& url) : DilatableNetworkTexture::DilatableNetworkTexture(const QUrl& url, bool normalMap) :
NetworkTexture(url), NetworkTexture(url, normalMap),
_innerRadius(0), _innerRadius(0),
_outerRadius(0) _outerRadius(0)
{ {

View file

@ -47,7 +47,7 @@ public:
GLuint getFileTextureID(const QString& filename); GLuint getFileTextureID(const QString& filename);
/// Loads a texture from the specified URL. /// Loads a texture from the specified URL.
QSharedPointer<NetworkTexture> getTexture(const QUrl& url, bool dilatable = false); QSharedPointer<NetworkTexture> getTexture(const QUrl& url, bool normalMap = false, bool dilatable = false);
/// Returns a pointer to the primary framebuffer object. This render target includes a depth component, and is /// Returns a pointer to the primary framebuffer object. This render target includes a depth component, and is
/// used for scene rendering. /// used for scene rendering.
@ -105,7 +105,7 @@ class NetworkTexture : public QObject, public Texture {
public: public:
NetworkTexture(const QUrl& url); NetworkTexture(const QUrl& url, bool normalMap);
~NetworkTexture(); ~NetworkTexture();
/// Returns the average color over the entire texture. /// Returns the average color over the entire texture.
@ -132,7 +132,7 @@ class DilatableNetworkTexture : public NetworkTexture {
public: public:
DilatableNetworkTexture(const QUrl& url); DilatableNetworkTexture(const QUrl& url, bool normalMap);
/// Returns a pointer to a texture with the requested amount of dilation. /// Returns a pointer to a texture with the requested amount of dilation.
QSharedPointer<Texture> getDilatedTexture(float dilation); QSharedPointer<Texture> getDilatedTexture(float dilation);