Merge pull request #6344 from imgntn/easystar

Adapt EasyStar A* Pathfinding Library and Add Example
This commit is contained in:
Brad Hefta-Gaub 2015-11-11 16:22:47 -08:00
commit c4ad1d978b
3 changed files with 1891 additions and 0 deletions

View file

@ -0,0 +1,743 @@
// The MIT License (MIT)
// Copyright (c) 2012-2015 Bryce Neal
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// Adapted for High Fidelity by James B. Pollack on 11/6/2015
loadEasyStar = function() {
var ezStar = eStar();
return new ezStar.js()
}
var eStar = function() {
var EasyStar = EasyStar || {};
/**
* A simple Node that represents a single tile on the grid.
* @param {Object} parent The parent node.
* @param {Number} x The x position on the grid.
* @param {Number} y The y position on the grid.
* @param {Number} costSoFar How far this node is in moves*cost from the start.
* @param {Number} simpleDistanceToTarget Manhatten distance to the end point.
**/
EasyStar.Node = function(parent, x, y, costSoFar, simpleDistanceToTarget) {
this.parent = parent;
this.x = x;
this.y = y;
this.costSoFar = costSoFar;
this.simpleDistanceToTarget = simpleDistanceToTarget;
/**
* @return {Number} Best guess distance of a cost using this node.
**/
this.bestGuessDistance = function() {
return this.costSoFar + this.simpleDistanceToTarget;
}
};
// Constants
EasyStar.Node.OPEN_LIST = 0;
EasyStar.Node.CLOSED_LIST = 1;
/**
* This is an improved Priority Queue data type implementation that can be used to sort any object type.
* It uses a technique called a binary heap.
*
* For more on binary heaps see: http://en.wikipedia.org/wiki/Binary_heap
*
* @param {String} criteria The criteria by which to sort the objects.
* This should be a property of the objects you're sorting.
*
* @param {Number} heapType either PriorityQueue.MAX_HEAP or PriorityQueue.MIN_HEAP.
**/
EasyStar.PriorityQueue = function(criteria, heapType) {
this.length = 0; //The current length of heap.
var queue = [];
var isMax = false;
//Constructor
if (heapType == EasyStar.PriorityQueue.MAX_HEAP) {
isMax = true;
} else if (heapType == EasyStar.PriorityQueue.MIN_HEAP) {
isMax = false;
} else {
throw heapType + " not supported.";
}
/**
* Inserts the value into the heap and sorts it.
*
* @param value The object to insert into the heap.
**/
this.insert = function(value) {
if (!value.hasOwnProperty(criteria)) {
throw "Cannot insert " + value + " because it does not have a property by the name of " + criteria + ".";
}
queue.push(value);
this.length++;
bubbleUp(this.length - 1);
}
/**
* Peeks at the highest priority element.
*
* @return the highest priority element
**/
this.getHighestPriorityElement = function() {
return queue[0];
}
/**
* Removes and returns the highest priority element from the queue.
*
* @return the highest priority element
**/
this.shiftHighestPriorityElement = function() {
if (this.length === 0) {
throw ("There are no more elements in your priority queue.");
} else if (this.length === 1) {
var onlyValue = queue[0];
queue = [];
this.length = 0;
return onlyValue;
}
var oldRoot = queue[0];
var newRoot = queue.pop();
this.length--;
queue[0] = newRoot;
swapUntilQueueIsCorrect(0);
return oldRoot;
}
var bubbleUp = function(index) {
if (index === 0) {
return;
}
var parent = getParentOf(index);
if (evaluate(index, parent)) {
swap(index, parent);
bubbleUp(parent);
} else {
return;
}
}
var swapUntilQueueIsCorrect = function(value) {
var left = getLeftOf(value);
var right = getRightOf(value);
if (evaluate(left, value)) {
swap(value, left);
swapUntilQueueIsCorrect(left);
} else if (evaluate(right, value)) {
swap(value, right);
swapUntilQueueIsCorrect(right);
} else if (value == 0) {
return;
} else {
swapUntilQueueIsCorrect(0);
}
}
var swap = function(self, target) {
var placeHolder = queue[self];
queue[self] = queue[target];
queue[target] = placeHolder;
}
var evaluate = function(self, target) {
if (queue[target] === undefined || queue[self] === undefined) {
return false;
}
var selfValue;
var targetValue;
// Check if the criteria should be the result of a function call.
if (typeof queue[self][criteria] === 'function') {
selfValue = queue[self][criteria]();
targetValue = queue[target][criteria]();
} else {
selfValue = queue[self][criteria];
targetValue = queue[target][criteria];
}
if (isMax) {
if (selfValue > targetValue) {
return true;
} else {
return false;
}
} else {
if (selfValue < targetValue) {
return true;
} else {
return false;
}
}
}
var getParentOf = function(index) {
return Math.floor((index - 1) / 2);
}
var getLeftOf = function(index) {
return index * 2 + 1;
}
var getRightOf = function(index) {
return index * 2 + 2;
}
};
// Constants
EasyStar.PriorityQueue.MAX_HEAP = 0;
EasyStar.PriorityQueue.MIN_HEAP = 1;
/**
* Represents a single instance of EasyStar.
