Merge pull request #2811 from AndrewMeadows/inertia

prevent avatar from getting trapped in voxel collisions
This commit is contained in:
Philip Rosedale 2014-05-07 16:54:28 -07:00
commit c6b4b7c250
10 changed files with 100 additions and 76 deletions

View file

@ -634,8 +634,8 @@ bool Avatar::findParticleCollisions(const glm::vec3& particleCenter, float parti
penetration)) {
CollisionInfo* collision = collisions.getNewCollision();
if (collision) {
collision->_type = PADDLE_HAND_COLLISION;
collision->_flags = jointIndex;
collision->_type = COLLISION_TYPE_PADDLE_HAND;
collision->_intData = jointIndex;
collision->_penetration = penetration;
collision->_addedVelocity = palm->getVelocity();
collided = true;
@ -844,11 +844,11 @@ float Avatar::getHeadHeight() const {
}
bool Avatar::collisionWouldMoveAvatar(CollisionInfo& collision) const {
if (!collision._data || collision._type != MODEL_COLLISION) {
if (!collision._data || collision._type != COLLISION_TYPE_MODEL) {
return false;
}
Model* model = static_cast<Model*>(collision._data);
int jointIndex = collision._flags;
int jointIndex = collision._intData;
if (model == &(_skeletonModel) && jointIndex != -1) {
// collision response of skeleton is temporarily disabled
@ -856,7 +856,7 @@ bool Avatar::collisionWouldMoveAvatar(CollisionInfo& collision) const {
//return _skeletonModel.collisionHitsMoveableJoint(collision);
}
if (model == &(getHead()->getFaceModel())) {
// ATM we always handle MODEL_COLLISIONS against the face.
// ATM we always handle COLLISION_TYPE_MODEL against the face.
return true;
}
return false;

