mirror of
https://github.com/overte-org/overte.git
synced 2025-04-22 16:13:28 +02:00
Merge pull request #437 from ey6es/master
Sphere/box and capsule/box collisions for voxels; allows us to slide along and stand on voxels. Also a couple build fixes.
This commit is contained in:
commit
d3c9d60cd6
10 changed files with 369 additions and 37 deletions
|
@ -901,7 +901,7 @@ void Application::idle() {
|
|||
for(AgentList::iterator agent = agentList->begin(); agent != agentList->end(); agent++) {
|
||||
if (agent->getLinkedData() != NULL) {
|
||||
Avatar *avatar = (Avatar *)agent->getLinkedData();
|
||||
avatar->simulate(deltaTime, false);
|
||||
avatar->simulate(deltaTime, NULL);
|
||||
avatar->setMouseRay(mouseRayOrigin, mouseRayDirection);
|
||||
}
|
||||
}
|
||||
|
@ -1669,7 +1669,6 @@ void Application::displaySide(Camera& whichCamera) {
|
|||
glPopMatrix();
|
||||
|
||||
//draw a grid ground plane....
|
||||
const float EDGE_SIZE_GROUND_PLANE = 20.f;
|
||||
drawGroundPlaneGrid(EDGE_SIZE_GROUND_PLANE);
|
||||
|
||||
// Draw voxels
|
||||
|
|
|
@ -640,11 +640,14 @@ void Avatar::updateCollisionWithVoxels() {
|
|||
}
|
||||
|
||||
void Avatar::applyCollisionWithScene(const glm::vec3& penetration) {
|
||||
_position += penetration;
|
||||
_position -= penetration;
|
||||
|
||||
// reflect the velocity component in the direction of penetration
|
||||
glm::vec3 direction = glm::normalize(penetration);
|
||||
_velocity -= 2.0f * glm::dot(_velocity, direction) * direction * BOUNCE;
|
||||
float penetrationLength = glm::length(penetration);
|
||||
if (penetrationLength > EPSILON) {
|
||||
glm::vec3 direction = penetration / penetrationLength;
|
||||
_velocity -= 2.0f * glm::dot(_velocity, direction) * direction * BOUNCE;
|
||||
}
|
||||
}
|
||||
|
||||
void Avatar::updateAvatarCollisions(float deltaTime) {
|
||||
|
|
|
@ -60,8 +60,8 @@ void Environment::renderAtmospheres(Camera& camera) {
|
|||
glm::vec3 Environment::getGravity (const glm::vec3& position) {
|
||||
// the "original gravity"
|
||||
glm::vec3 gravity;
|
||||
if (position.x > 0.0f && position.x < 10.0f && position.y > 0.0f &&
|
||||
position.y < 3.0f && position.z > 0.0f && position.z < 10.0f) {
|
||||
if (position.x > 0.0f && position.x < EDGE_SIZE_GROUND_PLANE && position.y > 0.0f &&
|
||||
position.y < 3.0f && position.z > 0.0f && position.z < EDGE_SIZE_GROUND_PLANE) {
|
||||
gravity = glm::vec3(0.0f, -1.0f, 0.0f);
|
||||
}
|
||||
|
||||
|
@ -101,13 +101,7 @@ const EnvironmentData Environment::getClosestData(const glm::vec3& position) {
|
|||
bool Environment::findCapsulePenetration(const glm::vec3& start, const glm::vec3& end,
|
||||
float radius, glm::vec3& penetration) {
|
||||
// collide with the "floor"
|
||||
bool found = false;
|
||||
penetration = glm::vec3(0.0f, 0.0f, 0.0f);
|
||||
float floorDist = qMin(start.y, end.y) - radius;
|
||||
if (floorDist < 0.0f) {
|
||||
penetration.y = -floorDist;
|
||||
found = true;
|
||||
}
|
||||
bool found = findCapsulePlanePenetration(start, end, radius, glm::vec4(0.0f, 1.0f, 0.0f, 0.0f), penetration);
|
||||
|
||||
// get the lock for the duration of the call
|
||||
QMutexLocker locker(&_mutex);
|
||||
|
@ -117,11 +111,10 @@ bool Environment::findCapsulePenetration(const glm::vec3& start, const glm::vec3