* A path that is in the queue to eventually be found.
*/
EasyStar.instance = function() {
this.isDoneCalculating = true;
this.pointsToAvoid = {};
this.startX;
this.callback;
this.startY;
this.endX;
this.endY;
this.nodeHash = {};
this.openList;
};
/**
* EasyStar.js
* github.com/prettymuchbryce/EasyStarJS
* Licensed under the MIT license.
*
* Implementation By Bryce Neal (@prettymuchbryce)
**/
EasyStar.js = function() {
var STRAIGHT_COST = 1.0;
var DIAGONAL_COST = 1.4;
var syncEnabled = false;
var pointsToAvoid = {};
var collisionGrid;
var costMap = {};
var pointsToCost = {};
var allowCornerCutting = true;
var iterationsSoFar;
var instances = [];
var iterationsPerCalculation = Number.MAX_VALUE;
var acceptableTiles;
var diagonalsEnabled = false;
/**
* Sets the collision grid that EasyStar uses.
*
* @param {Array|Number} tiles An array of numbers that represent
* which tiles in your grid should be considered
* acceptable, or "walkable".
**/
this.setAcceptableTiles = function(tiles) {
if (tiles instanceof Array) {
// Array
acceptableTiles = tiles;
} else if (!isNaN(parseFloat(tiles)) && isFinite(tiles)) {
// Number
acceptableTiles = [tiles];
}
};
/**
* Enables sync mode for this EasyStar instance..
* if you're into that sort of thing.
**/
this.enableSync = function() {
syncEnabled = true;
};
/**
* Disables sync mode for this EasyStar instance.
**/
this.disableSync = function() {
syncEnabled = false;
};
/**
* Enable diagonal pathfinding.
*/
this.enableDiagonals = function() {
diagonalsEnabled = true;
}
/**
* Disable diagonal pathfinding.
*/
this.disableDiagonals = function() {
diagonalsEnabled = false;
}
/**
* Sets the collision grid that EasyStar uses.
*
* @param {Array} grid The collision grid that this EasyStar instance will read from.
* This should be a 2D Array of Numbers.
**/
this.setGrid = function(grid) {
collisionGrid = grid;
//Setup cost map
for (var y = 0; y < collisionGrid.length; y++) {
for (var x = 0; x < collisionGrid[0].length; x++) {
if (!costMap[collisionGrid[y][x]]) {
costMap[collisionGrid[y][x]] = 1
}
}
}
};
/**
* Sets the tile cost for a particular tile type.
*
* @param {Number} The tile type to set the cost for.
* @param {Number} The multiplicative cost associated with the given tile.
**/
this.setTileCost = function(tileType, cost) {
costMap[tileType] = cost;
};
/**
* Sets the an additional cost for a particular point.
* Overrides the cost from setTileCost.
*
* @param {Number} x The x value of the point to cost.
* @param {Number} y The y value of the point to cost.
* @param {Number} The multiplicative cost associated with the given point.
**/
this.setAdditionalPointCost = function(x, y, cost) {
pointsToCost[x + '_' + y] = cost;
};
/**
* Remove the additional cost for a particular point.
*
* @param {Number} x The x value of the point to stop costing.
* @param {Number} y The y value of the point to stop costing.
**/
this.removeAdditionalPointCost = function(x, y) {
delete pointsToCost[x + '_' + y];
}
/**
* Remove all additional point costs.
**/
this.removeAllAdditionalPointCosts = function() {
pointsToCost = {};
}
/**
* Sets the number of search iterations per calculation.
* A lower number provides a slower result, but more practical if you
* have a large tile-map and don't want to block your thread while
* finding a path.
*
* @param {Number} iterations The number of searches to prefrom per calculate() call.
**/
this.setIterationsPerCalculation = function(iterations) {
iterationsPerCalculation = iterations;
};
/**
* Avoid a particular point on the grid,
* regardless of whether or not it is an acceptable tile.
*
* @param {Number} x The x value of the point to avoid.
* @param {Number} y The y value of the point to avoid.
**/
this.avoidAdditionalPoint = function(x, y) {
pointsToAvoid[x + "_" + y] = 1;
};
/**
* Stop avoiding a particular point on the grid.
*
* @param {Number} x The x value of the point to stop avoiding.
* @param {Number} y The y value of the point to stop avoiding.
**/
this.stopAvoidingAdditionalPoint = function(x, y) {
delete pointsToAvoid[x + "_" + y];
};
/**
* Enables corner cutting in diagonal movement.
**/
this.enableCornerCutting = function() {
allowCornerCutting = true;
};
/**
* Disables corner cutting in diagonal movement.
**/
this.disableCornerCutting = function() {
allowCornerCutting = false;
};
/**
* Stop avoiding all additional points on the grid.
**/
this.stopAvoidingAllAdditionalPoints = function() {
pointsToAvoid = {};
};
/**
* Find a path.