View file

@ -21,6 +21,7 @@
#include <QtCore/QTimer>
#include <AccountManager.h>
#include <GeometryUtil.h>
#include <NodeList.h>
#include <PacketHeaders.h>
#include <SharedUtil.h>
@ -63,6 +64,7 @@ MyAvatar::MyAvatar() :
_distanceToNearestAvatar(std::numeric_limits<float>::max()),
_wasPushing(false),
_isPushing(false),
_wasStuck(false),
_thrust(0.0f),
_motorVelocity(0.0f),
_motorTimescale(DEFAULT_MOTOR_TIMESCALE),
@ -212,6 +214,8 @@ void MyAvatar::simulate(float deltaTime) {
}
if (_collisionGroups & COLLISION_GROUP_VOXELS) {
updateCollisionWithVoxels(deltaTime, radius);
} else {
_wasStuck = false;
}
if (_collisionGroups & COLLISION_GROUP_AVATARS) {
updateCollisionWithAvatars(deltaTime);
@ -958,65 +962,48 @@ void MyAvatar::updateCollisionWithEnvironment(float deltaTime, float radius) {
static CollisionList myCollisions(64);
void MyAvatar::updateCollisionWithVoxels(float deltaTime, float radius) {
const float MIN_STUCK_SPEED = 100.0f;
float speed = glm::length(_velocity);
if (speed > MIN_STUCK_SPEED) {
// don't even bother to try to collide against voxles when moving very fast
return;
}
myCollisions.clear();
const CapsuleShape& boundingShape = _skeletonModel.getBoundingShape();
if (Application::getInstance()->getVoxelTree()->findShapeCollisions(&boundingShape, myCollisions)) {
const float VOXEL_ELASTICITY = 0.0f;
const float VOXEL_DAMPING = 0.0f;
float capsuleRadius = boundingShape.getRadius();
if (glm::length2(_gravity) > EPSILON) {
if (myCollisions.size() == 1) {
// trivial case
CollisionInfo* collision = myCollisions[0];
applyHardCollision(collision->_penetration, VOXEL_ELASTICITY, VOXEL_DAMPING);
_lastFloorContactPoint = collision->_contactPoint - collision->_penetration;
} else {
// This is special collision handling for when walking on a voxel field which
// prevents snagging at corners and seams.
// sift through the collisions looking for one against the "floor"
int floorIndex = 0;
float distanceToFloor = 0.0f;
float penetrationWithFloor = 0.0f;
for (int i = 0; i < myCollisions.size(); ++i) {
CollisionInfo* collision = myCollisions[i];
float distance = glm::dot(_gravity, collision->_contactPoint - _position);
if (distance > distanceToFloor) {
distanceToFloor = distance;
penetrationWithFloor = glm::dot(_gravity, collision->_penetration);
floorIndex = i;
}
}
// step through the collisions again and apply each that is not redundant
glm::vec3 oldPosition = _position;
for (int i = 0; i < myCollisions.size(); ++i) {
CollisionInfo* collision = myCollisions[i];
if (i == floorIndex) {
applyHardCollision(collision->_penetration, VOXEL_ELASTICITY, VOXEL_DAMPING);
_lastFloorContactPoint = collision->_contactPoint - collision->_penetration;
} else {
float distance = glm::dot(_gravity, collision->_contactPoint - oldPosition);
float penetration = glm::dot(_gravity, collision->_penetration);
if (fabsf(distance - distanceToFloor) > penetrationWithFloor || penetration > penetrationWithFloor) {
// resolution of the deepest penetration would not resolve this one
// so we apply the collision
applyHardCollision(collision->_penetration, VOXEL_ELASTICITY, VOXEL_DAMPING);
}
glm::vec3 totalPenetration(0.0f);
bool isStuck = false;
for (int i = 0; i < myCollisions.size(); ++i) {
CollisionInfo* collision = myCollisions[i];
float depth = glm::length(collision->_penetration);
if (depth > capsuleRadius) {
isStuck = true;
if (_wasStuck) {
glm::vec3 cubeCenter = collision->_vecData;
float cubeSide = collision->_floatData;
float distance = glm::dot(boundingShape.getPosition() - cubeCenter, _worldUpDirection);
if (distance < 0.0f) {
distance = fabsf(distance) + 0.5f * cubeSide;
}
distance += capsuleRadius + boundingShape.getHalfHeight();
totalPenetration = addPenetrations(totalPenetration, - distance * _worldUpDirection);
continue;
}
}
} else {
// no gravity -- apply all collisions
for (int i = 0; i < myCollisions.size(); ++i) {
CollisionInfo* collision = myCollisions[i];
applyHardCollision(collision->_penetration, VOXEL_ELASTICITY, VOXEL_DAMPING);
}
totalPenetration = addPenetrations(totalPenetration, collision->_penetration);
}
applyHardCollision(totalPenetration, VOXEL_ELASTICITY, VOXEL_DAMPING);
_wasStuck = isStuck;
const float VOXEL_COLLISION_FREQUENCY = 0.5f;
updateCollisionSound(myCollisions[0]->_penetration, deltaTime, VOXEL_COLLISION_FREQUENCY);
}
} else {
_wasStuck = false;
}
}
void MyAvatar::applyHardCollision(const glm::vec3& penetration, float elasticity, float damping) {

View file

@ -125,6 +125,7 @@ private:
bool _wasPushing;
bool _isPushing;
bool _wasStuck;
glm::vec3 _thrust; // final acceleration from outside sources for the current frame
glm::vec3 _motorVelocity; // intended velocity of avatar motion