|
|||
if (environmentData.getGravity() == 0.0f) {
|
||||
continue; // don't bother colliding with gravity-less environments
|
||||
}
|
||||
glm::vec3 vector = computeVectorFromPointToSegment(environmentData.getAtmosphereCenter(), start, end);
|
||||
float vectorLength = glm::length(vector);
|
||||
float distance = vectorLength - environmentData.getAtmosphereInnerRadius() - radius;
|
||||
if (distance < 0.0f) {
|
||||
penetration += vector * (-distance / vectorLength);
|
||||
glm::vec3 environmentPenetration;
|
||||
if (findCapsuleSpherePenetration(start, end, radius, environmentData.getAtmosphereCenter(),
|
||||
environmentData.getAtmosphereInnerRadius(), environmentPenetration)) {
|
||||
penetration = addPenetrations(penetration, environmentPenetration);
|
||||
found = true;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -38,9 +38,11 @@ void OculusManager::connect() {
|
|||
}
|
||||
|
||||
void OculusManager::updateYawOffset() {
|
||||
#ifdef __APPLE__
|
||||
float yaw, pitch, roll;
|
||||
_sensorFusion.GetOrientation().GetEulerAngles<Axis_Y, Axis_X, Axis_Z, Rotate_CCW, Handed_R>(&yaw, &pitch, &roll);
|
||||
_yawOffset = yaw;
|
||||
#endif
|
||||
}
|
||||
|
||||
void OculusManager::getEulerAngles(float& yaw, float& pitch, float& roll) {
|
||||
|
|
|
@ -17,4 +17,6 @@ const float WORLD_SIZE = 10.0;
|
|||
#define PIf 3.14159265f
|
||||
#define GRAVITY_EARTH 9.80665f;
|
||||
|
||||
const float EDGE_SIZE_GROUND_PLANE = 20.f;
|
||||
|
||||
#endif
|
||||
|
|
|
@ -11,6 +11,7 @@
|
|||
#include "SharedUtil.h"
|
||||
|
||||
#include "AABox.h"
|
||||
#include "GeometryUtil.h"
|
||||
|
||||
|
||||
void AABox::scale(float scale) {
|
||||
|
@ -82,6 +83,17 @@ bool AABox::contains(const glm::vec3& point) const {
|
|||
isWithin(point.z, _corner.z, _size.z);
|
||||
}
|
||||
|
||||
// determines whether a value is within the expanded extents
|
||||
static bool isWithinExpanded(float value, float corner, float size, float expansion) {
|
||||
return value >= corner - expansion && value <= corner + size + expansion;
|
||||
}
|
||||
|
||||
bool AABox::expandedContains(const glm::vec3& point, float expansion) const {
|
||||
return isWithinExpanded(point.x, _corner.x, _size.x, expansion) &&
|
||||
isWithinExpanded(point.y, _corner.y, _size.y, expansion) &&
|
||||
isWithinExpanded(point.z, _corner.z, _size.z, expansion);
|
||||
}
|
||||
|
||||
// finds the intersection between a ray and the facing plane on one axis
|
||||
static bool findIntersection(float origin, float direction, float corner, float size, float& distance) {
|
||||
if (direction > EPSILON) {
|
||||
|
@ -95,6 +107,30 @@ static bool findIntersection(float origin, float direction, float corner, float
|
|||
return false;
|
||||
}
|
||||
|
||||
bool AABox::expandedIntersectsSegment(const glm::vec3& start, const glm::vec3& end, float expansion) const {
|
||||
// handle the trivial cases where the expanded box contains the start or end
|
||||
if (expandedContains(start, expansion) || expandedContains(end, expansion)) {
|
||||
return true;
|
||||
}
|
||||
// check each axis
|
||||
glm::vec3 expandedCorner = _corner - glm::vec3(expansion, expansion, expansion);
|
||||