*
* @param {Number} startX The X position of the starting point.
* @param {Number} startY The Y position of the starting point.
* @param {Number} endX The X position of the ending point.
* @param {Number} endY The Y position of the ending point.
* @param {Function} callback A function that is called when your path
* is found, or no path is found.
*
**/
this.findPath = function(startX, startY, endX, endY, callback) {
// Wraps the callback for sync vs async logic
var callbackWrapper = function(result) {
if (syncEnabled) {
callback(result);
} else {
Script.setTimeout(function() {
callback(result);
}, 1);
}
}
// No acceptable tiles were set
if (acceptableTiles === undefined) {
throw new Error("You can't set a path without first calling setAcceptableTiles() on EasyStar.");
}
// No grid was set
if (collisionGrid === undefined) {
throw new Error("You can't set a path without first calling setGrid() on EasyStar.");
}
// Start or endpoint outside of scope.
if (startX < 0 || startY < 0 || endX < 0 || endX < 0 ||
startX > collisionGrid[0].length - 1 || startY > collisionGrid.length - 1 ||
endX > collisionGrid[0].length - 1 || endY > collisionGrid.length - 1) {
throw new Error("Your start or end point is outside the scope of your grid.");
}
// Start and end are the same tile.
if (startX === endX && startY === endY) {
callbackWrapper([]);
return;
}
// End point is not an acceptable tile.
var endTile = collisionGrid[endY][endX];
var isAcceptable = false;
for (var i = 0; i < acceptableTiles.length; i++) {
if (endTile === acceptableTiles[i]) {
isAcceptable = true;
break;
}
}
if (isAcceptable === false) {
callbackWrapper(null);
return;
}
// Create the instance
var instance = new EasyStar.instance();
instance.openList = new EasyStar.PriorityQueue("bestGuessDistance", EasyStar.PriorityQueue.MIN_HEAP);
instance.isDoneCalculating = false;
instance.nodeHash = {};
instance.startX = startX;
instance.startY = startY;
instance.endX = endX;
instance.endY = endY;
instance.callback = callbackWrapper;
instance.openList.insert(coordinateToNode(instance, instance.startX,
instance.startY, null, STRAIGHT_COST));
instances.push(instance);
};
/**
* This method steps through the A* Algorithm in an attempt to
* find your path(s). It will search 4-8 tiles (depending on diagonals) for every calculation.
* You can change the number of calculations done in a call by using
* easystar.setIteratonsPerCalculation().
**/
this.calculate = function() {
if (instances.length === 0 || collisionGrid === undefined || acceptableTiles === undefined) {
return;
}
for (iterationsSoFar = 0; iterationsSoFar < iterationsPerCalculation; iterationsSoFar++) {
if (instances.length === 0) {
return;
}
if (syncEnabled) {
// If this is a sync instance, we want to make sure that it calculates synchronously.
iterationsSoFar = 0;
}
// Couldn't find a path.
if (instances[0].openList.length === 0) {
var ic = instances[0];
ic.callback(null);
instances.shift();
continue;
}
var searchNode = instances[0].openList.shiftHighestPriorityElement();
var tilesToSearch = [];
searchNode.list = EasyStar.Node.CLOSED_LIST;
if (searchNode.y > 0) {
tilesToSearch.push({
instance: instances[0],
searchNode: searchNode,
x: 0,
y: -1,
cost: STRAIGHT_COST * getTileCost(searchNode.x, searchNode.y - 1)
});
}
if (searchNode.x < collisionGrid[0].length - 1) {
tilesToSearch.push({
instance: instances[0],
searchNode: searchNode,
x: 1,
y: 0,
cost: STRAIGHT_COST * getTileCost(searchNode.x + 1, searchNode.y)
});
}
if (searchNode.y < collisionGrid.length - 1) {
tilesToSearch.push({
instance: instances[0],
searchNode: searchNode,
x: 0,
y: 1,
cost: STRAIGHT_COST * getTileCost(searchNode.x, searchNode.y + 1)
});
}
if (searchNode.x > 0) {
tilesToSearch.push({
instance: instances[0],
searchNode: searchNode,
x: -1,
y: 0,
cost: STRAIGHT_COST * getTileCost(searchNode.x - 1, searchNode.y)
});
}
if (diagonalsEnabled) {
if (searchNode.x > 0 && searchNode.y > 0) {
if (allowCornerCutting ||
(isTileWalkable(collisionGrid, acceptableTiles, searchNode.x, searchNode.y - 1) &&
isTileWalkable(collisionGrid, acceptableTiles, searchNode.x - 1, searchNode.y))) {
tilesToSearch.push({
instance: instances[0],
searchNode: searchNode,
x: -1,
y: -1,
cost: DIAGONAL_COST * getTileCost(searchNode.x - 1, searchNode.y - 1)
});
}
}
if (searchNode.x < collisionGrid[0].length - 1 && searchNode.y < collisionGrid.length - 1) {
if (allowCornerCutting ||