View file

@ -789,9 +789,9 @@ bool Model::findSphereCollisions(const glm::vec3& sphereCenter, float sphereRadi
}
if (ShapeCollider::collideShapes(&sphere, _jointShapes[i], collisions)) {
CollisionInfo* collision = collisions.getLastCollision();
collision->_type = MODEL_COLLISION;
collision->_type = COLLISION_TYPE_MODEL;
collision->_data = (void*)(this);
collision->_flags = i;
collision->_intData = i;
collided = true;
}
outerContinue: ;
@ -805,9 +805,9 @@ bool Model::findPlaneCollisions(const glm::vec4& plane, CollisionList& collision
for (int i = 0; i < _jointShapes.size(); i++) {
if (ShapeCollider::collideShapes(&planeShape, _jointShapes[i], collisions)) {
CollisionInfo* collision = collisions.getLastCollision();
collision->_type = MODEL_COLLISION;
collision->_type = COLLISION_TYPE_MODEL;
collision->_data = (void*)(this);
collision->_flags = i;
collision->_intData = i;
collided = true;
}
}
@ -1256,15 +1256,15 @@ void Model::renderBoundingCollisionShapes(float alpha) {
}
bool Model::collisionHitsMoveableJoint(CollisionInfo& collision) const {
if (collision._type == MODEL_COLLISION) {
if (collision._type == COLLISION_TYPE_MODEL) {
// the joint is pokable by a collision if it exists and is free to move
const FBXJoint& joint = _geometry->getFBXGeometry().joints[collision._flags];
const FBXJoint& joint = _geometry->getFBXGeometry().joints[collision._intData];
if (joint.parentIndex == -1 || _jointStates.isEmpty()) {
return false;
}
// an empty freeLineage means the joint can't move
const FBXGeometry& geometry = _geometry->getFBXGeometry();
int jointIndex = collision._flags;
int jointIndex = collision._intData;
const QVector<int>& freeLineage = geometry.joints.at(jointIndex).freeLineage;
return !freeLineage.isEmpty();
}
@ -1272,12 +1272,12 @@ bool Model::collisionHitsMoveableJoint(CollisionInfo& collision) const {
}
void Model::applyCollision(CollisionInfo& collision) {
if (collision._type != MODEL_COLLISION) {
if (collision._type != COLLISION_TYPE_MODEL) {
return;
}
glm::vec3 jointPosition(0.f);
int jointIndex = collision._flags;
int jointIndex = collision._intData;
if (getJointPosition(jointIndex, jointPosition)) {
const FBXJoint& joint = _geometry->getFBXGeometry().joints[jointIndex];
if (joint.parentIndex != -1) {

View file

@ -23,6 +23,7 @@
#include <NodeList.h>
#include <PacketHeaders.h>
#include <SharedUtil.h>
#include <StreamUtils.h>
#include <UUID.h>
#include <VoxelConstants.h>

View file

@ -45,7 +45,6 @@ typedef unsigned long long quint64;
#include <CollisionInfo.h>
#include <RegisteredMetaTypes.h>
#include <StreamUtils.h>
#include <Node.h>

View file

@ -224,7 +224,7 @@ void ParticleCollisionSystem::updateCollisionWithAvatars(Particle* particle) {
// (doing this prevents some "collision snagging" when particle penetrates the object)
// HACK BEGIN: to allow paddle hands to "hold" particles we attenuate soft collisions against them.
if (collision->_type == PADDLE_HAND_COLLISION) {
if (collision->_type == COLLISION_TYPE_PADDLE_HAND) {
// NOTE: the physics are wrong (particles cannot roll) but it IS possible to catch a slow moving particle.
// TODO: make this less hacky when we have more per-collision details
float elasticity = ELASTICITY;

View file

@ -38,19 +38,24 @@ CollisionInfo* CollisionList::getLastCollision() {
}
void CollisionList::clear() {
// we rely on the external context to properly set or clear the data members of a collision
// whenever it is used.
/*
for (int i = 0; i < _size; ++i) {
// we only clear the important stuff
CollisionInfo& collision = _collisions[i];
collision._type = BASE_COLLISION;
collision._data = NULL; // CollisionInfo does not own whatever this points to.
collision._flags = 0;
// we rely on the consumer to properly overwrite these fields when the collision is "created"
collision._type = COLLISION_TYPE_UNKNOWN;
//collision._data = NULL;
//collision._intData = 0;
//collision._floatDAta = 0.0f;
//collision._vecData = glm::vec3(0.0f);
//collision._damping;
//collision._elasticity;
//collision._contactPoint;
//collision._penetration;
//collision._addedVelocity;
}
*/
_size = 0;
}