glm::vec3 expandedSize = _size + glm::vec3(expansion, expansion, expansion) * 2.0f;
|
||||
glm::vec3 direction = end - start;
|
||||
float axisDistance;
|
||||
return (findIntersection(start.x, direction.x, expandedCorner.x, expandedSize.x, axisDistance) &&
|
||||
axisDistance >= 0.0f && axisDistance <= 1.0f &&
|
||||
isWithin(start.y + axisDistance*direction.y, expandedCorner.y, expandedSize.y) &&
|
||||
isWithin(start.z + axisDistance*direction.z, expandedCorner.z, expandedSize.z)) ||
|
||||
(findIntersection(start.y, direction.y, expandedCorner.y, expandedSize.y, axisDistance) &&
|
||||
axisDistance >= 0.0f && axisDistance <= 1.0f &&
|
||||
isWithin(start.x + axisDistance*direction.x, expandedCorner.x, expandedSize.x) &&
|
||||
isWithin(start.z + axisDistance*direction.z, expandedCorner.z, expandedSize.z)) ||
|
||||
(findIntersection(start.z, direction.z, expandedCorner.z, expandedSize.z, axisDistance) &&
|
||||
axisDistance >= 0.0f && axisDistance <= 1.0f &&
|
||||
isWithin(start.y + axisDistance*direction.y, expandedCorner.y, expandedSize.y) &&
|
||||
isWithin(start.x + axisDistance*direction.x, expandedCorner.x, expandedSize.x));
|
||||
}
|
||||
|
||||
bool AABox::findRayIntersection(const glm::vec3& origin, const glm::vec3& direction, float& distance, BoxFace& face) const {
|
||||
// handle the trivial case where the box contains the origin
|
||||
if (contains(origin)) {
|
||||
|
@ -126,3 +162,168 @@ bool AABox::findRayIntersection(const glm::vec3& origin, const glm::vec3& direct
|
|||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool AABox::findSpherePenetration(const glm::vec3& center, float radius, glm::vec3& penetration) const {
|
||||
glm::vec4 center4 = glm::vec4(center, 1.0f);
|
||||
|
||||
float minPenetrationLength = FLT_MAX;
|
||||
for (int i = 0; i < FACE_COUNT; i++) {
|
||||
glm::vec4 facePlane = getPlane((BoxFace)i);
|
||||
glm::vec3 vector = getClosestPointOnFace(center, (BoxFace)i) - center;
|
||||
if (glm::dot(center4, getPlane((BoxFace)i)) >= 0.0f) {
|
||||
// outside this face, so use vector to closest point to determine penetration
|
||||
return ::findSpherePenetration(vector, glm::vec3(-facePlane), radius, penetration);
|
||||
}
|
||||
float vectorLength = glm::length(vector);
|
||||
if (vectorLength < minPenetrationLength) {
|
||||
// remember the smallest penetration vector; if we're inside all faces, we'll use that
|
||||
penetration = (vectorLength < EPSILON) ? glm::vec3(-facePlane) * radius :
|
||||
vector * ((vectorLength + radius) / -vectorLength);
|
||||
minPenetrationLength = vectorLength;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool AABox::findCapsulePenetration(const glm::vec3& start, const glm::vec3& end, float radius, glm::vec3& penetration) const {
|
||||
glm::vec4 start4 = glm::vec4(start, 1.0f);
|
||||
glm::vec4 end4 = glm::vec4(end, 1.0f);
|
||||
glm::vec4 startToEnd = glm::vec4(end - start, 0.0f);
|
||||
|
||||
float minPenetrationLength = FLT_MAX;
|
||||
for (int i = 0; i < FACE_COUNT; i++) {
|
||||
// find the vector from the segment to the closest point on the face (starting from deeper end)
|
||||
glm::vec4 facePlane = getPlane((BoxFace)i);
|
||||
glm::vec3 closest = (glm::dot(start4, facePlane) <= glm::dot(end4, facePlane)) ?