(isTileWalkable(collisionGrid, acceptableTiles, searchNode.x, searchNode.y + 1) &&
isTileWalkable(collisionGrid, acceptableTiles, searchNode.x + 1, searchNode.y))) {
tilesToSearch.push({
instance: instances[0],
searchNode: searchNode,
x: 1,
y: 1,
cost: DIAGONAL_COST * getTileCost(searchNode.x + 1, searchNode.y + 1)
});
}
}
if (searchNode.x < collisionGrid[0].length - 1 && searchNode.y > 0) {
if (allowCornerCutting ||
(isTileWalkable(collisionGrid, acceptableTiles, searchNode.x, searchNode.y - 1) &&
isTileWalkable(collisionGrid, acceptableTiles, searchNode.x + 1, searchNode.y))) {
tilesToSearch.push({
instance: instances[0],
searchNode: searchNode,
x: 1,
y: -1,
cost: DIAGONAL_COST * getTileCost(searchNode.x + 1, searchNode.y - 1)
});
}
}
if (searchNode.x > 0 && searchNode.y < collisionGrid.length - 1) {
if (allowCornerCutting ||
(isTileWalkable(collisionGrid, acceptableTiles, searchNode.x, searchNode.y + 1) &&
isTileWalkable(collisionGrid, acceptableTiles, searchNode.x - 1, searchNode.y))) {
tilesToSearch.push({
instance: instances[0],
searchNode: searchNode,
x: -1,
y: 1,
cost: DIAGONAL_COST * getTileCost(searchNode.x - 1, searchNode.y + 1)
});
}
}
}
// First sort all of the potential nodes we could search by their cost + heuristic distance.
tilesToSearch.sort(function(a, b) {
var aCost = a.cost + getDistance(searchNode.x + a.x, searchNode.y + a.y, instances[0].endX, instances[0].endY)
var bCost = b.cost + getDistance(searchNode.x + b.x, searchNode.y + b.y, instances[0].endX, instances[0].endY)
if (aCost < bCost) {
return -1;
} else if (aCost === bCost) {
return 0;
} else {
return 1;
}
});
var isDoneCalculating = false;
// Search all of the surrounding nodes
for (var i = 0; i < tilesToSearch.length; i++) {
checkAdjacentNode(tilesToSearch[i].instance, tilesToSearch[i].searchNode,
tilesToSearch[i].x, tilesToSearch[i].y, tilesToSearch[i].cost);
if (tilesToSearch[i].instance.isDoneCalculating === true) {
isDoneCalculating = true;
break;
}
}
if (isDoneCalculating) {
instances.shift();
continue;
}
}
};
// Private methods follow
var checkAdjacentNode = function(instance, searchNode, x, y, cost) {
var adjacentCoordinateX = searchNode.x + x;
var adjacentCoordinateY = searchNode.y + y;
if (pointsToAvoid[adjacentCoordinateX + "_" + adjacentCoordinateY] === undefined) {
// Handles the case where we have found the destination
if (instance.endX === adjacentCoordinateX && instance.endY === adjacentCoordinateY) {
instance.isDoneCalculating = true;
var path = [];
var pathLen = 0;
path[pathLen] = {
x: adjacentCoordinateX,
y: adjacentCoordinateY
};
pathLen++;
path[pathLen] = {
x: searchNode.x,
y: searchNode.y
};
pathLen++;
var parent = searchNode.parent;
while (parent != null) {
path[pathLen] = {
x: parent.x,
y: parent.y
};
pathLen++;
parent = parent.parent;
}
path.reverse();
var ic = instance;
var ip = path;
ic.callback(ip);
return
}
if (isTileWalkable(collisionGrid, acceptableTiles, adjacentCoordinateX, adjacentCoordinateY)) {
var node = coordinateToNode(instance, adjacentCoordinateX,
adjacentCoordinateY, searchNode, cost);
if (node.list === undefined) {
node.list = EasyStar.Node.OPEN_LIST;
instance.openList.insert(node);
} else if (node.list === EasyStar.Node.OPEN_LIST) {
if (searchNode.costSoFar + cost < node.costSoFar) {
node.costSoFar = searchNode.costSoFar + cost;
node.parent = searchNode;
}
}
}
}
};
// Helpers
var isTileWalkable = function(collisionGrid, acceptableTiles, x, y) {
for (var i = 0; i < acceptableTiles.length; i++) {
if (collisionGrid[y][x] === acceptableTiles[i]) {
return true;
}
}
return false;
};
var getTileCost = function(x, y) {
return pointsToCost[x + '_' + y] || costMap[collisionGrid[y][x]]
};
var coordinateToNode = function(instance, x, y, parent, cost) {
if (instance.nodeHash[x + "_" + y] !== undefined) {
return instance.nodeHash[x + "_" + y];
}
var simpleDistanceToTarget = getDistance(x, y, instance.endX, instance.endY);
if (parent !== null) {
var costSoFar = parent.costSoFar + cost;
} else {
costSoFar = simpleDistanceToTarget;
}
var node = new EasyStar.Node(parent, x, y, costSoFar, simpleDistanceToTarget);
instance.nodeHash[x + "_" + y] = node;
return node;
};
var getDistance = function(x1, y1, x2, y2) {
return Math.sqrt((x2 -= x1) * x2 + (y2 -= y1) * y2);
};
}
return EasyStar
}

View file

@ -0,0 +1,270 @@
//
// easyStarExample.js
//
// Created by James B. Pollack @imgntn on 11/9/2015
// Copyright 2015 High Fidelity, Inc.