View file

@ -18,9 +18,14 @@
#include <QVector>
enum CollisionType {
BASE_COLLISION = 0,
PADDLE_HAND_COLLISION,
MODEL_COLLISION,
COLLISION_TYPE_UNKNOWN = 0,
COLLISION_TYPE_PADDLE_HAND,
COLLISION_TYPE_MODEL,
// _data = pointer to Model that owns joint
// _intData = joint index
COLLISION_TYPE_AACUBE,
// _floatData = cube side
// _vecData = cube center
};
const quint32 COLLISION_GROUP_ENVIRONMENT = 1U << 0;
@ -39,7 +44,7 @@ public:
CollisionInfo()
: _type(0),
_data(NULL),
_flags(0),
_intData(0),
_damping(0.f),
_elasticity(1.f),
_contactPoint(0.f),
@ -50,7 +55,7 @@ public:
CollisionInfo(qint32 type)
: _type(type),
_data(NULL),
_flags(0),
_intData(0),
_damping(0.f),
_elasticity(1.f),
_contactPoint(0.f),
@ -60,9 +65,13 @@ public:
~CollisionInfo() {}
qint32 _type; // type of Collision (will determine what is supposed to be in _data and _flags)
void* _data; // pointer to user supplied data
quint32 _flags; // 32 bits for whatever
int _type; // type of Collision
// the value of the *Data fields depend on the type
void* _data;
int _intData;
float _floatData;
glm::vec3 _vecData;
float _damping; // range [0,1] of friction coeficient
float _elasticity; // range [0,1] of energy conservation