|
||||
getClosestPointOnFace(start4, startToEnd, (BoxFace)i) : getClosestPointOnFace(end4, -startToEnd, (BoxFace)i);
|
||||
glm::vec3 vector = -computeVectorFromPointToSegment(closest, start, end);
|
||||
if (glm::dot(vector, glm::vec3(facePlane)) < 0.0f) {
|
||||
// outside this face, so use vector to closest point to determine penetration
|
||||
return ::findSpherePenetration(vector, glm::vec3(-facePlane), radius, penetration);
|
||||
}
|
||||
float vectorLength = glm::length(vector);
|
||||
if (vectorLength < minPenetrationLength) {
|
||||
// remember the smallest penetration vector; if we're inside all faces, we'll use that
|
||||
penetration = (vectorLength < EPSILON) ? glm::vec3(-facePlane) * radius :
|
||||
vector * ((vectorLength + radius) / -vectorLength);
|
||||
minPenetrationLength = vectorLength;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
glm::vec3 AABox::getClosestPointOnFace(const glm::vec3& point, BoxFace face) const {
|
||||
switch (face) {
|
||||
case MIN_X_FACE:
|
||||
return glm::clamp(point, glm::vec3(_corner.x, _corner.y, _corner.z),
|
||||
glm::vec3(_corner.x, _corner.y + _size.y, _corner.z + _size.z));
|
||||
|
||||
case MAX_X_FACE:
|
||||
return glm::clamp(point, glm::vec3(_corner.x + _size.x, _corner.y, _corner.z),
|
||||
glm::vec3(_corner.x + _size.x, _corner.y + _size.y, _corner.z + _size.z));
|
||||
|
||||
case MIN_Y_FACE:
|
||||
return glm::clamp(point, glm::vec3(_corner.x, _corner.y, _corner.z),
|
||||
glm::vec3(_corner.x + _size.x, _corner.y, _corner.z + _size.z));
|
||||
|
||||
case MAX_Y_FACE:
|
||||
return glm::clamp(point, glm::vec3(_corner.x, _corner.y + _size.y, _corner.z),
|
||||
glm::vec3(_corner.x + _size.x, _corner.y + _size.y, _corner.z + _size.z));
|
||||
|
||||
case MIN_Z_FACE:
|
||||
return glm::clamp(point, glm::vec3(_corner.x, _corner.y, _corner.z),
|
||||
glm::vec3(_corner.x + _size.x, _corner.y + _size.y, _corner.z));
|
||||
|
||||
case MAX_Z_FACE:
|
||||
return glm::clamp(point, glm::vec3(_corner.x, _corner.y, _corner.z + _size.z),
|
||||
glm::vec3(_corner.x + _size.x, _corner.y + _size.y, _corner.z + _size.z));
|
||||
}
|
||||
}
|
||||
|
||||
glm::vec3 AABox::getClosestPointOnFace(const glm::vec4& origin, const glm::vec4& direction, BoxFace face) const {
|
||||
// check against the four planes that border the face
|
||||
BoxFace oppositeFace = getOppositeFace(face);
|
||||
bool anyOutside = false;
|
||||
for (int i = 0; i < FACE_COUNT; i++) {
|
||||
if (i == face || i == oppositeFace) {
|
||||
continue;
|
||||
}
|
||||
glm::vec4 iPlane = getPlane((BoxFace)i);
|
||||
float originDistance = glm::dot(origin, iPlane);
|
||||
if (originDistance < 0.0f) {
|
||||
continue; // inside the border
|
||||
}
|
||||
anyOutside = true;
|
||||
float divisor = glm::dot(direction, iPlane);
|
||||
if (fabs(divisor) < EPSILON) {
|
||||
continue; // segment is parallel to plane
|
||||
}
|
||||
// find intersection and see if it lies within face bounds
|
||||
float directionalDistance = -originDistance / divisor;
|
||||
glm::vec4 intersection = origin + direction * directionalDistance;
|
||||
BoxFace iOppositeFace = getOppositeFace((BoxFace)i);
|
||||
for (int j = 0; j < FACE_COUNT; j++) {
|
||||
if (j == face || j == oppositeFace || j == i || j == iOppositeFace) {
|
||||
continue;
|
||||
}
|
||||
if (glm::dot(intersection, getPlane((BoxFace)j)) > 0.0f) {
|
||||
goto outerContinue; // intersection is out of bounds
|
||||
}
|
||||
}
|
||||
return getClosestPointOnFace(glm::vec3(intersection), face);
|
||||
|
||||
outerContinue: ;
|
||||
}
|
||||
|
||||
// if we were outside any of the sides, we must check against the diagonals