//
// This is a script that sets up a grid of obstacles and passable tiles, finds a path, and then moves an entity along the path.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
// To-Do:
// Abstract start position and make tiles, spheres, etc. relative
// Handle dynamically changing grids
Script.include('easyStar.js');
var easystar = loadEasyStar();
Script.include('tween.js');
var TWEEN = loadTween();
var ANIMATION_DURATION = 350;
var grid = [
[0, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 0, 1, 0, 1, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 1, 1],
[0, 0, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]
];
easystar.setGrid(grid);
easystar.setAcceptableTiles([0]);
easystar.enableCornerCutting();
easystar.findPath(0, 0, 8, 0, function(path) {
if (path === null) {
print("Path was not found.");
Script.update.disconnect(tickEasyStar);
} else {
print('path' + JSON.stringify(path));
convertPath(path);
Script.update.disconnect(tickEasyStar);
}
});
var tickEasyStar = function() {
easystar.calculate();
}
Script.update.connect(tickEasyStar);
//a sphere that will get moved
var playerSphere = Entities.addEntity({
type: 'Sphere',
shape: 'Sphere',
color: {
red: 255,
green: 0,
blue: 0
},
dimensions: {
x: 0.5,
y: 0.5,
z: 0.5
},
position: {
x: 0,
y: 0,
z: 0
},
gravity: {
x: 0,
y: -9.8,
z: 0
},
collisionsWillMove: true,
linearDamping: 0.2
});
Script.setInterval(function(){
Entities.editEntity(playerSphere,{
velocity:{
x:0,
y:4,
z:0
}
})
},1000)
var sphereProperties;
//for keeping track of entities
var obstacles = [];
var passables = [];
function createPassableAtTilePosition(posX, posY) {
var properties = {
type: 'Box',
shapeType: 'Box',
dimensions: {
x: 1,
y: 1,
z: 1
},
position: {
x: posY,
y: -1,
z: posX
},
color: {
red: 0,
green: 0,
blue: 255
}
};
var passable = Entities.addEntity(properties);
passables.push(passable);
}
function createObstacleAtTilePosition(posX, posY) {
var properties = {
type: 'Box',
shapeType: 'Box',
dimensions: {
x: 1,
y: 2,
z: 1
},
position: {
x: posY,
y: 0,
z: posX
},
color: {
red: 0,
green: 255,
blue: 0
}
};
var obstacle = Entities.addEntity(properties);
obstacles.push(obstacle);
}
function createObstacles(grid) {
grid.forEach(function(row, rowIndex) {
row.forEach(function(v, index) {
if (v === 1) {
createObstacleAtTilePosition(rowIndex, index);
}
if (v === 0) {
createPassableAtTilePosition(rowIndex, index);
}
})
})
}
createObstacles(grid);
var currentSpherePosition = {
x: 0,
y: 0,
z: 0
};
function convertPathPointToCoordinates(x, y) {
return {
x: y,
z: x
};
}
var convertedPath = [];
//convert our path to Vec3s
function convertPath(path) {
path.forEach(function(point) {
var convertedPoint = convertPathPointToCoordinates(point.x, point.y);
convertedPath.push(convertedPoint);
});
createTweenPath(convertedPath);
}
function updatePosition() {
sphereProperties = Entities.getEntityProperties(playerSphere, "position");
Entities.editEntity(playerSphere, {
position: {
x: currentSpherePosition.z,
y: sphereProperties.position.y,
z: currentSpherePosition.x
}
});
}
var upVelocity = {
x: 0,
y: 2.5,
z: 0
}
var noVelocity = {
x: 0,
y: -3.5,
z: 0
}
function createTweenPath(convertedPath) {
var i;
var stepTweens = [];
var velocityTweens = [];
//create the tweens
for (i = 0; i < convertedPath.length - 1; i++) {
var stepTween = new TWEEN.Tween(currentSpherePosition).to(convertedPath[i + 1], ANIMATION_DURATION).onUpdate(updatePosition).onComplete(tweenStep);
stepTweens.push(stepTween);
}
var j;
//chain one tween to the next
for (j = 0; j < stepTweens.length - 1; j++) {
stepTweens[j].chain(stepTweens[j + 1]);
}
//start the tween
stepTweens[0].start();
}
var velocityShaper = {
x: 0,
y: 0,
z: 0
}
function tweenStep() {
// print('step between tweens')
}
function updateTweens() {
//hook tween updates into our update loop
TWEEN.update();
}
Script.update.connect(updateTweens);
function cleanup() {
while (obstacles.length > 0) {
Entities.deleteEntity(obstacles.pop());
}
while (passables.length > 0) {
Entities.deleteEntity(passables.pop());
}
Entities.deleteEntity(playerSphere);
Script.update.disconnect(updateTweens);
}
Script.scriptEnding.connect(cleanup);

878
examples/libraries/tween.js Normal file
View file

@ -0,0 +1,878 @@
/**
* Tween.js - Licensed under the MIT license
* https://github.com/tweenjs/tween.js
* ----------------------------------------------
*
* See https://github.com/tweenjs/tween.js/graphs/contributors for the full list of contributors.