View file

@ -132,6 +132,7 @@ bool sphereSphere(const SphereShape* sphereA, const SphereShape* sphereB, Collis
// penetration points from A into B
CollisionInfo* collision = collisions.getNewCollision();
if (collision) {
collision->_type = COLLISION_TYPE_UNKNOWN;
collision->_penetration = BA * (totalRadius - distance);
// contactPoint is on surface of A
collision->_contactPoint = sphereA->getPosition() + sphereA->getRadius() * BA;
@ -179,6 +180,7 @@ bool sphereCapsule(const SphereShape* sphereA, const CapsuleShape* capsuleB, Col
collision->_penetration = (totalRadius - radialDistance) * radialAxis; // points from A into B
// contactPoint is on surface of sphereA
collision->_contactPoint = sphereA->getPosition() + sphereA->getRadius() * radialAxis;
collision->_type = COLLISION_TYPE_UNKNOWN;
} else {
// A is on B's axis, so the penetration is undefined...
if (absAxialDistance > capsuleB->getHalfHeight()) {
@ -200,6 +202,7 @@ bool sphereCapsule(const SphereShape* sphereA, const CapsuleShape* capsuleB, Col
collision->_penetration = (sign * (totalRadius + capsuleB->getHalfHeight() - absAxialDistance)) * capsuleAxis;
// contactPoint is on surface of sphereA
collision->_contactPoint = sphereA->getPosition() + (sign * sphereA->getRadius()) * capsuleAxis;
collision->_type = COLLISION_TYPE_UNKNOWN;
}
return true;
}
@ -215,6 +218,7 @@ bool spherePlane(const SphereShape* sphereA, const PlaneShape* planeB, Collision
}
collision->_penetration = penetration;
collision->_contactPoint = sphereA->getPosition() + sphereA->getRadius() * glm::normalize(penetration);
collision->_type = COLLISION_TYPE_UNKNOWN;
return true;
}
return false;
@ -264,6 +268,7 @@ bool capsuleSphere(const CapsuleShape* capsuleA, const SphereShape* sphereB, Col
collision->_penetration = (radialDistance - totalRadius) * radialAxis; // points from A into B
// contactPoint is on surface of capsuleA
collision->_contactPoint = closestApproach - capsuleA->getRadius() * radialAxis;
collision->_type = COLLISION_TYPE_UNKNOWN;
} else {
// A is on B's axis, so the penetration is undefined...
if (absAxialDistance > capsuleA->getHalfHeight()) {
@ -284,6 +289,7 @@ bool capsuleSphere(const CapsuleShape* capsuleA, const SphereShape* sphereB, Col
collision->_penetration = (sign * (totalRadius + capsuleA->getHalfHeight() - absAxialDistance)) * capsuleAxis;
// contactPoint is on surface of sphereA
collision->_contactPoint = closestApproach + (sign * capsuleA->getRadius()) * capsuleAxis;
collision->_type = COLLISION_TYPE_UNKNOWN;
}
}
return true;
@ -355,6 +361,7 @@ bool capsuleCapsule(const CapsuleShape* capsuleA, const CapsuleShape* capsuleB,
collision->_penetration = BA * (totalRadius - distance);
// contactPoint is on surface of A
collision->_contactPoint = centerA + distanceA * axisA + capsuleA->getRadius() * BA;
collision->_type = COLLISION_TYPE_UNKNOWN;
return true;
}
} else {
@ -420,6 +427,7 @@ bool capsuleCapsule(const CapsuleShape* capsuleA, const CapsuleShape* capsuleB,
// average the internal pair, and then do the math from centerB
collision->_contactPoint = centerB + (0.5f * (points[1] + points[2])) * axisB
+ (capsuleA->getRadius() - distance) * BA;
collision->_type = COLLISION_TYPE_UNKNOWN;
return true;
}
}
@ -439,6 +447,7 @@ bool capsulePlane(const CapsuleShape* capsuleA, const PlaneShape* planeB, Collis
collision->_penetration = penetration;
glm::vec3 deepestEnd = (glm::dot(start, glm::vec3(plane)) < glm::dot(end, glm::vec3(plane))) ? start : end;
collision->_contactPoint = deepestEnd + capsuleA->getRadius() * glm::normalize(penetration);
collision->_type = COLLISION_TYPE_UNKNOWN;
return true;
}
return false;
@ -454,6 +463,7 @@ bool planeSphere(const PlaneShape* planeA, const SphereShape* sphereB, Collision
collision->_penetration = -penetration;
collision->_contactPoint = sphereB->getPosition() +
(sphereB->getRadius() / glm::length(penetration) - 1.0f) * penetration;
collision->_type = COLLISION_TYPE_UNKNOWN;
return true;
}
return false;
@ -472,6 +482,7 @@ bool planeCapsule(const PlaneShape* planeA, const CapsuleShape* capsuleB, Collis
collision->_penetration = -penetration;
glm::vec3 deepestEnd = (glm::dot(start, glm::vec3(plane)) < glm::dot(end, glm::vec3(plane))) ? start : end;
collision->_contactPoint = deepestEnd + (capsuleB->getRadius() / glm::length(penetration) - 1.0f) * penetration;
collision->_type = COLLISION_TYPE_UNKNOWN;
return true;
}
return false;
@ -653,12 +664,19 @@ bool sphereAACube(const glm::vec3& sphereCenter, float sphereRadius, const glm::
glm::vec3 direction;
BA /= maxBA;
glm::modf(BA, direction);
direction = glm::normalize(direction);
float lengthDirection = glm::length(direction);
direction /= lengthDirection;
// compute collision details
collision->_penetration = (halfCubeSide + sphereRadius - distance * glm::dot(BA, direction)) * direction;
collision->_type = COLLISION_TYPE_AACUBE;
collision->_floatData = cubeSide;
collision->_vecData = cubeCenter;
collision->_penetration = (halfCubeSide * lengthDirection + sphereRadius - maxBA * glm::dot(BA, direction)) * direction;
collision->_contactPoint = sphereCenter + sphereRadius * direction;
}
collision->_type = COLLISION_TYPE_AACUBE;
collision->_floatData = cubeSide;
collision->_vecData = cubeCenter;
return true;
} else if (sphereRadius + halfCubeSide > distance) {
// NOTE: for cocentric approximation we collide sphere and cube as two spheres which means
@ -669,6 +687,10 @@ bool sphereAACube(const glm::vec3& sphereCenter, float sphereRadius, const glm::
collision->_penetration = (sphereRadius + halfCubeSide) * glm::vec3(0.0f, -1.0f, 0.0f);
// contactPoint is on surface of A
collision->_contactPoint = sphereCenter + collision->_penetration;
collision->_type = COLLISION_TYPE_AACUBE;
collision->_floatData = cubeSide;
collision->_vecData = cubeCenter;
return true;
}
}