|
||||
if (anyOutside) {
|
||||
int faceAxis = face / 2;
|
||||
int secondAxis = (faceAxis + 1) % 3;
|
||||
int thirdAxis = (faceAxis + 2) % 3;
|
||||
|
||||
glm::vec4 secondAxisMinPlane = getPlane((BoxFace)(secondAxis * 2));
|
||||
glm::vec4 secondAxisMaxPlane = getPlane((BoxFace)(secondAxis * 2 + 1));
|
||||
glm::vec4 thirdAxisMaxPlane = getPlane((BoxFace)(thirdAxis * 2 + 1));
|
||||
|
||||
glm::vec4 offset = glm::vec4(0.0f, 0.0f, 0.0f,
|
||||
glm::dot(glm::vec3(secondAxisMaxPlane + thirdAxisMaxPlane), _size) * 0.5f);
|
||||
glm::vec4 diagonals[] = { secondAxisMinPlane + thirdAxisMaxPlane + offset,
|
||||
secondAxisMaxPlane + thirdAxisMaxPlane + offset };
|
||||
|
||||
for (int i = 0; i < sizeof(diagonals) / sizeof(diagonals[0]); i++) {
|
||||
float divisor = glm::dot(direction, diagonals[i]);
|
||||
if (fabs(divisor) < EPSILON) {
|
||||
continue; // segment is parallel to diagonal plane
|
||||
}
|
||||
float directionalDistance = -glm::dot(origin, diagonals[i]) / divisor;
|
||||
return getClosestPointOnFace(glm::vec3(origin + direction * directionalDistance), face);
|
||||
}
|
||||
}
|
||||
|
||||
// last resort or all inside: clamp origin to face
|
||||
return getClosestPointOnFace(glm::vec3(origin), face);
|
||||
}
|
||||
|
||||
glm::vec4 AABox::getPlane(BoxFace face) const {
|
||||
switch (face) {
|
||||
case MIN_X_FACE: return glm::vec4(-1.0f, 0.0f, 0.0f, _corner.x);
|
||||
case MAX_X_FACE: return glm::vec4(1.0f, 0.0f, 0.0f, -_corner.x - _size.x);
|
||||
case MIN_Y_FACE: return glm::vec4(0.0f, -1.0f, 0.0f, _corner.y);
|
||||
case MAX_Y_FACE: return glm::vec4(0.0f, 1.0f, 0.0f, -_corner.y - _size.y);
|
||||
case MIN_Z_FACE: return glm::vec4(0.0f, 0.0f, -1.0f, _corner.z);
|
||||
case MAX_Z_FACE: return glm::vec4(0.0f, 0.0f, 1.0f, -_corner.z - _size.z);
|
||||
}
|
||||
}
|
||||
|
||||
BoxFace AABox::getOppositeFace(BoxFace face) {
|
||||
switch (face) {
|
||||
case MIN_X_FACE: return MAX_X_FACE;
|
||||
case MAX_X_FACE: return MIN_X_FACE;
|
||||
case MIN_Y_FACE: return MAX_Y_FACE;
|
||||
case MAX_Y_FACE: return MIN_Y_FACE;
|
||||
case MIN_Z_FACE: return MAX_Z_FACE;
|
||||
case MAX_Z_FACE: return MIN_Z_FACE;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -19,7 +19,8 @@ enum BoxFace {
|
|||
MIN_Y_FACE,
|
||||
MAX_Y_FACE,
|
||||
MIN_Z_FACE,
|
||||
MAX_Z_FACE
|
||||
MAX_Z_FACE,
|
||||
FACE_COUNT
|
||||
};
|
||||
|
||||
class AABox
|
||||
|
@ -46,9 +47,20 @@ public:
|
|||
const glm::vec3& getCenter() const { return _center; };
|
||||
|
||||
bool contains(const glm::vec3& point) const;
|
||||
bool expandedContains(const glm::vec3& point, float expansion) const;
|
||||
bool expandedIntersectsSegment(const glm::vec3& start, const glm::vec3& end, float expansion) const;
|
||||
bool findRayIntersection(const glm::vec3& origin, const glm::vec3& direction, float& distance, BoxFace& face) const;
|
||||
bool findSpherePenetration(const glm::vec3& center, float radius, glm::vec3& penetration) const;
|
||||
bool findCapsulePenetration(const glm::vec3& start, const glm::vec3& end, float radius, glm::vec3& penetration) const;
|
||||
|
||||
private:
|
||||
|
||||
glm::vec3 getClosestPointOnFace(const glm::vec3& point, BoxFace face) const;
|
||||
glm::vec3 getClosestPointOnFace(const glm::vec4& origin, const glm::vec4& direction, BoxFace face) const;
|
||||
glm::vec4 getPlane(BoxFace face) const;
|
||||
|
||||
static BoxFace getOppositeFace(BoxFace face);
|
||||
|
||||
glm::vec3 _corner;
|
||||
glm::vec3 _center;
|
||||
glm::vec3 _size;
|
||||
|
|
|
@ -5,12 +5,18 @@
|
|||
// Created by Andrzej Kapolka on 5/21/13.