* Thank you all, you're awesome!
*/
// Include a performance.now polyfill
(function () {
window= {}
if ('performance' in window === false) {
window.performance = {};
}
// IE 8
Date.now = (Date.now || function () {
return new Date().getTime();
});
if ('now' in window.performance === false) {
var offset = window.performance.timing && window.performance.timing.navigationStart ? window.performance.timing.navigationStart
: Date.now();
window.performance.now = function () {
return Date.now() - offset;
};
}
})();
var TWEEN = TWEEN || (function () {
var _tweens = [];
return {
getAll: function () {
return _tweens;
},
removeAll: function () {
_tweens = [];
},
add: function (tween) {
_tweens.push(tween);
},
remove: function (tween) {
var i = _tweens.indexOf(tween);
if (i !== -1) {
_tweens.splice(i, 1);
}
},
update: function (time) {
if (_tweens.length === 0) {
return false;
}
var i = 0;
time = time !== undefined ? time : window.performance.now();
while (i < _tweens.length) {
if (_tweens[i].update(time)) {
i++;
} else {
_tweens.splice(i, 1);
}
}
return true;
}
};
})();
TWEEN.Tween = function (object) {
var _object = object;
var _valuesStart = {};
var _valuesEnd = {};
var _valuesStartRepeat = {};
var _duration = 1000;
var _repeat = 0;
var _yoyo = false;
var _isPlaying = false;
var _reversed = false;
var _delayTime = 0;
var _startTime = null;
var _easingFunction = TWEEN.Easing.Linear.None;
var _interpolationFunction = TWEEN.Interpolation.Linear;
var _chainedTweens = [];
var _onStartCallback = null;
var _onStartCallbackFired = false;
var _onUpdateCallback = null;
var _onCompleteCallback = null;
var _onStopCallback = null;
// Set all starting values present on the target object
for (var field in object) {
_valuesStart[field] = parseFloat(object[field], 10);
}
this.to = function (properties, duration) {
if (duration !== undefined) {
_duration = duration;
}
_valuesEnd = properties;
return this;
};
this.start = function (time) {
TWEEN.add(this);
_isPlaying = true;
_onStartCallbackFired = false;
_startTime = time !== undefined ? time : window.performance.now();
_startTime += _delayTime;
for (var property in _valuesEnd) {
// Check if an Array was provided as property value
if (_valuesEnd[property] instanceof Array) {
if (_valuesEnd[property].length === 0) {
continue;
}
// Create a local copy of the Array with the start value at the front
_valuesEnd[property] = [_object[property]].concat(_valuesEnd[property]);
}
_valuesStart[property] = _object[property];
if ((_valuesStart[property] instanceof Array) === false) {
_valuesStart[property] *= 1.0; // Ensures we're using numbers, not strings
}
_valuesStartRepeat[property] = _valuesStart[property] || 0;
}
return this;
};
this.stop = function () {
if (!_isPlaying) {
return this;
}
TWEEN.remove(this);
_isPlaying = false;
if (_onStopCallback !== null) {
_onStopCallback.call(_object);
}
this.stopChainedTweens();
return this;
};
this.stopChainedTweens = function () {
for (var i = 0, numChainedTweens = _chainedTweens.length; i < numChainedTweens; i++) {
_chainedTweens[i].stop();
}
};
this.delay = function (amount) {
_delayTime = amount;
return this;
};
this.repeat = function (times) {
_repeat = times;
return this;
};
this.yoyo = function (yoyo) {
_yoyo = yoyo;
return this;
};
this.easing = function (easing) {
_easingFunction = easing;
return this;
};
this.interpolation = function (interpolation) {
_interpolationFunction = interpolation;
return this;
};
this.chain = function () {
_chainedTweens = arguments;
return this;
};
this.onStart = function (callback) {
_onStartCallback = callback;
return this;
};
this.onUpdate = function (callback) {
_onUpdateCallback = callback;
return this;
};
this.onComplete = function (callback) {
_onCompleteCallback = callback;
return this;
};
this.onStop = function (callback) {
_onStopCallback = callback;
return this;
};
this.update = function (time) {
var property;
var elapsed;
var value;
if (time < _startTime) {
return true;
}
if (_onStartCallbackFired === false) {
if (_onStartCallback !== null) {
_onStartCallback.call(_object);
}
_onStartCallbackFired = true;
}
elapsed = (time - _startTime) / _duration;
elapsed = elapsed > 1 ? 1 : elapsed;
value = _easingFunction(elapsed);
for (property in _valuesEnd) {
var start = _valuesStart[property] || 0;
var end = _valuesEnd[property];
if (end instanceof Array) {
_object[property] = _interpolationFunction(end, value);
} else {
// Parses relative end values with start as base (e.g.: +10, -3)
if (typeof (end) === 'string') {
end = start + parseFloat(end, 10);
}
// Protect against non numeric properties.