|
||||
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
|
||||
|
||||
#include <SharedUtil.h>
|
||||
|
||||
#include "GeometryUtil.h"
|
||||
|
||||
glm::vec3 computeVectorFromPointToSegment(const glm::vec3& point, const glm::vec3& start, const glm::vec3& end) {
|
||||
// compute the projection of the point vector onto the segment vector
|
||||
glm::vec3 segmentVector = end - start;
|
||||
float proj = glm::dot(point - start, segmentVector) / glm::dot(segmentVector, segmentVector);
|
||||
float lengthSquared = glm::dot(segmentVector, segmentVector);
|
||||
if (lengthSquared < EPSILON) {
|
||||
return start - point; // start and end the same
|
||||
}
|
||||
float proj = glm::dot(point - start, segmentVector) / lengthSquared;
|
||||
if (proj <= 0.0f) { // closest to the start
|
||||
return start - point;
|
||||
|
||||
|
@ -21,3 +27,91 @@ glm::vec3 computeVectorFromPointToSegment(const glm::vec3& point, const glm::vec
|
|||
return start + segmentVector*proj - point;
|
||||
}
|
||||
}
|
||||
|
||||
bool findSpherePenetration(const glm::vec3& penetratorToPenetratee, const glm::vec3& direction,
|
||||
float combinedRadius, glm::vec3& penetration) {
|
||||
float vectorLength = glm::length(penetratorToPenetratee);
|
||||
if (vectorLength < EPSILON) {
|
||||
penetration = direction * combinedRadius;
|
||||
return true;
|
||||
}
|
||||
float distance = vectorLength - combinedRadius;
|
||||
if (distance < 0.0f) {
|
||||
penetration = penetratorToPenetratee * (-distance / vectorLength);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool findSpherePointPenetration(const glm::vec3& penetratorCenter, float penetratorRadius,
|
||||
const glm::vec3& penetrateeLocation, glm::vec3& penetration) {
|
||||
return findSpherePenetration(penetrateeLocation - penetratorCenter, glm::vec3(0.0f, -1.0f, 0.0f),
|
||||
penetratorRadius, penetration);
|
||||
}
|
||||
|
||||
bool findSphereSpherePenetration(const glm::vec3& penetratorCenter, float penetratorRadius,
|
||||
const glm::vec3& penetrateeCenter, float penetrateeRadius, glm::vec3& penetration) {
|
||||
return findSpherePointPenetration(penetratorCenter, penetratorRadius + penetrateeRadius, penetrateeCenter, penetration);
|
||||
}
|
||||
|
||||
bool findSphereSegmentPenetration(const glm::vec3& penetratorCenter, float penetratorRadius,
|
||||
const glm::vec3& penetrateeStart, const glm::vec3& penetrateeEnd, glm::vec3& penetration) {
|
||||
return findSpherePenetration(computeVectorFromPointToSegment(penetratorCenter, penetrateeStart, penetrateeEnd),
|
||||
glm::vec3(0.0f, -1.0f, 0.0f), penetratorRadius, penetration);
|
||||
}
|
||||
|
||||
bool findSphereCapsulePenetration(const glm::vec3& penetratorCenter, float penetratorRadius, const glm::vec3& penetrateeStart,
|
||||
const glm::vec3& penetrateeEnd, float penetrateeRadius, glm::vec3& penetration) {
|
||||
return findSphereSegmentPenetration(penetratorCenter, penetratorRadius + penetrateeRadius,
|
||||
penetrateeStart, penetrateeEnd, penetration);
|
||||
}
|
||||
|
||||
bool findSpherePlanePenetration(const glm::vec3& penetratorCenter, float penetratorRadius,
|
||||
const glm::vec4& penetrateePlane, glm::vec3& penetration) {
|
||||
float distance = glm::dot(penetrateePlane, glm::vec4(penetratorCenter, 1.0f)) - penetratorRadius;
|
||||
if (distance < 0.0f) {
|
||||
penetration = glm::vec3(penetrateePlane) * distance;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool findCapsuleSpherePenetration(const glm::vec3& penetratorStart, const glm::vec3& penetratorEnd, float penetratorRadius,
|
||||
const glm::vec3& penetrateeCenter, float penetrateeRadius, glm::vec3& penetration) {
|
||||
if (findSphereCapsulePenetration(penetrateeCenter, penetrateeRadius,
|
||||
penetratorStart, penetratorEnd, penetratorRadius, penetration)) {
|
||||
penetration = -penetration;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool findCapsulePlanePenetration(const glm::vec3& penetratorStart, const glm::vec3& penetratorEnd, float penetratorRadius,
|
||||
const glm::vec4& penetrateePlane, glm::vec3& penetration) {
|
||||
float distance = glm::min(glm::dot(penetrateePlane, glm::vec4(penetratorStart, 1.0f)),
|
||||
glm::dot(penetrateePlane, glm::vec4(penetratorEnd, 1.0f))) - penetratorRadius;
|
||||
if (distance < 0.0f) {
|
||||
penetration = glm::vec3(penetrateePlane) * distance;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
glm::vec3 addPenetrations(const glm::vec3& currentPenetration, const glm::vec3& newPenetration) {
|
||||
// find the component of the new penetration in the direction of the current
|
||||
float currentLength = glm::length(currentPenetration);
|
||||
if (currentLength == 0.0f) {
|
||||
return newPenetration;
|
||||
}
|
||||
glm::vec3 currentDirection = currentPenetration / currentLength;
|
||||
float directionalComponent = glm::dot(newPenetration, currentDirection);
|
||||
|
||||
// if orthogonal or in the opposite direction, we can simply add
|
||||
if (directionalComponent <= 0.0f) {
|
||||
return currentPenetration + newPenetration;
|
||||
}
|
||||
|
||||
// otherwise, we need to take the maximum component of current and new
|
||||
return currentDirection * glm::max(directionalComponent, currentLength) +
|
||||
newPenetration - (currentDirection * directionalComponent);
|
||||
}
|
||||
|
|
|
@ -13,4 +13,30 @@
|
|||
|
||||
glm::vec3 computeVectorFromPointToSegment(const glm::vec3& point, const glm::vec3& start, const glm::vec3& end);
|
||||
|
||||
bool findSpherePenetration(const glm::vec3& penetratorToPenetratee, const glm::vec3& direction,
|
||||
float combinedRadius, glm::vec3& penetration);
|
||||
|
||||
bool findSpherePointPenetration(const glm::vec3& penetratorCenter, float penetratorRadius,
|
||||
const glm::vec3& penetrateeLocation, glm::vec3& penetration);
|
||||
|
||||
bool findSphereSpherePenetration(const glm::vec3& penetratorCenter, float penetratorRadius,
|
||||
const glm::vec3& penetrateeCenter, float penetrateeRadius, glm::vec3& penetration);
|
||||
|
||||
bool findSphereSegmentPenetration(const glm::vec3& penetratorCenter, float penetratorRadius,
|
||||
const glm::vec3& penetrateeStart, const glm::vec3& penetrateeEnd, glm::vec3& penetration);
|
||||
|
||||
bool findSphereCapsulePenetration(const glm::vec3& penetratorCenter, float penetratorRadius, const glm::vec3& penetrateeStart,
|
||||
const glm::vec3& penetrateeEnd, float penetrateeRadius, glm::vec3& penetration);
|
||||
|
||||