if (typeof (end) === 'number') {
_object[property] = start + (end - start) * value;
}
}
}
if (_onUpdateCallback !== null) {
_onUpdateCallback.call(_object, value);
}
if (elapsed === 1) {
if (_repeat > 0) {
if (isFinite(_repeat)) {
_repeat--;
}
// Reassign starting values, restart by making startTime = now
for (property in _valuesStartRepeat) {
if (typeof (_valuesEnd[property]) === 'string') {
_valuesStartRepeat[property] = _valuesStartRepeat[property] + parseFloat(_valuesEnd[property], 10);
}
if (_yoyo) {
var tmp = _valuesStartRepeat[property];
_valuesStartRepeat[property] = _valuesEnd[property];
_valuesEnd[property] = tmp;
}
_valuesStart[property] = _valuesStartRepeat[property];
}
if (_yoyo) {
_reversed = !_reversed;
}
_startTime = time + _delayTime;
return true;
} else {
if (_onCompleteCallback !== null) {
_onCompleteCallback.call(_object);
}
for (var i = 0, numChainedTweens = _chainedTweens.length; i < numChainedTweens; i++) {
// Make the chained tweens start exactly at the time they should,
// even if the `update()` method was called way past the duration of the tween
_chainedTweens[i].start(_startTime + _duration);
}
return false;
}
}
return true;
};
};
TWEEN.Easing = {
Linear: {
None: function (k) {
return k;
}
},
Quadratic: {
In: function (k) {
return k * k;
},
Out: function (k) {
return k * (2 - k);
},
InOut: function (k) {
if ((k *= 2) < 1) {
return 0.5 * k * k;
}
return - 0.5 * (--k * (k - 2) - 1);
}
},
Cubic: {
In: function (k) {
return k * k * k;
},
Out: function (k) {
return --k * k * k + 1;
},
InOut: function (k) {
if ((k *= 2) < 1) {
return 0.5 * k * k * k;
}
return 0.5 * ((k -= 2) * k * k + 2);
}
},
Quartic: {
In: function (k) {
return k * k * k * k;
},
Out: function (k) {
return 1 - (--k * k * k * k);
},
InOut: function (k) {
if ((k *= 2) < 1) {
return 0.5 * k * k * k * k;
}
return - 0.5 * ((k -= 2) * k * k * k - 2);
}
},
Quintic: {
In: function (k) {
return k * k * k * k * k;
},
Out: function (k) {
return --k * k * k * k * k + 1;
},
InOut: function (k) {
if ((k *= 2) < 1) {
return 0.5 * k * k * k * k * k;
}
return 0.5 * ((k -= 2) * k * k * k * k + 2);
}
},
Sinusoidal: {
In: function (k) {
return 1 - Math.cos(k * Math.PI / 2);
},
Out: function (k) {
return Math.sin(k * Math.PI / 2);
},
InOut: function (k) {
return 0.5 * (1 - Math.cos(Math.PI * k));
}
},
Exponential: {
In: function (k) {
return k === 0 ? 0 : Math.pow(1024, k - 1);
},
Out: function (k) {
return k === 1 ? 1 : 1 - Math.pow(2, - 10 * k);
},
InOut: function (k) {
if (k === 0) {
return 0;
}
if (k === 1) {
return 1;
}
if ((k *= 2) < 1) {
return 0.5 * Math.pow(1024, k - 1);
}
return 0.5 * (- Math.pow(2, - 10 * (k - 1)) + 2);
}
},
Circular: {
In: function (k) {
return 1 - Math.sqrt(1 - k * k);
},
Out: function (k) {
return Math.sqrt(1 - (--k * k));
},
InOut: function (k) {
if ((k *= 2) < 1) {
return - 0.5 * (Math.sqrt(1 - k * k) - 1);
}
return 0.5 * (Math.sqrt(1 - (k -= 2) * k) + 1);
}
},
Elastic: {
In: function (k) {
var s;
var a = 0.1;
var p = 0.4;
if (k === 0) {
return 0;
}
if (k === 1) {
return 1;
}
if (!a || a < 1) {
a = 1;
s = p / 4;
} else {
s = p * Math.asin(1 / a) / (2 * Math.PI);
}
return - (a * Math.pow(2, 10 * (k -= 1)) * Math.sin((k - s) * (2 * Math.PI) / p));
},
Out: function (k) {
var s;
var a = 0.1;
var p = 0.4;
if (k === 0) {
return 0;
}
if (k === 1) {
return 1;
}
if (!a || a < 1) {
a = 1;
s = p / 4;
} else {
s = p * Math.asin(1 / a) / (2 * Math.PI);
}
return (a * Math.pow(2, - 10 * k) * Math.sin((k - s) * (2 * Math.PI) / p) + 1);
},
InOut: function (k) {
var s;
var a = 0.1;
var p = 0.4;
if (k === 0) {
return 0;
}
if (k === 1) {
return 1;
}
if (!a || a < 1) {
a = 1;
s = p / 4;
} else {
s = p * Math.asin(1 / a) / (2 * Math.PI);
}
if ((k *= 2) < 1) {
return - 0.5 * (a * Math.pow(2, 10 * (k -= 1)) * Math.sin((k - s) * (2 * Math.PI) / p));
}
return a * Math.pow(2, -10 * (k -= 1)) * Math.sin((k - s) * (2 * Math.PI) / p) * 0.5 + 1;
}
},
Back: {
In: function (k) {
var s = 1.70158;
return k * k * ((s + 1) * k - s);
},
Out: function (k) {
var s = 1.70158;
return --k * k * ((s + 1) * k + s) + 1;
},
InOut: function (k) {
var s = 1.70158 * 1.525;
if ((k *= 2) < 1) {
return 0.5 * (k * k * ((s + 1) * k - s));
}
return 0.5 * ((k -= 2) * k * ((s + 1) * k + s) + 2);
}
},
Bounce: {
In: function (k) {
return 1 - TWEEN.Easing.Bounce.Out(1 - k);
},
Out: function (k) {
if (k < (1 / 2.75)) {
return 7.5625 * k * k;
} else if (k < (2 / 2.75)) {
return 7.5625 * (k -= (1.5 / 2.75)) * k + 0.75;
} else if (k < (2.5 / 2.75)) {
return 7.5625 * (k -= (2.25 / 2.75)) * k + 0.9375;
} else {
return 7.5625 * (k -= (2.625 / 2.75)) * k + 0.984375;
}
},
InOut: function (k) {
if (k < 0.5) {
return TWEEN.Easing.Bounce.In(k * 2) * 0.5;
}
return TWEEN.Easing.Bounce.Out(k * 2 - 1) * 0.5 + 0.5;
}
}
};
TWEEN.Interpolation = {
Linear: function (v, k) {
var m = v.length - 1;
var f = m * k;
var i = Math.floor(f);
var fn = TWEEN.Interpolation.Utils.Linear;
if (k < 0) {
return fn(v[0], v[1], f);
}
if (k > 1) {
return fn(v[m], v[m - 1], m - f);
}
return fn(v[i], v[i + 1 > m ? m : i + 1], f - i);
},
Bezier: function (v, k) {
var b = 0;
var n = v.length - 1;
var pw = Math.pow;
var bn = TWEEN.Interpolation.Utils.Bernstein;
for (var i = 0; i <= n; i++) {
b += pw(1 - k, n - i) * pw(k, i) * v[i] * bn(n, i);
}
return b;
},
CatmullRom: function (v, k) {
var m = v.length - 1;
var f = m * k;
var i = Math.floor(f);
var fn = TWEEN.Interpolation.Utils.CatmullRom;
if (v[0] === v[m]) {
if (k < 0) {
i = Math.floor(f = m * (1 + k));
}
return fn(v[(i - 1 + m) % m], v[i], v[(i + 1) % m], v[(i + 2) % m], f - i);
} else {
if (k < 0) {
return v[0] - (fn(v[0], v[0], v[1], v[1], -f) - v[0]);
}
if (k > 1) {
return v[m] - (fn(v[m], v[m], v[m - 1], v[m - 1], f - m) - v[m]);
}
return fn(v[i ? i - 1 : 0], v[i], v[m < i + 1 ? m : i + 1], v[m < i + 2 ? m : i + 2], f - i);
}
},
Utils: {
Linear: function (p0, p1, t) {
return (p1 - p0) * t + p0;
},
Bernstein: function (n, i) {
var fc = TWEEN.Interpolation.Utils.Factorial;
return fc(n) / fc(i) / fc(n - i);
},
Factorial: (function () {
var a = [1];
return function (n) {
var s = 1;
if (a[n]) {
return a[n];
}
for (var i = n; i > 1; i--) {
s *= i;
}
a[n] = s;
return s;
};
})(),
CatmullRom: function (p0, p1, p2, p3, t) {
var v0 = (p2 - p0) * 0.5;
var v1 = (p3 - p1) * 0.5;
var t2 = t * t;
var t3 = t * t2;
return (2 * p1 - 2 * p2 + v0 + v1) * t3 + (- 3 * p1 + 3 * p2 - 2 * v0 - v1) * t2 + v0 * t + p1;
}
}
};
// UMD (Universal Module Definition)
(function (root) {
if (typeof define === 'function' && define.amd) {
// AMD
define([], function () {
return TWEEN;
});
} else if (typeof exports === 'object') {
// Node.js
module.exports = TWEEN;
} else {
// Global variable
root.TWEEN = TWEEN;
}
})(this);
loadTween = function(){
return TWEEN
}