bool findSpherePlanePenetration(const glm::vec3& penetratorCenter, float penetratorRadius,
|
||||
const glm::vec4& penetrateePlane, glm::vec3& penetration);
|
||||
|
||||
bool findCapsuleSpherePenetration(const glm::vec3& penetratorStart, const glm::vec3& penetratorEnd, float penetratorRadius,
|
||||
const glm::vec3& penetrateeCenter, float penetrateeRadius, glm::vec3& penetration);
|
||||
|
||||
bool findCapsulePlanePenetration(const glm::vec3& penetratorStart, const glm::vec3& penetratorEnd, float penetratorRadius,
|
||||
const glm::vec4& penetrateePlane, glm::vec3& penetration);
|
||||
|
||||
glm::vec3 addPenetrations(const glm::vec3& currentPenetration, const glm::vec3& newPenetration);
|
||||
|
||||
#endif /* defined(__interface__GeometryUtil__) */
|
||||
|
|
|
@ -716,20 +716,20 @@ public:
|
|||
bool findSpherePenetrationOp(VoxelNode* node, void* extraData) {
|
||||
SphereArgs* args = static_cast<SphereArgs*>(extraData);
|
||||
|
||||
// currently, we treat each node as a sphere enveloping the box
|
||||
const glm::vec3& nodeCenter = node->getCenter();
|
||||
glm::vec3 vector = args->center - nodeCenter;
|
||||
float vectorLength = glm::length(vector);
|
||||
float distance = vectorLength - node->getEnclosingRadius() - args->radius;
|
||||
if (distance >= 0.0f) {
|
||||
// coarse check against bounds
|
||||
const AABox& box = node->getAABox();
|
||||
if (!box.expandedContains(args->center, args->radius)) {
|
||||
return false;
|
||||
}
|
||||
if (!node->isLeaf()) {
|
||||
return true; // recurse on children
|
||||
}
|
||||
if (node->isColored()) {
|
||||
args->penetration += vector * (-distance * TREE_SCALE / vectorLength);
|
||||
args->found = true;
|
||||
glm::vec3 nodePenetration;
|
||||
if (box.findSpherePenetration(args->center, args->radius, nodePenetration)) {
|
||||
args->penetration = addPenetrations(args->penetration, nodePenetration * (float)TREE_SCALE);
|
||||
args->found = true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
@ -753,20 +753,20 @@ public:
|
|||
bool findCapsulePenetrationOp(VoxelNode* node, void* extraData) {
|
||||
CapsuleArgs* args = static_cast<CapsuleArgs*>(extraData);
|
||||
|
||||
// currently, we treat each node as a sphere enveloping the box
|
||||
const glm::vec3& nodeCenter = node->getCenter();
|
||||
glm::vec3 vector = computeVectorFromPointToSegment(nodeCenter, args->start, args->end);
|
||||
float vectorLength = glm::length(vector);
|
||||
float distance = vectorLength - node->getEnclosingRadius() - args->radius;
|
||||
if (distance >= 0.0f) {
|
||||
// coarse check against bounds
|
||||
const AABox& box = node->getAABox();
|
||||
if (!box.expandedIntersectsSegment(args->start, args->end, args->radius)) {
|
||||
return false;
|
||||
}
|
||||
if (!node->isLeaf()) {
|
||||
return true; // recurse on children
|
||||
}
|
||||
if (node->isColored()) {
|
||||
args->penetration += vector * (-distance * TREE_SCALE / vectorLength);
|
||||
args->found = true;
|
||||
glm::vec3 nodePenetration;
|
||||
if (box.findCapsulePenetration(args->start, args->end, args->radius, nodePenetration)) {
|
||||
args->penetration = addPenetrations(args->penetration, nodePenetration * (float)TREE_SCALE);
|
||||
args->found = true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue