Conflicts:
	interface/src/main.cpp
This commit is contained in:
Andrzej Kapolka 2013-05-10 10:03:05 -07:00
commit beadb6a93d
26 changed files with 1049 additions and 793 deletions

View file

@ -71,23 +71,42 @@ void plateauAdditionOfSamples(int16_t &mixSample, int16_t sampleToAdd) {
mixSample = normalizedSample;
}
void *sendBuffer(void *args) {
int sentBytes;
void attachNewBufferToAgent(Agent *newAgent) {
if (!newAgent->getLinkedData()) {
newAgent->setLinkedData(new AudioRingBuffer(RING_BUFFER_SAMPLES, BUFFER_LENGTH_SAMPLES_PER_CHANNEL));
}
}
int main(int argc, const char* argv[]) {
setvbuf(stdout, NULL, _IOLBF, 0);
AgentList* agentList = AgentList::createInstance(AGENT_TYPE_AUDIO_MIXER, MIXER_LISTEN_PORT);
ssize_t receivedBytes = 0;
agentList->linkedDataCreateCallback = attachNewBufferToAgent;
agentList->startSilentAgentRemovalThread();
agentList->startDomainServerCheckInThread();
unsigned char* packetData = new unsigned char[MAX_PACKET_SIZE];
sockaddr* agentAddress = new sockaddr;
// make sure our agent socket is non-blocking
agentList->getAgentSocket().setBlocking(false);
int nextFrame = 0;
timeval startTime;
AgentList* agentList = AgentList::getInstance();
gettimeofday(&startTime, NULL);
while (true) {
sentBytes = 0;
// enumerate the agents, check if we can add audio from the agent to current mix
for (AgentList::iterator agent = agentList->begin(); agent != agentList->end(); agent++) {
AudioRingBuffer* agentBuffer = (AudioRingBuffer*) agent->getLinkedData();
if (agentBuffer && agentBuffer->getEndOfLastWrite() != NULL) {
if (agentBuffer->getEndOfLastWrite()) {
if (!agentBuffer->isStarted()
&& agentBuffer->diffLastWriteNextOutput() <= BUFFER_LENGTH_SAMPLES_PER_CHANNEL + JITTER_BUFFER_SAMPLES) {
printf("Held back buffer for agent with ID %d.\n", agent->getAgentId());
@ -107,132 +126,131 @@ void *sendBuffer(void *args) {
int numAgents = agentList->size();
float distanceCoefficients[numAgents][numAgents];
memset(distanceCoefficients, 0, sizeof(distanceCoefficients));
for (AgentList::iterator agent = agentList->begin(); agent != agentList->end(); agent++) {
AudioRingBuffer* agentRingBuffer = (AudioRingBuffer*) agent->getLinkedData();
int16_t clientMix[BUFFER_LENGTH_SAMPLES_PER_CHANNEL * 2] = {};
if (agentRingBuffer) {
int16_t clientMix[BUFFER_LENGTH_SAMPLES_PER_CHANNEL * 2] = {};
for (AgentList::iterator otherAgent = agentList->begin(); otherAgent != agentList->end(); otherAgent++) {
if (otherAgent != agent || (otherAgent == agent && agentRingBuffer->shouldLoopbackForAgent())) {
AudioRingBuffer* otherAgentBuffer = (AudioRingBuffer*) otherAgent->getLinkedData();
for (AgentList::iterator otherAgent = agentList->begin(); otherAgent != agentList->end(); otherAgent++) {
if (otherAgent != agent || (otherAgent == agent && agentRingBuffer->shouldLoopbackForAgent())) {
AudioRingBuffer* otherAgentBuffer = (AudioRingBuffer*) otherAgent->getLinkedData();
if (otherAgentBuffer->shouldBeAddedToMix()) {
if (otherAgentBuffer->shouldBeAddedToMix()) {
float bearingRelativeAngleToSource = 0.f;
float attenuationCoefficient = 1.f;
int numSamplesDelay = 0;
float weakChannelAmplitudeRatio = 1.f;
if (otherAgent != agent) {
Position agentPosition = agentRingBuffer->getPosition();
Position otherAgentPosition = otherAgentBuffer->getPosition();
float bearingRelativeAngleToSource = 0.f;
float attenuationCoefficient = 1.f;
int numSamplesDelay = 0;
float weakChannelAmplitudeRatio = 1.f;
// calculate the distance to the other agent
if (otherAgent != agent) {
float *agentPosition = agentRingBuffer->getPosition();
float *otherAgentPosition = otherAgentBuffer->getPosition();
// use the distance to the other agent to calculate the change in volume for this frame
int lowAgentIndex = std::min(agent.getAgentIndex(), otherAgent.getAgentIndex());
int highAgentIndex = std::max(agent.getAgentIndex(), otherAgent.getAgentIndex());
if (distanceCoefficients[lowAgentIndex][highAgentIndex] == 0) {
float distanceToAgent = sqrtf(powf(agentPosition.x - otherAgentPosition.x, 2) +
powf(agentPosition.y - otherAgentPosition.y, 2) +
powf(agentPosition.z - otherAgentPosition.z, 2));
// calculate the distance to the other agent
// use the distance to the other agent to calculate the change in volume for this frame
int lowAgentIndex = std::min(agent.getAgentIndex(), otherAgent.getAgentIndex());
int highAgentIndex = std::max(agent.getAgentIndex(), otherAgent.getAgentIndex());
if (distanceCoefficients[lowAgentIndex][highAgentIndex] == 0) {
float distanceToAgent = sqrtf(powf(agentPosition[0] - otherAgentPosition[0], 2) +
powf(agentPosition[1] - otherAgentPosition[1], 2) +
powf(agentPosition[2] - otherAgentPosition[2], 2));
float minCoefficient = std::min(1.0f,
powf(0.5,
(logf(DISTANCE_RATIO * distanceToAgent) / logf(3)) - 1));
distanceCoefficients[lowAgentIndex][highAgentIndex] = minCoefficient;
}
// get the angle from the right-angle triangle
float triangleAngle = atan2f(fabsf(agentPosition[2] - otherAgentPosition[2]),
fabsf(agentPosition[0] - otherAgentPosition[0])) * (180 / M_PI);
float absoluteAngleToSource = 0;
bearingRelativeAngleToSource = 0;
// find the angle we need for calculation based on the orientation of the triangle
if (otherAgentPosition[0] > agentPosition[0]) {
if (otherAgentPosition[2] > agentPosition[2]) {
absoluteAngleToSource = -90 + triangleAngle;
} else {
absoluteAngleToSource = -90 - triangleAngle;
}
} else {
if (otherAgentPosition[2] > agentPosition[2]) {
absoluteAngleToSource = 90 - triangleAngle;
} else {
absoluteAngleToSource = 90 + triangleAngle;
}
}
bearingRelativeAngleToSource = absoluteAngleToSource - agentRingBuffer->getBearing();
if (bearingRelativeAngleToSource > 180) {
bearingRelativeAngleToSource -= 360;
} else if (bearingRelativeAngleToSource < -180) {
bearingRelativeAngleToSource += 360;
}
float angleOfDelivery = absoluteAngleToSource - otherAgentBuffer->getBearing();
if (angleOfDelivery > 180) {
angleOfDelivery -= 360;
} else if (angleOfDelivery < -180) {
angleOfDelivery += 360;
}
float offAxisCoefficient = MAX_OFF_AXIS_ATTENUATION +
(OFF_AXIS_ATTENUATION_FORMULA_STEP * (fabsf(angleOfDelivery) / 90.0f));
attenuationCoefficient = distanceCoefficients[lowAgentIndex][highAgentIndex]
* otherAgentBuffer->getAttenuationRatio()
* offAxisCoefficient;
bearingRelativeAngleToSource *= (M_PI / 180);
float sinRatio = fabsf(sinf(bearingRelativeAngleToSource));
numSamplesDelay = PHASE_DELAY_AT_90 * sinRatio;
weakChannelAmplitudeRatio = 1 - (PHASE_AMPLITUDE_RATIO_AT_90 * sinRatio);
float minCoefficient = std::min(1.0f,
powf(0.5,
(logf(DISTANCE_RATIO * distanceToAgent) / logf(3)) - 1));
distanceCoefficients[lowAgentIndex][highAgentIndex] = minCoefficient;
}
int16_t* goodChannel = bearingRelativeAngleToSource > 0.0f
? clientMix + BUFFER_LENGTH_SAMPLES_PER_CHANNEL
: clientMix;
int16_t* delayedChannel = bearingRelativeAngleToSource > 0.0f
? clientMix
: clientMix + BUFFER_LENGTH_SAMPLES_PER_CHANNEL;
int16_t* delaySamplePointer = otherAgentBuffer->getNextOutput() == otherAgentBuffer->getBuffer()
// get the angle from the right-angle triangle
float triangleAngle = atan2f(fabsf(agentPosition.z - otherAgentPosition.z),
fabsf(agentPosition.x - otherAgentPosition.x)) * (180 / M_PI);
float absoluteAngleToSource = 0;
bearingRelativeAngleToSource = 0;
// find the angle we need for calculation based on the orientation of the triangle
if (otherAgentPosition.x > agentPosition.x) {
if (otherAgentPosition.z > agentPosition.z) {
absoluteAngleToSource = -90 + triangleAngle;
} else {
absoluteAngleToSource = -90 - triangleAngle;
}
} else {
if (otherAgentPosition.z > agentPosition.z) {
absoluteAngleToSource = 90 - triangleAngle;
} else {
absoluteAngleToSource = 90 + triangleAngle;
}
}
bearingRelativeAngleToSource = absoluteAngleToSource - agentRingBuffer->getBearing();
if (bearingRelativeAngleToSource > 180) {
bearingRelativeAngleToSource -= 360;
} else if (bearingRelativeAngleToSource < -180) {
bearingRelativeAngleToSource += 360;
}
float angleOfDelivery = absoluteAngleToSource - otherAgentBuffer->getBearing();
if (angleOfDelivery > 180) {
angleOfDelivery -= 360;
} else if (angleOfDelivery < -180) {
angleOfDelivery += 360;
}
float offAxisCoefficient = MAX_OFF_AXIS_ATTENUATION +
(OFF_AXIS_ATTENUATION_FORMULA_STEP * (fabsf(angleOfDelivery) / 90.0f));
attenuationCoefficient = distanceCoefficients[lowAgentIndex][highAgentIndex]
* otherAgentBuffer->getAttenuationRatio()
* offAxisCoefficient;
bearingRelativeAngleToSource *= (M_PI / 180);
float sinRatio = fabsf(sinf(bearingRelativeAngleToSource));
numSamplesDelay = PHASE_DELAY_AT_90 * sinRatio;
weakChannelAmplitudeRatio = 1 - (PHASE_AMPLITUDE_RATIO_AT_90 * sinRatio);
}
int16_t* goodChannel = bearingRelativeAngleToSource > 0.0f
? clientMix + BUFFER_LENGTH_SAMPLES_PER_CHANNEL
: clientMix;
int16_t* delayedChannel = bearingRelativeAngleToSource > 0.0f
? clientMix
: clientMix + BUFFER_LENGTH_SAMPLES_PER_CHANNEL;
int16_t* delaySamplePointer = otherAgentBuffer->getNextOutput() == otherAgentBuffer->getBuffer()
? otherAgentBuffer->getBuffer() + RING_BUFFER_SAMPLES - numSamplesDelay
: otherAgentBuffer->getNextOutput() - numSamplesDelay;
for (int s = 0; s < BUFFER_LENGTH_SAMPLES_PER_CHANNEL; s++) {
for (int s = 0; s < BUFFER_LENGTH_SAMPLES_PER_CHANNEL; s++) {
if (s < numSamplesDelay) {
// pull the earlier sample for the delayed channel
int earlierSample = delaySamplePointer[s] * attenuationCoefficient;
plateauAdditionOfSamples(delayedChannel[s], earlierSample * weakChannelAmplitudeRatio);
}
int16_t currentSample = (otherAgentBuffer->getNextOutput()[s] * attenuationCoefficient);
plateauAdditionOfSamples(goodChannel[s], currentSample);
if (s + numSamplesDelay < BUFFER_LENGTH_SAMPLES_PER_CHANNEL) {
plateauAdditionOfSamples(delayedChannel[s + numSamplesDelay],
currentSample * weakChannelAmplitudeRatio);
}
if (s < numSamplesDelay) {
// pull the earlier sample for the delayed channel
int earlierSample = delaySamplePointer[s] * attenuationCoefficient;
plateauAdditionOfSamples(delayedChannel[s], earlierSample * weakChannelAmplitudeRatio);
}
int16_t currentSample = (otherAgentBuffer->getNextOutput()[s] * attenuationCoefficient);
plateauAdditionOfSamples(goodChannel[s], currentSample);
if (s + numSamplesDelay < BUFFER_LENGTH_SAMPLES_PER_CHANNEL) {
plateauAdditionOfSamples(delayedChannel[s + numSamplesDelay],
currentSample * weakChannelAmplitudeRatio);
}
}
}
}
agentList->getAgentSocket().send(agent->getPublicSocket(), clientMix, BUFFER_LENGTH_BYTES);
}
}
agentList->getAgentSocket().send(agent->getPublicSocket(), clientMix, BUFFER_LENGTH_BYTES);
}
// push forward the next output pointers for any audio buffers we used
for (AgentList::iterator agent = agentList->begin(); agent != agentList->end(); agent++) {
AudioRingBuffer* agentBuffer = (AudioRingBuffer*) agent->getLinkedData();
if (agentBuffer && agentBuffer->shouldBeAddedToMix()) {
@ -246,45 +264,8 @@ void *sendBuffer(void *args) {
}
}
double usecToSleep = usecTimestamp(&startTime) + (++nextFrame * BUFFER_SEND_INTERVAL_USECS) - usecTimestampNow();
if (usecToSleep > 0) {
usleep(usecToSleep);
} else {
std::cout << "Took too much time, not sleeping!\n";
}
}
pthread_exit(0);
}
void attachNewBufferToAgent(Agent *newAgent) {
if (newAgent->getLinkedData() == NULL) {
newAgent->setLinkedData(new AudioRingBuffer(RING_BUFFER_SAMPLES, BUFFER_LENGTH_SAMPLES_PER_CHANNEL));
}
}
int main(int argc, const char* argv[]) {
setvbuf(stdout, NULL, _IOLBF, 0);
AgentList* agentList = AgentList::createInstance(AGENT_TYPE_AUDIO_MIXER, MIXER_LISTEN_PORT);
ssize_t receivedBytes = 0;
agentList->linkedDataCreateCallback = attachNewBufferToAgent;
agentList->startSilentAgentRemovalThread();
agentList->startDomainServerCheckInThread();
unsigned char *packetData = new unsigned char[MAX_PACKET_SIZE];
pthread_t sendBufferThread;
pthread_create(&sendBufferThread, NULL, sendBuffer, NULL);
sockaddr *agentAddress = new sockaddr;
while (true) {
if(agentList->getAgentSocket().receive(agentAddress, packetData, &receivedBytes)) {
// pull any new audio data from agents off of the network stack
while (agentList->getAgentSocket().receive(agentAddress, packetData, &receivedBytes)) {
if (packetData[0] == PACKET_HEADER_INJECT_AUDIO) {
if (agentList->addOrUpdateAgent(agentAddress, agentAddress, packetData[0], agentList->getLastAgentID())) {
@ -294,9 +275,15 @@ int main(int argc, const char* argv[]) {
agentList->updateAgentWithData(agentAddress, packetData, receivedBytes);
}
}
double usecToSleep = usecTimestamp(&startTime) + (++nextFrame * BUFFER_SEND_INTERVAL_USECS) - usecTimestampNow();
if (usecToSleep > 0) {
usleep(usecToSleep);
} else {
std::cout << "Took too much time, not sleeping!\n";
}
}
pthread_join(sendBufferThread, NULL);
return 0;
}

View file

@ -29,7 +29,7 @@ const int ITERATIONS_BEFORE_HAND_GRAB = 100;
const int HAND_GRAB_DURATION_ITERATIONS = 50;
const int HAND_TIMER_SLEEP_ITERATIONS = 50;
const float EVE_PELVIS_HEIGHT = 0.5f;
const float EVE_PELVIS_HEIGHT = 0.565925f;
bool stopReceiveAgentDataThread;
bool injectAudioThreadRunning = false;

View file

@ -14,9 +14,9 @@ from random import random,randint
from math import sqrt, hypot, atan2, pi, fmod, degrees
from sys import argv,stderr
hemisphere_only, equator, meridians= False, 0, 1000
hemisphere_only, equator, meridians=False, 0, 1000
n_random = 100000
n_random = 50000
if len(argv) > 1:
n_random = int(argv[1])
@ -35,9 +35,9 @@ def meridian(azimuth,n,(r0,g0,b0),(r1,g1,b1)):
print "%f %f #%02x%02x%02x" % (azimuth,altitude,r,g,b)
print "%f %f #%02x%02x%02x" % (azimuth,-altitude,r,g,b)
if meridians:
meridian( 0,meridians,(255,255,255), (180, 60,255)) # N->S
meridian(90,meridians,( 80,255, 80), (255,240, 40)) # E->W
#if meridians:
#meridian( 0,meridians,(255,255,255), (180, 60,255)) # N->S
#meridian(90,meridians,( 80,255, 80), (255,240, 40)) # E->W
if equator:
azis = 360.0/equator

View file

@ -30,7 +30,7 @@ const float BODY_SPIN_FRICTION = 5.0;
const float BODY_UPRIGHT_FORCE = 10.0;
const float BODY_PITCH_WHILE_WALKING = 30.0;
const float BODY_ROLL_WHILE_TURNING = 0.1;
const float LIN_VEL_DECAY = 2.0;
const float VELOCITY_DECAY = 5.0;
const float MY_HAND_HOLDING_PULL = 0.2;
const float YOUR_HAND_HOLDING_PULL = 1.0;
const float BODY_SPRING_DEFAULT_TIGHTNESS = 1500.0f;
@ -47,6 +47,8 @@ const float HEAD_MAX_PITCH = 45;
const float HEAD_MIN_PITCH = -45;
const float HEAD_MAX_YAW = 85;
const float HEAD_MIN_YAW = -85;
const float AVATAR_BRAKING_RANGE = 1.6f;
const float AVATAR_BRAKING_STRENGTH = 30.0f;
float skinColor [] = {1.0, 0.84, 0.66};
float lightBlue [] = {0.7, 0.8, 1.0};
@ -264,21 +266,15 @@ void Avatar::reset() {
// Update avatar head rotation with sensor data
void Avatar::updateHeadFromGyros(float frametime, SerialInterface* serialInterface, glm::vec3* gravity) {
void Avatar::updateHeadFromGyros(float deltaTime, SerialInterface* serialInterface, glm::vec3* gravity) {
float measuredPitchRate = 0.0f;
float measuredRollRate = 0.0f;
float measuredYawRate = 0.0f;
if (serialInterface->active && USING_INVENSENSE_MPU9150) {
measuredPitchRate = serialInterface->getLastPitchRate();
measuredYawRate = serialInterface->getLastYawRate();
measuredRollRate = serialInterface->getLastRollRate();
} else {
measuredPitchRate = serialInterface->getRelativeValue(HEAD_PITCH_RATE);
measuredYawRate = serialInterface->getRelativeValue(HEAD_YAW_RATE);
measuredRollRate = serialInterface->getRelativeValue(HEAD_ROLL_RATE);
}
measuredPitchRate = serialInterface->getLastPitchRate();
measuredYawRate = serialInterface->getLastYawRate();
measuredRollRate = serialInterface->getLastRollRate();
// Update avatar head position based on measured gyro rates
const float MAX_PITCH = 45;
const float MIN_PITCH = -45;
@ -287,19 +283,44 @@ void Avatar::updateHeadFromGyros(float frametime, SerialInterface* serialInterfa
const float MAX_ROLL = 50;
const float MIN_ROLL = -50;
addHeadPitch(measuredPitchRate * frametime);
addHeadYaw(measuredYawRate * frametime);
addHeadRoll(measuredRollRate * frametime);
addHeadPitch(measuredPitchRate * deltaTime);
addHeadYaw(measuredYawRate * deltaTime);
addHeadRoll(measuredRollRate * deltaTime);
setHeadPitch(glm::clamp(getHeadPitch(), MIN_PITCH, MAX_PITCH));
setHeadYaw(glm::clamp(getHeadYaw(), MIN_YAW, MAX_YAW));
setHeadRoll(glm::clamp(getHeadRoll(), MIN_ROLL, MAX_ROLL));
// Update head lean distance based on accelerometer data
const float LEAN_SENSITIVITY = 0.15;
const float LEAN_MAX = 0.45;
const float LEAN_AVERAGING = 10.0;
glm::vec3 headRotationRates(getHeadPitch(), getHeadYaw(), getHeadRoll());
float headRateMax = 50.f;
glm::vec3 leaning = (serialInterface->getLastAcceleration() - serialInterface->getGravity())
* LEAN_SENSITIVITY
* (1.f - fminf(glm::length(headRotationRates), headRateMax) / headRateMax);
leaning.y = 0.f;
if (glm::length(leaning) < LEAN_MAX) {
_head.leanForward = _head.leanForward * (1.f - LEAN_AVERAGING * deltaTime) +
(LEAN_AVERAGING * deltaTime) * leaning.z * LEAN_SENSITIVITY;
_head.leanSideways = _head.leanSideways * (1.f - LEAN_AVERAGING * deltaTime) +
(LEAN_AVERAGING * deltaTime) * leaning.x * LEAN_SENSITIVITY;
}
setHeadLeanSideways(_head.leanSideways);
setHeadLeanForward(_head.leanForward);
}
float Avatar::getAbsoluteHeadYaw() const {
return _bodyYaw + _headYaw;
}
float Avatar::getAbsoluteHeadPitch() const {
return _bodyPitch + _headPitch;
}
void Avatar::addLean(float x, float z) {
//Add lean as impulse
_head.leanSideways += x;
@ -327,6 +348,8 @@ void Avatar::simulate(float deltaTime) {
// update balls
if (_balls) { _balls->simulate(deltaTime); }
// if other avatar, update head position from network data
// update avatar skeleton
updateSkeleton();
@ -403,23 +426,33 @@ void Avatar::simulate(float deltaTime) {
if (tiltDecay < 0.0f) {tiltDecay = 0.0f;}
_bodyPitch *= tiltDecay;
_bodyRoll *= tiltDecay;
//the following will be used to make the avatar upright no matter what gravity is
//float f = angleBetween(_orientation.getUp(), _gravity);
// update position by velocity
_position += _velocity * deltaTime;
// decay velocity
_velocity *= (1.0 - LIN_VEL_DECAY * deltaTime);
// If someone is near, damp velocity as a function of closeness
const float AVATAR_BRAKING_RANGE = 1.6f;
const float AVATAR_BRAKING_STRENGTH = 35.f;
if (_isMine && (_distanceToNearestAvatar < AVATAR_BRAKING_RANGE)) {
_velocity *=
(1.f - deltaTime * AVATAR_BRAKING_STRENGTH *
(AVATAR_BRAKING_RANGE - _distanceToNearestAvatar));
float decay = 1.0 - VELOCITY_DECAY * deltaTime;
if ( decay < 0.0 ) {
_velocity = glm::vec3( 0.0f, 0.0f, 0.0f );
} else {
_velocity *= decay;
}
// update head information
// If another avatar is near, dampen velocity as a function of closeness
if (_isMine && (_distanceToNearestAvatar < AVATAR_BRAKING_RANGE)) {
float closeness = 1.0f - (_distanceToNearestAvatar / AVATAR_BRAKING_RANGE);
float drag = 1.0f - closeness * AVATAR_BRAKING_STRENGTH * deltaTime;
if ( drag > 0.0f ) {
_velocity *= drag;
} else {
_velocity = glm::vec3( 0.0f, 0.0f, 0.0f );
}
}
// update head state
updateHead(deltaTime);
// use speed and angular velocity to determine walking vs. standing
@ -454,13 +487,10 @@ void Avatar::updateHandMovementAndTouching(float deltaTime) {
if (agent->getLinkedData() != NULL && agent->getType() == AGENT_TYPE_AVATAR) {
Avatar *otherAvatar = (Avatar *)agent->getLinkedData();
/*
// Test: Show angle between your fwd vector and nearest avatar
glm::vec3 vectorBetweenUs = otherAvatar->getJointPosition(AVATAR_JOINT_PELVIS) -
getJointPosition(AVATAR_JOINT_PELVIS);
glm::vec3 myForwardVector = _orientation.getFront();
printLog("Angle between: %f\n", angleBetween(&vectorBetweenUs, &myForwardVector));
*/
//Test: Show angle between your fwd vector and nearest avatar
//glm::vec3 vectorBetweenUs = otherAvatar->getJointPosition(AVATAR_JOINT_PELVIS) -
// getJointPosition(AVATAR_JOINT_PELVIS);
//printLog("Angle between: %f\n", angleBetween(vectorBetweenUs, _orientation.getFront()));
// test whether shoulders are close enough to allow for reaching to touch hands
glm::vec3 v(_position - otherAvatar->_position);
@ -474,46 +504,105 @@ void Avatar::updateHandMovementAndTouching(float deltaTime) {
if (_interactingOther) {
_avatarTouch.setYourBodyPosition(_interactingOther->_position);
_avatarTouch.setYourHandPosition(_joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].springyPosition);
_avatarTouch.setYourHandPosition(_interactingOther->_joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].springyPosition);
_avatarTouch.setYourHandState (_interactingOther->_handState);
//if hand-holding is initiated by either avatar, turn on hand-holding...
if (_avatarTouch.getHandsCloseEnoughToGrasp()) {
if ((_handState == HAND_STATE_GRASPING ) || (_interactingOther->_handState == HAND_STATE_GRASPING)) {
if (!_avatarTouch.getHoldingHands())
{
_avatarTouch.setHoldingHands(true);
}
}
}
if (!_avatarTouch.getAbleToReachOtherAvatar()) {
_avatarTouch.setHoldingHands(false);
}
if ((_handState != HAND_STATE_GRASPING ) && (_interactingOther->_handState != HAND_STATE_GRASPING)) {
_avatarTouch.setHoldingHands(false);
}
}
//if holding hands, apply the appropriate forces
if (_avatarTouch.getHoldingHands()) {
glm::vec3 vectorToOtherHand = _interactingOther->_joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].springyPosition - _handHoldingPosition;
glm::vec3 vectorToMyHand = _joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position - _handHoldingPosition;
float myInfluence = 30.0f;
float yourInfluence = 30.0f;
glm::vec3 myForce = vectorToMyHand * myInfluence * deltaTime;
glm::vec3 yourForce = vectorToOtherHand * yourInfluence * deltaTime;
if (_handState == HAND_STATE_GRASPING) {myForce *= 2.0f; }
if (_interactingOther->_handState == HAND_STATE_GRASPING) {yourForce *= 2.0f; }
_handHoldingPosition += myForce + yourForce;
_joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position = _handHoldingPosition;
} else {
_handHoldingPosition = _joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position;
}
}//if (_isMine)
//constrain right arm length and re-adjust elbow position as it bends
// NOTE - the following must be called on all avatars - not just _isMine
updateArmIKAndConstraints(deltaTime);
//Set right hand position and state to be transmitted, and also tell AvatarTouch about it
if (_isMine) {
//Set the vector we send for hand position to other people to be our right hand
setHandPosition(_joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position);
if (_mousePressed) {
_handState = 1;
_handState = HAND_STATE_GRASPING;
} else {
_handState = 0;
_handState = HAND_STATE_NULL;
}
_avatarTouch.setMyHandState(_handState);
if (_handState == 1) {
_avatarTouch.setMyHandPosition(_joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].springyPosition);
}
_avatarTouch.setMyHandPosition(_joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].springyPosition);
}
}
void Avatar::updateHead(float deltaTime) {
// Get head position data from network for other people
if (!_isMine) {
_head.leanSideways = getHeadLeanSideways();
_head.leanForward = getHeadLeanForward();
}
//apply the head lean values to the springy position...
if (fabs(_head.leanSideways + _head.leanForward) > 0.0f) {
glm::vec3 headLean =
_orientation.getRight() * _head.leanSideways +
_orientation.getFront() * _head.leanForward;
_joint[ AVATAR_JOINT_HEAD_BASE ].springyPosition += headLean;
// this is not a long-term solution, but it works ok for initial purposes of making the avatar lean
_joint[ AVATAR_JOINT_TORSO ].springyPosition += headLean * 0.1f;
_joint[ AVATAR_JOINT_CHEST ].springyPosition += headLean * 0.4f;
_joint[ AVATAR_JOINT_NECK_BASE ].springyPosition += headLean * 0.7f;
_joint[ AVATAR_JOINT_HEAD_BASE ].springyPosition += headLean * 1.0f;
_joint[ AVATAR_JOINT_LEFT_COLLAR ].springyPosition += headLean * 0.6f;
_joint[ AVATAR_JOINT_LEFT_SHOULDER ].springyPosition += headLean * 0.6f;
_joint[ AVATAR_JOINT_LEFT_ELBOW ].springyPosition += headLean * 0.2f;
_joint[ AVATAR_JOINT_LEFT_WRIST ].springyPosition += headLean * 0.1f;
_joint[ AVATAR_JOINT_LEFT_FINGERTIPS ].springyPosition += headLean * 0.0f;
_joint[ AVATAR_JOINT_RIGHT_COLLAR ].springyPosition += headLean * 0.6f;
_joint[ AVATAR_JOINT_RIGHT_SHOULDER ].springyPosition += headLean * 0.6f;
_joint[ AVATAR_JOINT_RIGHT_ELBOW ].springyPosition += headLean * 0.2f;
_joint[ AVATAR_JOINT_RIGHT_WRIST ].springyPosition += headLean * 0.1f;
_joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].springyPosition += headLean * 0.0f;
}
// Decay head back to center if turned on
if (_returnHeadToCenter) {
if (_isMine && _returnHeadToCenter) {
// Decay back toward center
_headPitch *= (1.0f - DECAY * _head.returnSpringScale * 2 * deltaTime);
_headYaw *= (1.0f - DECAY * _head.returnSpringScale * 2 * deltaTime);
@ -521,15 +610,14 @@ void Avatar::updateHead(float deltaTime) {
}
// For invensense gyro, decay only slightly when roughly centered
if (USING_INVENSENSE_MPU9150) {
const float RETURN_RANGE = 5.0;
const float RETURN_STRENGTH = 1.0;
if (_isMine) {
const float RETURN_RANGE = 15.0;
const float RETURN_STRENGTH = 2.0;
if (fabs(_headPitch) < RETURN_RANGE) { _headPitch *= (1.0f - RETURN_STRENGTH * deltaTime); }
if (fabs(_headYaw) < RETURN_RANGE) { _headYaw *= (1.0f - RETURN_STRENGTH * deltaTime); }
if (fabs(_headRoll) < RETURN_RANGE) { _headRoll *= (1.0f - RETURN_STRENGTH * deltaTime); }
}
if (_head.noise) {
// Move toward new target
_headPitch += (_head.pitchTarget - _headPitch) * 10 * deltaTime; // (1.f - DECAY*deltaTime)*Pitch + ;
@ -618,9 +706,6 @@ void Avatar::updateHead(float deltaTime) {
}
float Avatar::getHeight() {
return _height;
}
@ -1083,54 +1168,62 @@ void Avatar::initializeSkeleton() {
_joint[ AVATAR_JOINT_RIGHT_TOES ].parent = AVATAR_JOINT_RIGHT_HEEL;
// specify the default pose position
_joint[ AVATAR_JOINT_PELVIS ].defaultPosePosition = glm::vec3( 0.0, 0.0, 0.0 );
_joint[ AVATAR_JOINT_TORSO ].defaultPosePosition = glm::vec3( 0.0, 0.08, 0.01 );
_joint[ AVATAR_JOINT_CHEST ].defaultPosePosition = glm::vec3( 0.0, 0.09, 0.0 );
_joint[ AVATAR_JOINT_NECK_BASE ].defaultPosePosition = glm::vec3( 0.0, 0.1, -0.01 );
_joint[ AVATAR_JOINT_HEAD_BASE ].defaultPosePosition = glm::vec3( 0.0, 0.08, 0.01 );
_joint[ AVATAR_JOINT_PELVIS ].defaultPosePosition = glm::vec3( 0.0, 0.0, 0.0 );
_joint[ AVATAR_JOINT_TORSO ].defaultPosePosition = glm::vec3( 0.0, 0.09, 0.01 );
_joint[ AVATAR_JOINT_CHEST ].defaultPosePosition = glm::vec3( 0.0, 0.09, 0.01 );
_joint[ AVATAR_JOINT_NECK_BASE ].defaultPosePosition = glm::vec3( 0.0, 0.12, -0.01 );
_joint[ AVATAR_JOINT_HEAD_BASE ].defaultPosePosition = glm::vec3( 0.0, 0.08, 0.00 );
_joint[ AVATAR_JOINT_LEFT_COLLAR ].defaultPosePosition = glm::vec3( -0.06, 0.04, -0.01 );
_joint[ AVATAR_JOINT_LEFT_SHOULDER ].defaultPosePosition = glm::vec3( -0.03, 0.0, -0.01 );
_joint[ AVATAR_JOINT_LEFT_ELBOW ].defaultPosePosition = glm::vec3( 0.0, -0.13, 0.0 );
_joint[ AVATAR_JOINT_LEFT_WRIST ].defaultPosePosition = glm::vec3( 0.0, -0.11, 0.0 );
_joint[ AVATAR_JOINT_LEFT_FINGERTIPS ].defaultPosePosition = glm::vec3( 0.0, -0.07, 0.0 );
_joint[ AVATAR_JOINT_LEFT_SHOULDER ].defaultPosePosition = glm::vec3( -0.05, 0.0, -0.01 );
_joint[ AVATAR_JOINT_LEFT_ELBOW ].defaultPosePosition = glm::vec3( 0.0, -0.16, 0.0 );
_joint[ AVATAR_JOINT_LEFT_WRIST ].defaultPosePosition = glm::vec3( 0.0, -0.117, 0.0 );
_joint[ AVATAR_JOINT_LEFT_FINGERTIPS ].defaultPosePosition = glm::vec3( 0.0, -0.1, 0.0 );
_joint[ AVATAR_JOINT_RIGHT_COLLAR ].defaultPosePosition = glm::vec3( 0.06, 0.04, -0.01 );
_joint[ AVATAR_JOINT_RIGHT_SHOULDER ].defaultPosePosition = glm::vec3( 0.03, 0.0, -0.01 );
_joint[ AVATAR_JOINT_RIGHT_ELBOW ].defaultPosePosition = glm::vec3( 0.0, -0.13, 0.0 );
_joint[ AVATAR_JOINT_RIGHT_WRIST ].defaultPosePosition = glm::vec3( 0.0, -0.11, 0.0 );
_joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].defaultPosePosition = glm::vec3( 0.0, -0.07, 0.0 );
_joint[ AVATAR_JOINT_LEFT_HIP ].defaultPosePosition = glm::vec3( -0.04, 0.0, -0.02 );
_joint[ AVATAR_JOINT_LEFT_KNEE ].defaultPosePosition = glm::vec3( 0.0, -0.22, 0.02 );
_joint[ AVATAR_JOINT_LEFT_HEEL ].defaultPosePosition = glm::vec3( 0.0, -0.22, -0.01 );
_joint[ AVATAR_JOINT_RIGHT_SHOULDER ].defaultPosePosition = glm::vec3( 0.05, 0.0, -0.01 );
_joint[ AVATAR_JOINT_RIGHT_ELBOW ].defaultPosePosition = glm::vec3( 0.0, -0.16, 0.0 );
_joint[ AVATAR_JOINT_RIGHT_WRIST ].defaultPosePosition = glm::vec3( 0.0, -0.117, 0.0 );
_joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].defaultPosePosition = glm::vec3( 0.0, -0.1, 0.0 );
_joint[ AVATAR_JOINT_LEFT_HIP ].defaultPosePosition = glm::vec3( -0.05, 0.0, -0.02 );
_joint[ AVATAR_JOINT_LEFT_KNEE ].defaultPosePosition = glm::vec3( 0.0, -0.27, 0.02 );
_joint[ AVATAR_JOINT_LEFT_HEEL ].defaultPosePosition = glm::vec3( 0.0, -0.27, -0.01 );
_joint[ AVATAR_JOINT_LEFT_TOES ].defaultPosePosition = glm::vec3( 0.0, 0.0, 0.05 );
_joint[ AVATAR_JOINT_RIGHT_HIP ].defaultPosePosition = glm::vec3( 0.04, 0.0, -0.02 );
_joint[ AVATAR_JOINT_RIGHT_KNEE ].defaultPosePosition = glm::vec3( 0.0, -0.22, 0.02 );
_joint[ AVATAR_JOINT_RIGHT_HEEL ].defaultPosePosition = glm::vec3( 0.0, -0.22, -0.01 );
_joint[ AVATAR_JOINT_RIGHT_HIP ].defaultPosePosition = glm::vec3( 0.05, 0.0, -0.02 );
_joint[ AVATAR_JOINT_RIGHT_KNEE ].defaultPosePosition = glm::vec3( 0.0, -0.27, 0.02 );
_joint[ AVATAR_JOINT_RIGHT_HEEL ].defaultPosePosition = glm::vec3( 0.0, -0.27, -0.01 );
_joint[ AVATAR_JOINT_RIGHT_TOES ].defaultPosePosition = glm::vec3( 0.0, 0.0, 0.05 );
// specify the radii of the bone positions
_joint[ AVATAR_JOINT_PELVIS ].radius = 0.06;
_joint[ AVATAR_JOINT_TORSO ].radius = 0.055;
_joint[ AVATAR_JOINT_CHEST ].radius = 0.075;
// specify the radii of the joints
_joint[ AVATAR_JOINT_PELVIS ].radius = 0.07;
_joint[ AVATAR_JOINT_TORSO ].radius = 0.065;
_joint[ AVATAR_JOINT_CHEST ].radius = 0.08;
_joint[ AVATAR_JOINT_NECK_BASE ].radius = 0.03;
_joint[ AVATAR_JOINT_HEAD_BASE ].radius = 0.07;
_joint[ AVATAR_JOINT_LEFT_COLLAR ].radius = 0.029;
_joint[ AVATAR_JOINT_LEFT_SHOULDER ].radius = 0.023;
_joint[ AVATAR_JOINT_LEFT_ELBOW ].radius = 0.017;
_joint[ AVATAR_JOINT_LEFT_WRIST ].radius = 0.017;
_joint[ AVATAR_JOINT_LEFT_COLLAR ].radius = 0.04;
_joint[ AVATAR_JOINT_LEFT_SHOULDER ].radius = 0.03;
_joint[ AVATAR_JOINT_LEFT_ELBOW ].radius = 0.02;
_joint[ AVATAR_JOINT_LEFT_WRIST ].radius = 0.02;
_joint[ AVATAR_JOINT_LEFT_FINGERTIPS ].radius = 0.01;
_joint[ AVATAR_JOINT_RIGHT_COLLAR ].radius = 0.029;
_joint[ AVATAR_JOINT_RIGHT_SHOULDER ].radius = 0.023;
_joint[ AVATAR_JOINT_RIGHT_ELBOW ].radius = 0.015;
_joint[ AVATAR_JOINT_RIGHT_WRIST ].radius = 0.015;
_joint[ AVATAR_JOINT_RIGHT_COLLAR ].radius = 0.04;
_joint[ AVATAR_JOINT_RIGHT_SHOULDER ].radius = 0.03;
_joint[ AVATAR_JOINT_RIGHT_ELBOW ].radius = 0.02;
_joint[ AVATAR_JOINT_RIGHT_WRIST ].radius = 0.02;
_joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].radius = 0.01;
_joint[ AVATAR_JOINT_LEFT_HIP ].radius = 0.03;
_joint[ AVATAR_JOINT_LEFT_KNEE ].radius = 0.02;
_joint[ AVATAR_JOINT_LEFT_HEEL ].radius = 0.015;
_joint[ AVATAR_JOINT_LEFT_TOES ].radius = 0.02;
_joint[ AVATAR_JOINT_RIGHT_HIP ].radius = 0.03;
_joint[ AVATAR_JOINT_RIGHT_KNEE ].radius = 0.02;
_joint[ AVATAR_JOINT_RIGHT_HEEL ].radius = 0.015;
_joint[ AVATAR_JOINT_RIGHT_TOES ].radius = 0.02;
_joint[ AVATAR_JOINT_LEFT_HIP ].radius = 0.04;
_joint[ AVATAR_JOINT_LEFT_KNEE ].radius = 0.025;
_joint[ AVATAR_JOINT_LEFT_HEEL ].radius = 0.025;
_joint[ AVATAR_JOINT_LEFT_TOES ].radius = 0.027;
_joint[ AVATAR_JOINT_RIGHT_HIP ].radius = 0.04;
_joint[ AVATAR_JOINT_RIGHT_KNEE ].radius = 0.025;
_joint[ AVATAR_JOINT_RIGHT_HEEL ].radius = 0.025;
_joint[ AVATAR_JOINT_RIGHT_TOES ].radius = 0.027;
// specify the tightness of the springy positions as far as attraction to rigid body
_joint[ AVATAR_JOINT_PELVIS ].springBodyTightness = BODY_SPRING_DEFAULT_TIGHTNESS * 1.0;
@ -1169,6 +1262,7 @@ void Avatar::initializeSkeleton() {
_joint[ AVATAR_JOINT_LEFT_HEEL ].radius +
_joint[ AVATAR_JOINT_LEFT_HEEL ].length +
_joint[ AVATAR_JOINT_LEFT_KNEE ].length;
printf("_pelvisStandingHeight = %f\n", _pelvisStandingHeight);
_height =
(
@ -1183,11 +1277,11 @@ void Avatar::initializeSkeleton() {
_joint[ AVATAR_JOINT_HEAD_BASE ].length +
_joint[ AVATAR_JOINT_HEAD_BASE ].radius
);
//printf("_height = %f\n", _height);
printf("_height = %f\n", _height);
// generate world positions
// generate joint positions by updating the skeleton
updateSkeleton();
//set spring positions to be in the skeleton bone positions
initializeBodySprings();
}

View file

@ -98,6 +98,7 @@ public:
bool getIsNearInteractingOther();
float getAbsoluteHeadYaw() const;
float getAbsoluteHeadPitch() const;
void setLeanForward(float dist);
void setLeanSideways(float dist);
void addLean(float x, float z);

View file

@ -13,16 +13,19 @@
#include "Util.h"
const float THREAD_RADIUS = 0.012;
const float HANDS_CLOSE_ENOUGH_TO_GRASP = 0.1;
AvatarTouch::AvatarTouch() {
_myHandPosition = glm::vec3(0.0f, 0.0f, 0.0f);
_yourHandPosition = glm::vec3(0.0f, 0.0f, 0.0f);
_myBodyPosition = glm::vec3(0.0f, 0.0f, 0.0f);
_yourBodyPosition = glm::vec3(0.0f, 0.0f, 0.0f);
_myHandState = 0;
_yourHandState = 0;
_reachableRadius = 0.0f;
_myHandPosition = glm::vec3(0.0f, 0.0f, 0.0f);
_yourHandPosition = glm::vec3(0.0f, 0.0f, 0.0f);
_myBodyPosition = glm::vec3(0.0f, 0.0f, 0.0f);
_yourBodyPosition = glm::vec3(0.0f, 0.0f, 0.0f);
_vectorBetweenHands = glm::vec3(0.0f, 0.0f, 0.0f);
_myHandState = HAND_STATE_NULL;
_yourHandState = HAND_STATE_NULL;
_reachableRadius = 0.0f;
_weAreHoldingHands = false;
_canReachToOtherAvatar = false;
_handsCloseEnoughToGrasp = false;
@ -61,17 +64,62 @@ void AvatarTouch::setReachableRadius(float r) {
}
void AvatarTouch::simulate (float deltaTime) {
glm::vec3 vectorBetweenBodies = _yourBodyPosition - _myBodyPosition;
float distanceBetweenBodies = glm::length(vectorBetweenBodies);
if (distanceBetweenBodies < _reachableRadius) {
_vectorBetweenHands = _yourHandPosition - _myHandPosition;
float distanceBetweenHands = glm::length(_vectorBetweenHands);
if (distanceBetweenHands < HANDS_CLOSE_ENOUGH_TO_GRASP) {
_handsCloseEnoughToGrasp = true;
} else {
_handsCloseEnoughToGrasp = false;
}
_canReachToOtherAvatar = true;
} else {
_canReachToOtherAvatar = false;
}
}
void AvatarTouch::render(glm::vec3 cameraPosition) {
if (_canReachToOtherAvatar) {
//show circle indicating that we can reach out to each other...
glColor4f(0.3, 0.4, 0.5, 0.5);
glm::vec3 p(_yourBodyPosition);
p.y = 0.0005f;
renderCircle(p, _reachableRadius, glm::vec3(0.0f, 1.0f, 0.0f), 30);
// show is we are golding hands...
if (_weAreHoldingHands) {
glColor4f(0.9, 0.3, 0.3, 0.5);
renderSphereOutline(_myHandPosition, HANDS_CLOSE_ENOUGH_TO_GRASP * 0.3f, 20, cameraPosition);
renderSphereOutline(_myHandPosition, HANDS_CLOSE_ENOUGH_TO_GRASP * 0.2f, 20, cameraPosition);
renderSphereOutline(_myHandPosition, HANDS_CLOSE_ENOUGH_TO_GRASP * 0.1f, 20, cameraPosition);
renderSphereOutline(_yourHandPosition, HANDS_CLOSE_ENOUGH_TO_GRASP * 0.3f, 20, cameraPosition);
renderSphereOutline(_yourHandPosition, HANDS_CLOSE_ENOUGH_TO_GRASP * 0.2f, 20, cameraPosition);
renderSphereOutline(_yourHandPosition, HANDS_CLOSE_ENOUGH_TO_GRASP * 0.1f, 20, cameraPosition);
}
//render the beam between our hands indicting that we can reach out and grasp hands...
renderBeamBetweenHands();
//show that our hands are close enough to grasp..
if (_handsCloseEnoughToGrasp) {
glColor4f(0.9, 0.3, 0.3, 0.5);
renderSphereOutline(_myHandPosition, HANDS_CLOSE_ENOUGH_TO_GRASP / 3.0f, 20, cameraPosition);
}
// if your hand is grasping, show it...
if (_yourHandState == 1) {
if (_yourHandState == HAND_STATE_GRASPING) {
glPushMatrix();
glTranslatef(_yourHandPosition.x, _yourHandPosition.y, _yourHandPosition.z);
glColor4f(1.0, 1.0, 0.8, 0.3); glutSolidSphere(0.020f, 10.0f, 10.0f);
@ -79,31 +127,10 @@ void AvatarTouch::render(glm::vec3 cameraPosition) {
glColor4f(1.0, 1.0, 0.2, 0.1); glutSolidSphere(0.030f, 10.0f, 10.0f);
glPopMatrix();
}
//show beam
glm::vec3 v1(_myHandPosition);
glm::vec3 v2(_yourHandPosition);
if (_handsCloseEnoughToGrasp) {
glLineWidth(2.0);
glColor4f(0.7f, 0.4f, 0.1f, 0.3);
glBegin(GL_LINE_STRIP);
glVertex3f(v1.x, v1.y, v1.z);
glVertex3f(v2.x, v2.y, v2.z);
glEnd();
glColor4f(1.0f, 1.0f, 0.0f, 0.8);
for (int p=0; p<NUM_POINTS; p++) {
glBegin(GL_POINTS);
glVertex3f(_point[p].x, _point[p].y, _point[p].z);
glEnd();
}
}
}
}
// if my hand is grasping, show it...
if (_myHandState == 1) {
if (_myHandState == HAND_STATE_GRASPING) {
glPushMatrix();
glTranslatef(_myHandPosition.x, _myHandPosition.y, _myHandPosition.z);
glColor4f(1.0, 1.0, 0.8, 0.3); glutSolidSphere(0.020f, 10.0f, 10.0f);
@ -114,26 +141,32 @@ void AvatarTouch::render(glm::vec3 cameraPosition) {
}
void AvatarTouch::simulate (float deltaTime) {
void AvatarTouch::renderBeamBetweenHands() {
glm::vec3 v = _yourBodyPosition - _myBodyPosition;
glm::vec3 v1(_myHandPosition);
glm::vec3 v2(_yourHandPosition);
float distance = glm::length(v);
if (distance < _reachableRadius) {
_canReachToOtherAvatar = true;
} else {
_canReachToOtherAvatar = false;
}
/*
glLineWidth(2.0);
glColor4f(0.9f, 0.9f, 0.1f, 0.7);
glBegin(GL_LINE_STRIP);
glVertex3f(v1.x, v1.y, v1.z);
glVertex3f(v2.x, v2.y, v2.z);
glEnd();
glColor3f(1.0f, 1.0f, 1.0f);
for (int p=0; p<NUM_POINTS; p++) {
_point[p] = _myHandPosition + v * ((float)p / (float)NUM_POINTS);
_point[p] = _myHandPosition + _vectorBetweenHands * ((float)p / (float)NUM_POINTS);
_point[p].x += randFloatInRange(-THREAD_RADIUS, THREAD_RADIUS);
_point[p].y += randFloatInRange(-THREAD_RADIUS, THREAD_RADIUS);
_point[p].z += randFloatInRange(-THREAD_RADIUS, THREAD_RADIUS);
}
*/
}
glBegin(GL_POINTS);
glVertex3f(_point[p].x, _point[p].y, _point[p].z);
glEnd();
}
}

View file

@ -11,7 +11,14 @@
#include <glm/glm.hpp>
const float HANDS_CLOSE_ENOUGH_TO_GRASP = 0.1;
enum AvatarHandState
{
HAND_STATE_NULL = -1,
HAND_STATE_OPEN,
HAND_STATE_GRASPING,
HAND_STATE_POINTING,
NUM_HAND_STATES
};
class AvatarTouch {
public:
@ -28,26 +35,33 @@ public:
void setMyHandState (int state);
void setYourHandState (int state);
void setReachableRadius (float r);
void setAbleToReachOtherAvatar (bool a) {_canReachToOtherAvatar = a;}
void setHandsCloseEnoughToGrasp(bool h) {_handsCloseEnoughToGrasp = h;}
void setHoldingHands (bool h) {_weAreHoldingHands = h;}
bool getAbleToReachOtherAvatar () const {return _canReachToOtherAvatar;}
bool getAbleToReachOtherAvatar () const {return _canReachToOtherAvatar; }
bool getHandsCloseEnoughToGrasp() const {return _handsCloseEnoughToGrasp;}
bool getHoldingHands () const {return _weAreHoldingHands; }
private:
static const int NUM_POINTS = 100;
bool _weAreHoldingHands;
glm::vec3 _point [NUM_POINTS];
glm::vec3 _myBodyPosition;
glm::vec3 _yourBodyPosition;
glm::vec3 _myHandPosition;
glm::vec3 _yourHandPosition;
glm::vec3 _vectorBetweenHands;
int _myHandState;
int _yourHandState;
bool _canReachToOtherAvatar;
bool _handsCloseEnoughToGrasp;
float _reachableRadius;
void renderBeamBetweenHands();
};
#endif

View file

@ -13,23 +13,25 @@
Camera::Camera() {
_frustumNeedsReshape = false;
_mode = CAMERA_MODE_THIRD_PERSON;
_tightness = 10.0; // default
_fieldOfView = 60.0; // default
_nearClip = 0.08; // default
_farClip = 50.0 * TREE_SCALE; // default
_modeShift = 0.0;
_yaw = 0.0;
_pitch = 0.0;
_roll = 0.0;
_upShift = 0.0;
_rightShift = 0.0;
_distance = 0.0;
_idealYaw = 0.0;
_targetPosition = glm::vec3(0.0, 0.0, 0.0);
_position = glm::vec3(0.0, 0.0, 0.0);
_idealPosition = glm::vec3(0.0, 0.0, 0.0);
_orientation.setToIdentity();
_mode = CAMERA_MODE_THIRD_PERSON;
_tightness = 10.0; // default
_fieldOfView = 60.0; // default
_nearClip = 0.08; // default
_farClip = 50.0 * TREE_SCALE; // default
_modeShift = 0.0;
_yaw = 0.0;
_pitch = 0.0;
_roll = 0.0;
_upShift = 0.0;
_rightShift = 0.0;
_distance = 0.0;
_idealYaw = 0.0;
_idealPitch = 0.0;
_idealRoll = 0.0;
_targetPosition = glm::vec3(0.0, 0.0, 0.0);
_position = glm::vec3(0.0, 0.0, 0.0);
_idealPosition = glm::vec3(0.0, 0.0, 0.0);
_orientation.setToIdentity();
}
@ -38,7 +40,7 @@ void Camera::update(float deltaTime) {
if (_mode == CAMERA_MODE_NULL) {
_modeShift = 0.0;
} else {
// use iterative forces to keep the camera at the desired position and angle
// use iterative forces to push the camera towards the desired position and angle
updateFollowMode(deltaTime);
if (_modeShift < 1.0f) {
@ -70,8 +72,13 @@ void Camera::updateFollowMode(float deltaTime) {
}
// update _yaw (before position!)
_yaw += (_idealYaw - _yaw) * t;
_orientation.yaw(_yaw);
_yaw += (_idealYaw - _yaw ) * t;
_pitch += (_idealPitch - _pitch) * t;
_roll += (_idealRoll - _roll ) * t;
_orientation.yaw (_yaw );
_orientation.pitch(_pitch);
_orientation.roll (_roll );
float radian = (_yaw / 180.0) * PIE;
@ -91,6 +98,12 @@ void Camera::setMode(CameraMode m) {
_modeShift = 0.0f;
}
void Camera::setTargetRotation( float yaw, float pitch, float roll ) {
_idealYaw = yaw;
_idealPitch = pitch;
_idealRoll = roll;
}
void Camera::setFieldOfView(float f) {
_fieldOfView = f;
_frustumNeedsReshape = true;

View file

@ -16,7 +16,7 @@ enum CameraMode
CAMERA_MODE_NULL = -1,
CAMERA_MODE_THIRD_PERSON,
CAMERA_MODE_FIRST_PERSON,
CAMERA_MODE_MY_OWN_FACE,
CAMERA_MODE_MIRROR,
NUM_CAMERA_MODES
};
@ -39,6 +39,7 @@ public:
void setTargetYaw ( float y ) { _idealYaw = y; }
void setPosition ( glm::vec3 p ) { _position = p; }
void setTightness ( float t ) { _tightness = t; }
void setTargetRotation( float yaw, float pitch, float roll );
void setMode ( CameraMode m );
void setFieldOfView ( float f );
@ -78,6 +79,8 @@ private:
float _upShift;
float _rightShift;
float _idealYaw;
float _idealPitch;
float _idealRoll;
float _distance;
float _tightness;
Orientation _orientation;

View file

@ -29,7 +29,7 @@ int serialBufferPos = 0;
const int ZERO_OFFSET = 2048;
const short NO_READ_MAXIMUM_MSECS = 3000;
const short SAMPLES_TO_DISCARD = 100; // Throw out the first few samples
const int GRAVITY_SAMPLES = 200; // Use the first samples to compute gravity vector
const int GRAVITY_SAMPLES = 60; // Use the first samples to compute gravity vector
const bool USING_INVENSENSE_MPU9150 = 1;
@ -131,42 +131,11 @@ void SerialInterface::initializePort(char* portname, int baud) {
#endif
}
// Reset Trailing averages to the current measurement
void SerialInterface::resetTrailingAverages() {
for (int i = 1; i < NUM_CHANNELS; i++) trailingAverage[i] = lastMeasured[i];
}
// Render the serial interface channel values onscreen as vertical lines
void SerialInterface::renderLevels(int width, int height) {
int i;
int disp_x = 10;
const int GAP = 16;
char val[40];
if (!USING_INVENSENSE_MPU9150) {
for(i = 0; i < NUM_CHANNELS; i++) {
// Actual value
glLineWidth(2.0);
glColor4f(1, 1, 1, 1);
glBegin(GL_LINES);
glVertex2f(disp_x, height * 0.95);
glVertex2f(disp_x, height * (0.25 + 0.75f * getValue(i) / 4096));
glColor4f(1, 0, 0, 1);
glVertex2f(disp_x - 3, height * (0.25 + 0.75f * getValue(i) / 4096));
glVertex2f(disp_x, height * (0.25 + 0.75f * getValue(i) / 4096));
glEnd();
// Trailing Average value
glBegin(GL_LINES);
glColor4f(1, 1, 1, 1);
glVertex2f(disp_x, height * (0.25 + 0.75f * getTrailingValue(i) / 4096));
glVertex2f(disp_x + 4, height * (0.25 + 0.75f * getTrailingValue(i) / 4096));
glEnd();
sprintf(val, "%d", getValue(i));
drawtext(disp_x - GAP / 2, (height * 0.95) + 2, 0.08, 90, 1.0, 0, val, 0, 1, 0);
disp_x += GAP;
}
} else {
if (USING_INVENSENSE_MPU9150) {
// For invensense gyros, render as horizontal bars
const int LEVEL_CORNER_X = 10;
const int LEVEL_CORNER_Y = 200;
@ -177,18 +146,37 @@ void SerialInterface::renderLevels(int width, int height) {
drawtext(LEVEL_CORNER_X, LEVEL_CORNER_Y + 15, 0.10, 0, 1.0, 1, val, 0, 1, 0);
sprintf(val, "Roll %4.1f", _lastRollRate);
drawtext(LEVEL_CORNER_X, LEVEL_CORNER_Y + 30, 0.10, 0, 1.0, 1, val, 0, 1, 0);
sprintf(val, "X %4.3f", _lastAccelX);
drawtext(LEVEL_CORNER_X, LEVEL_CORNER_Y + 45, 0.10, 0, 1.0, 1, val, 0, 1, 0);
sprintf(val, "Y %4.3f", _lastAccelY);
drawtext(LEVEL_CORNER_X, LEVEL_CORNER_Y + 60, 0.10, 0, 1.0, 1, val, 0, 1, 0);
sprintf(val, "Z %4.3f", _lastAccelZ);
drawtext(LEVEL_CORNER_X, LEVEL_CORNER_Y + 75, 0.10, 0, 1.0, 1, val, 0, 1, 0);
// Draw the levels as horizontal lines
const int LEVEL_CENTER = 150;
const float ACCEL_VIEW_SCALING = 50.f;
glLineWidth(2.0);
glColor4f(1, 1, 1, 1);
glBegin(GL_LINES);
// Gyro rates
glVertex2f(LEVEL_CORNER_X + LEVEL_CENTER, LEVEL_CORNER_Y - 3);
glVertex2f(LEVEL_CORNER_X + LEVEL_CENTER + _lastYawRate, LEVEL_CORNER_Y - 3);
glVertex2f(LEVEL_CORNER_X + LEVEL_CENTER, LEVEL_CORNER_Y + 12);
glVertex2f(LEVEL_CORNER_X + LEVEL_CENTER + _lastPitchRate, LEVEL_CORNER_Y + 12);
glVertex2f(LEVEL_CORNER_X + LEVEL_CENTER, LEVEL_CORNER_Y + 27);
glVertex2f(LEVEL_CORNER_X + LEVEL_CENTER + _lastRollRate, LEVEL_CORNER_Y + 27);
// Acceleration
glVertex2f(LEVEL_CORNER_X + LEVEL_CENTER, LEVEL_CORNER_Y + 42);
glVertex2f(LEVEL_CORNER_X + LEVEL_CENTER + (int)((_lastAccelX - _gravity.x)* ACCEL_VIEW_SCALING),
LEVEL_CORNER_Y + 42);
glVertex2f(LEVEL_CORNER_X + LEVEL_CENTER, LEVEL_CORNER_Y + 57);
glVertex2f(LEVEL_CORNER_X + LEVEL_CENTER + (int)((_lastAccelY - _gravity.y) * ACCEL_VIEW_SCALING),
LEVEL_CORNER_Y + 57);
glVertex2f(LEVEL_CORNER_X + LEVEL_CENTER, LEVEL_CORNER_Y + 72);
glVertex2f(LEVEL_CORNER_X + LEVEL_CENTER + (int)((_lastAccelZ - _gravity.z) * ACCEL_VIEW_SCALING),
LEVEL_CORNER_Y + 72);
glEnd();
// Draw green vertical centerline
glColor4f(0, 1, 0, 0.5);
@ -197,18 +185,6 @@ void SerialInterface::renderLevels(int width, int height) {
glVertex2f(LEVEL_CORNER_X + LEVEL_CENTER, LEVEL_CORNER_Y + 30);
glEnd();
}
// Display Serial latency block
if (LED) {
glColor3f(1,0,0);
glBegin(GL_QUADS); {
glVertex2f(width - 100, height - 100);
glVertex2f(width, height - 100);
glVertex2f(width, height);
glVertex2f(width - 100, height);
}
glEnd();
}
}
void convertHexToInt(unsigned char* sourceBuffer, int& destinationInt) {
@ -237,15 +213,17 @@ void SerialInterface::readData() {
int accelXRate, accelYRate, accelZRate;
convertHexToInt(sensorBuffer + 6, accelXRate);
convertHexToInt(sensorBuffer + 6, accelZRate);
convertHexToInt(sensorBuffer + 10, accelYRate);
convertHexToInt(sensorBuffer + 14, accelZRate);
convertHexToInt(sensorBuffer + 14, accelXRate);
const float LSB_TO_METERS_PER_SECOND = 1.f / 16384.f;
const float LSB_TO_METERS_PER_SECOND2 = 1.f / 16384.f * 9.80665f;
// From MPU-9150 register map, with setting on
// highest resolution = +/- 2G
_lastAccelX = ((float) accelXRate) * LSB_TO_METERS_PER_SECOND;
_lastAccelY = ((float) accelYRate) * LSB_TO_METERS_PER_SECOND;
_lastAccelZ = ((float) accelZRate) * LSB_TO_METERS_PER_SECOND;
_lastAccelX = ((float) accelXRate) * LSB_TO_METERS_PER_SECOND2;
_lastAccelY = ((float) accelYRate) * LSB_TO_METERS_PER_SECOND2;
_lastAccelZ = ((float) -accelZRate) * LSB_TO_METERS_PER_SECOND2;
int rollRate, yawRate, pitchRate;
@ -262,61 +240,20 @@ void SerialInterface::readData() {
_lastYawRate = ((float) yawRate) * LSB_TO_DEGREES_PER_SECOND;
_lastPitchRate = ((float) -pitchRate) * LSB_TO_DEGREES_PER_SECOND + PITCH_BIAS;
totalSamples++;
} else {
// This array sets the rate of trailing averaging for each channel:
// If the sensor rate is 100Hz, 0.001 will make the long term average a 10-second average
const float AVG_RATE[] = {0.002, 0.002, 0.002, 0.002, 0.002, 0.002};
char bufchar[1];
while (read(_serialDescriptor, &bufchar, 1) > 0) {
serialBuffer[serialBufferPos] = bufchar[0];
serialBufferPos++;
// Have we reached end of a line of input?
if ((bufchar[0] == '\n') || (serialBufferPos >= MAX_BUFFER)) {
std::string serialLine(serialBuffer, serialBufferPos-1);
//printLog("%s\n", serialLine.c_str());
int spot;
//int channel = 0;
std::string val;
for (int i = 0; i < NUM_CHANNELS + 2; i++) {
spot = serialLine.find_first_of(" ", 0);
if (spot != std::string::npos) {
val = serialLine.substr(0,spot);
//printLog("%s\n", val.c_str());
if (i < NUM_CHANNELS) lastMeasured[i] = atoi(val.c_str());
else samplesAveraged = atoi(val.c_str());
} else LED = atoi(serialLine.c_str());
serialLine = serialLine.substr(spot+1, serialLine.length() - spot - 1);
}
// Update Trailing Averages
for (int i = 0; i < NUM_CHANNELS; i++) {
if (totalSamples > SAMPLES_TO_DISCARD) {
trailingAverage[i] = (1.f - AVG_RATE[i])*trailingAverage[i] +
AVG_RATE[i]*(float)lastMeasured[i];
} else {
trailingAverage[i] = (float)lastMeasured[i];
}
}
// Use a set of initial samples to compute gravity
if (totalSamples < GRAVITY_SAMPLES) {
gravity.x += lastMeasured[ACCEL_X];
gravity.y += lastMeasured[ACCEL_Y];
gravity.z += lastMeasured[ACCEL_Z];
}
if (totalSamples == GRAVITY_SAMPLES) {
gravity = glm::normalize(gravity);
printLog("gravity: %f,%f,%f\n", gravity.x, gravity.y, gravity.z);
}
totalSamples++;
serialBufferPos = 0;
}
// Accumulate an initial reading for gravity
// Use a set of initial samples to compute gravity
if (totalSamples < GRAVITY_SAMPLES) {
_gravity.x += _lastAccelX;
_gravity.y += _lastAccelY;
_gravity.z += _lastAccelZ;
}
}
if (totalSamples == GRAVITY_SAMPLES) {
_gravity /= (float) totalSamples;
printLog("Gravity: %f\n", glm::length(_gravity));
}
totalSamples++;
}
if (initialSamples == totalSamples) {
timeval now;
@ -336,23 +273,10 @@ void SerialInterface::resetSerial() {
#ifdef __APPLE__
active = false;
totalSamples = 0;
_gravity = glm::vec3(0, 0, 0);
gettimeofday(&lastGoodRead, NULL);
if (!USING_INVENSENSE_MPU9150) {
gravity = glm::vec3(0, -1, 0);
// Clear the measured and average channel data
for (int i = 0; i < NUM_CHANNELS; i++) {
lastMeasured[i] = 0;
trailingAverage[i] = 0.0;
}
// Clear serial input buffer
for (int i = 1; i < MAX_BUFFER; i++) {
serialBuffer[i] = ' ';
}
}
#endif
}

View file

@ -32,7 +32,7 @@
#define HEAD_YAW_RATE 0
#define HEAD_ROLL_RATE 2
extern const bool USING_INVENSENSE_MPU9150;
//const bool USING_INVENSENSE_MPU9150;
class SerialInterface {
public:
@ -50,30 +50,20 @@ public:
float getLastYawRate() const { return _lastYawRate; }
float getLastPitchRate() const { return _lastPitchRate; }
float getLastRollRate() const { return _lastRollRate; }
glm::vec3 getLastAcceleration() { return glm::vec3(_lastAccelX, _lastAccelY, _lastAccelZ); };
glm::vec3 getGravity() {return _gravity;};
int getLED() {return LED;};
int getNumSamples() {return samplesAveraged;};
int getValue(int num) {return lastMeasured[num];};
int getRelativeValue(int num) {return static_cast<int>(lastMeasured[num] - trailingAverage[num]);};
float getTrailingValue(int num) {return trailingAverage[num];};
void resetTrailingAverages();
void renderLevels(int width, int height);
bool active;
glm::vec3 getGravity() {return gravity;};
private:
void initializePort(char* portname, int baud);
void resetSerial();
int _serialDescriptor;
int lastMeasured[NUM_CHANNELS];
float trailingAverage[NUM_CHANNELS];
int samplesAveraged;
int LED;
int totalSamples;
timeval lastGoodRead;
glm::vec3 gravity;
glm::vec3 _gravity;
float _lastAccelX;
float _lastAccelY;
float _lastAccelZ;

View file

@ -67,8 +67,8 @@ float angle_to(glm::vec3 head_pos, glm::vec3 source_pos, float render_yaw, float
}
// Helper function returns the positive angle in degrees between two 3D vectors
float angleBetween(glm::vec3 * v1, glm::vec3 * v2) {
return acos((glm::dot(*v1, *v2)) / (glm::length(*v1) * glm::length(*v2))) * 180.f / PI;
float angleBetween(const glm::vec3& v1, const glm::vec3& v2) {
return acos((glm::dot(v1, v2)) / (glm::length(v1) * glm::length(v2))) * 180.f / PI;
}
// Draw a 3D vector floating in space

View file

@ -44,7 +44,7 @@ void noiseTest(int w, int h);
void drawVector(glm::vec3* vector);
float angleBetween(glm::vec3 * v1, glm::vec3 * v2);
float angleBetween(const glm::vec3& v1, const glm::vec3& v2);
double diffclock(timeval *clock1,timeval *clock2);

View file

@ -43,7 +43,7 @@ GLubyte identityIndices[] = { 0,2,1, 0,3,2, // Z- .
VoxelSystem::VoxelSystem() {
_voxelsInReadArrays = _voxelsInWriteArrays = _voxelsUpdated = 0;
_alwaysRenderFullVBO = true;
_renderFullVBO = true;
_tree = new VoxelTree();
pthread_mutex_init(&_bufferWriteLock, NULL);
}
@ -138,8 +138,9 @@ void VoxelSystem::setupNewVoxelsForDrawing() {
PerformanceWarning warn(_renderWarningsOn, "setupNewVoxelsForDrawing()"); // would like to include _voxelsInArrays, _voxelsUpdated
double start = usecTimestampNow();
double sinceLastTime = (start - _setupNewVoxelsForDrawingLastFinished) / 1000.0;
if (sinceLastTime <= std::max(_setupNewVoxelsForDrawingLastElapsed, SIXTY_FPS_IN_MILLISECONDS)) {
bool iAmDebugging = false; // if you're debugging set this to true, so you won't get skipped for slow debugging
if (!iAmDebugging && sinceLastTime <= std::max(_setupNewVoxelsForDrawingLastElapsed, SIXTY_FPS_IN_MILLISECONDS)) {
return; // bail early, it hasn't been long enough since the last time we ran
}
@ -147,19 +148,37 @@ void VoxelSystem::setupNewVoxelsForDrawing() {
// If the view frustum has changed, since last time, then remove nodes that are out of view
if ((sinceLastViewCulling >= std::max(_lastViewCullingElapsed, VIEW_CULLING_RATE_IN_MILLISECONDS)) && hasViewChanged()) {
_lastViewCulling = start;
// When we call removeOutOfView() voxels, we don't actually remove the voxels from the VBOs, but we do remove
// them from tree, this makes our tree caclulations faster, but doesn't require us to fully rebuild the VBOs (which
// can be expensive).
removeOutOfView();
// Once we call cleanupRemovedVoxels() we do need to rebuild our VBOs (if anything was actually removed). So,
// we should consider putting this someplace else... as this might be able to occur less frequently, and save us on
// VBO reubuilding. Possibly we should do this only if our actual VBO usage crosses some lower boundary.
cleanupRemovedVoxels();
double endViewCulling = usecTimestampNow();
_lastViewCullingElapsed = (endViewCulling - start) / 1000.0;
}
if (_tree->isDirty()) {
PerformanceWarning warn(_renderWarningsOn, "calling... newTreeToArrays()");
static char buffer[64] = { 0 };
if (_renderWarningsOn) {
sprintf(buffer, "newTreeToArrays() _renderFullVBO=%s", (_renderFullVBO ? "yes" : "no"));
};
PerformanceWarning warn(_renderWarningsOn, buffer);
_callsToTreesToArrays++;
if (_alwaysRenderFullVBO) {
if (_renderFullVBO) {
_voxelsInWriteArrays = 0; // reset our VBO
}
_voxelsUpdated = newTreeToArrays(_tree->rootNode);
_tree->clearDirtyBit(); // after we pull the trees into the array, we can consider the tree clean
// since we called treeToArrays, we can assume that our VBO is in sync, and so partial updates to the VBOs are
// ok again, until/unless we call removeOutOfView()
_renderFullVBO = false;
} else {
_voxelsUpdated = 0;
}
@ -176,6 +195,16 @@ void VoxelSystem::setupNewVoxelsForDrawing() {
_setupNewVoxelsForDrawingLastElapsed = elapsedmsec;
}
void VoxelSystem::cleanupRemovedVoxels() {
PerformanceWarning warn(_renderWarningsOn, "cleanupRemovedVoxels()");
if (!_removedVoxels.isEmpty()) {
while (!_removedVoxels.isEmpty()) {
delete _removedVoxels.extract();
}
_renderFullVBO = true; // if we remove voxels, we must update our full VBOs
}
}
void VoxelSystem::copyWrittenDataToReadArrays() {
PerformanceWarning warn(_renderWarningsOn, "copyWrittenDataToReadArrays()"); // would like to include _voxelsInArrays, _voxelsUpdated
if (_voxelsDirty && _voxelsUpdated) {
@ -210,16 +239,16 @@ int VoxelSystem::newTreeToArrays(VoxelNode* node) {
voxelsUpdated += newTreeToArrays(node->getChildAtIndex(i));
}
}
if (_alwaysRenderFullVBO) {
voxelsUpdated += newway__updateNodeInArray(node);
if (_renderFullVBO) {
voxelsUpdated += updateNodeInArraysAsFullVBO(node);
} else {
voxelsUpdated += oldway__updateNodeInArray(node);
voxelsUpdated += updateNodeInArraysAsPartialVBO(node);
}
node->clearDirtyBit(); // always clear the dirty bit, even if it doesn't need to be rendered
return voxelsUpdated;
}
int VoxelSystem::newway__updateNodeInArray(VoxelNode* node) {
int VoxelSystem::updateNodeInArraysAsFullVBO(VoxelNode* node) {
// If we've run out of room, then just bail...
if (_voxelsInWriteArrays >= MAX_VOXELS_PER_SYSTEM) {
return 0;
@ -238,18 +267,24 @@ int VoxelSystem::newway__updateNodeInArray(VoxelNode* node) {
*(writeVerticesAt+j) = startVertex[j % 3] + (identityVertices[j] * voxelScale);
*(writeColorsAt +j) = node->getColor()[j % 3];
}
_voxelsInWriteArrays++; // our know vertices in the arrays
node->setBufferIndex(nodeIndex);
_voxelDirtyArray[nodeIndex] = true; // just in case we switch to Partial mode
_voxelsInWriteArrays++; // our know vertices in the arrays
return 1; // rendered
}
return 0; // not-rendered
}
int VoxelSystem::oldway__updateNodeInArray(VoxelNode* node) {
// Now, if we've changed any attributes (our renderness, our color, etc) then update the Arrays... for us
if (node->isDirty() && (node->getShouldRender() || node->isKnownBufferIndex())) {
int VoxelSystem::updateNodeInArraysAsPartialVBO(VoxelNode* node) {
// If we've run out of room, then just bail...
if (_voxelsInWriteArrays >= MAX_VOXELS_PER_SYSTEM) {
return 0;
}
// Now, if we've changed any attributes (our renderness, our color, etc) then update the Arrays...
if (node->isDirty()) {
glm::vec3 startVertex;
float voxelScale = 0;
// If we're should render, use our legit location and scale,
if (node->getShouldRender()) {
startVertex = node->getCorner();
@ -267,8 +302,9 @@ int VoxelSystem::oldway__updateNodeInArray(VoxelNode* node) {
nodeIndex = node->getBufferIndex();
} else {
nodeIndex = _voxelsInWriteArrays;
node->setBufferIndex(nodeIndex);
_voxelsInWriteArrays++;
}
_voxelDirtyArray[nodeIndex] = true;
// populate the array with points for the 8 vertices
@ -279,10 +315,6 @@ int VoxelSystem::oldway__updateNodeInArray(VoxelNode* node) {
*(writeVerticesAt+j) = startVertex[j % 3] + (identityVertices[j] * voxelScale);
*(writeColorsAt +j) = node->getColor()[j % 3];
}
if (!node->isKnownBufferIndex()) {
node->setBufferIndex(nodeIndex);
_voxelsInWriteArrays++; // our know vertices in the arrays
}
return 1; // updated!
}
return 0; // not-updated
@ -373,53 +405,90 @@ void VoxelSystem::init() {
delete[] normalsArray;
}
void VoxelSystem::updateVBOs() {
PerformanceWarning warn(_renderWarningsOn, "updateVBOs()"); // would like to include _callsToTreesToArrays
if (_voxelsDirty) {
if (_alwaysRenderFullVBO) {
glBufferIndex segmentStart = 0;
glBufferIndex segmentEnd = _voxelsInWriteArrays;
int segmentLength = (segmentEnd - segmentStart) + 1;
GLintptr segmentStartAt = segmentStart * VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat);
GLsizeiptr segmentSizeBytes = segmentLength * VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat);
GLfloat* readVerticesFrom = _readVerticesArray + (segmentStart * VERTEX_POINTS_PER_VOXEL);
glBindBuffer(GL_ARRAY_BUFFER, _vboVerticesID);
glBufferSubData(GL_ARRAY_BUFFER, segmentStartAt, segmentSizeBytes, readVerticesFrom);
segmentStartAt = segmentStart * VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte);
segmentSizeBytes = segmentLength * VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte);
GLubyte* readColorsFrom = _readColorsArray + (segmentStart * VERTEX_POINTS_PER_VOXEL);
glBindBuffer(GL_ARRAY_BUFFER, _vboColorsID);
glBufferSubData(GL_ARRAY_BUFFER, segmentStartAt, segmentSizeBytes, readColorsFrom);
} else {
glBufferIndex segmentStart = 0;
glBufferIndex segmentEnd = 0;
bool inSegment = false;
for (glBufferIndex i = 0; i < _voxelsInWriteArrays; i++) {
if (!inSegment) {
if (_voxelDirtyArray[i]) {
segmentStart = i;
inSegment = true;
_voxelDirtyArray[i] = false; // consider us clean!
}
} else {
if (!_voxelDirtyArray[i] || (i == (_voxelsInWriteArrays - 1)) ) {
segmentEnd = i;
inSegment = false;
int segmentLength = (segmentEnd - segmentStart) + 1;
GLintptr segmentStartAt = segmentStart * VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat);
GLsizeiptr segmentSizeBytes = segmentLength * VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat);
GLfloat* readVerticesFrom = _readVerticesArray + (segmentStart * VERTEX_POINTS_PER_VOXEL);
glBindBuffer(GL_ARRAY_BUFFER, _vboVerticesID);
glBufferSubData(GL_ARRAY_BUFFER, segmentStartAt, segmentSizeBytes, readVerticesFrom);
segmentStartAt = segmentStart * VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte);
segmentSizeBytes = segmentLength * VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte);
GLubyte* readColorsFrom = _readColorsArray + (segmentStart * VERTEX_POINTS_PER_VOXEL);
glBindBuffer(GL_ARRAY_BUFFER, _vboColorsID);
glBufferSubData(GL_ARRAY_BUFFER, segmentStartAt, segmentSizeBytes, readColorsFrom);
}
}
void VoxelSystem::updateFullVBOs() {
glBufferIndex segmentStart = 0;
glBufferIndex segmentEnd = _voxelsInWriteArrays;
int segmentLength = (segmentEnd - segmentStart) + 1;
GLintptr segmentStartAt = segmentStart * VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat);
GLsizeiptr segmentSizeBytes = segmentLength * VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat);
GLfloat* readVerticesFrom = _readVerticesArray + (segmentStart * VERTEX_POINTS_PER_VOXEL);
glBindBuffer(GL_ARRAY_BUFFER, _vboVerticesID);
glBufferSubData(GL_ARRAY_BUFFER, segmentStartAt, segmentSizeBytes, readVerticesFrom);
segmentStartAt = segmentStart * VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte);
segmentSizeBytes = segmentLength * VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte);
GLubyte* readColorsFrom = _readColorsArray + (segmentStart * VERTEX_POINTS_PER_VOXEL);
glBindBuffer(GL_ARRAY_BUFFER, _vboColorsID);
glBufferSubData(GL_ARRAY_BUFFER, segmentStartAt, segmentSizeBytes, readColorsFrom);
// consider the _voxelDirtyArray[] clean!
memset(_voxelDirtyArray, false, _voxelsInWriteArrays * sizeof(bool));
}
void VoxelSystem::updatePartialVBOs() {
glBufferIndex segmentStart = 0;
glBufferIndex segmentEnd = 0;
bool inSegment = false;
for (glBufferIndex i = 0; i < _voxelsInWriteArrays; i++) {
bool thisVoxelDirty = _voxelDirtyArray[i];
if (!inSegment) {
if (thisVoxelDirty) {
segmentStart = i;
inSegment = true;
_voxelDirtyArray[i] = false; // consider us clean!
}
} else {
if (!thisVoxelDirty) {
// If we got here because because this voxel is NOT dirty, so the last dirty voxel was the one before
// this one and so that's where the "segment" ends
segmentEnd = i - 1;
inSegment = false;
int segmentLength = (segmentEnd - segmentStart) + 1;
GLintptr segmentStartAt = segmentStart * VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat);
GLsizeiptr segmentSizeBytes = segmentLength * VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat);
GLfloat* readVerticesFrom = _readVerticesArray + (segmentStart * VERTEX_POINTS_PER_VOXEL);
glBindBuffer(GL_ARRAY_BUFFER, _vboVerticesID);
glBufferSubData(GL_ARRAY_BUFFER, segmentStartAt, segmentSizeBytes, readVerticesFrom);
segmentStartAt = segmentStart * VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte);
segmentSizeBytes = segmentLength * VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte);
GLubyte* readColorsFrom = _readColorsArray + (segmentStart * VERTEX_POINTS_PER_VOXEL);
glBindBuffer(GL_ARRAY_BUFFER, _vboColorsID);
glBufferSubData(GL_ARRAY_BUFFER, segmentStartAt, segmentSizeBytes, readColorsFrom);
}
_voxelDirtyArray[i] = false; // consider us clean!
}
}
// if we got to the end of the array, and we're in an active dirty segment...
if (inSegment) {
segmentEnd = _voxelsInWriteArrays - 1;
inSegment = false;
int segmentLength = (segmentEnd - segmentStart) + 1;
GLintptr segmentStartAt = segmentStart * VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat);
GLsizeiptr segmentSizeBytes = segmentLength * VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat);
GLfloat* readVerticesFrom = _readVerticesArray + (segmentStart * VERTEX_POINTS_PER_VOXEL);
glBindBuffer(GL_ARRAY_BUFFER, _vboVerticesID);
glBufferSubData(GL_ARRAY_BUFFER, segmentStartAt, segmentSizeBytes, readVerticesFrom);
segmentStartAt = segmentStart * VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte);
segmentSizeBytes = segmentLength * VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte);
GLubyte* readColorsFrom = _readColorsArray + (segmentStart * VERTEX_POINTS_PER_VOXEL);
glBindBuffer(GL_ARRAY_BUFFER, _vboColorsID);
glBufferSubData(GL_ARRAY_BUFFER, segmentStartAt, segmentSizeBytes, readColorsFrom);
}
}
void VoxelSystem::updateVBOs() {
static char buffer[40] = { 0 };
if (_renderWarningsOn) {
sprintf(buffer, "updateVBOs() _renderFullVBO=%s", (_renderFullVBO ? "yes" : "no"));
};
PerformanceWarning warn(_renderWarningsOn, buffer); // would like to include _callsToTreesToArrays
if (_voxelsDirty) {
// updatePartialVBOs() is not yet working. For now, ALWAYS call updateFullVBOs()
if (_renderFullVBO) {
updateFullVBOs();
} else {
updatePartialVBOs(); // too many small segments?
}
_voxelsDirty = false;
}
@ -672,10 +741,14 @@ void VoxelSystem::removeOutOfView() {
removeOutOfViewArgs args(this);
_tree->recurseTreeWithOperation(removeOutOfViewOperation,(void*)&args);
if (_renderWarningsOn) {
printLog("removeOutOfView() scanned=%ld removed=%ld inside=%ld intersect=%ld outside=%ld bag.count()=%d \n",
if (args.nodesRemoved) {
_tree->setDirtyBit();
}
bool showRemoveDebugDetails = false;
if (showRemoveDebugDetails) {
printLog("removeOutOfView() scanned=%ld removed=%ld inside=%ld intersect=%ld outside=%ld _removedVoxels.count()=%d \n",
args.nodesScanned, args.nodesRemoved, args.nodesInside,
args.nodesIntersect, args.nodesOutside, args.dontRecurseBag.count()
args.nodesIntersect, args.nodesOutside, _removedVoxels.count()
);
}
}
@ -695,3 +768,160 @@ bool VoxelSystem::findRayIntersection(const glm::vec3& origin, const glm::vec3&
detail.blue = node->getColor()[2];
return true;
}
class falseColorizeRandomEveryOtherArgs {
public:
falseColorizeRandomEveryOtherArgs() : totalNodes(0), colorableNodes(0), coloredNodes(0), colorThis(true) {};
unsigned long totalNodes;
unsigned long colorableNodes;
unsigned long coloredNodes;
bool colorThis;
};
bool VoxelSystem::falseColorizeRandomEveryOtherOperation(VoxelNode* node, void* extraData) {
falseColorizeRandomEveryOtherArgs* args = (falseColorizeRandomEveryOtherArgs*)extraData;
args->totalNodes++;
if (node->isColored()) {
args->colorableNodes++;
if (args->colorThis) {
args->coloredNodes++;
node->setFalseColor(255, randomColorValue(150), randomColorValue(150));
}
args->colorThis = !args->colorThis;
}
return true; // keep going!
}
void VoxelSystem::falseColorizeRandomEveryOther() {
falseColorizeRandomEveryOtherArgs args;
_tree->recurseTreeWithOperation(falseColorizeRandomEveryOtherOperation,&args);
printLog("randomized false color for every other node: total %ld, colorable %ld, colored %ld\n",
args.totalNodes, args.colorableNodes, args.coloredNodes);
setupNewVoxelsForDrawing();
}
class collectStatsForTreesAndVBOsArgs {
public:
collectStatsForTreesAndVBOsArgs() :
totalNodes(0),
dirtyNodes(0),
shouldRenderNodes(0),
coloredNodes(0),
nodesInVBO(0),
nodesInVBOOverExpectedMax(0),
duplicateVBOIndex(0)
{
memset(hasIndexFound, false, MAX_VOXELS_PER_SYSTEM * sizeof(bool));
};
unsigned long totalNodes;
unsigned long dirtyNodes;
unsigned long shouldRenderNodes;
unsigned long coloredNodes;
unsigned long nodesInVBO;
unsigned long nodesInVBOOverExpectedMax;
unsigned long duplicateVBOIndex;
unsigned long expectedMax;
bool colorThis;
bool hasIndexFound[MAX_VOXELS_PER_SYSTEM];
};
bool VoxelSystem::collectStatsForTreesAndVBOsOperation(VoxelNode* node, void* extraData) {
collectStatsForTreesAndVBOsArgs* args = (collectStatsForTreesAndVBOsArgs*)extraData;
args->totalNodes++;
if (node->isColored()) {
args->coloredNodes++;
}
if (node->getShouldRender()) {
args->shouldRenderNodes++;
}
if (node->isDirty()) {
args->dirtyNodes++;
}
if (node->isKnownBufferIndex()) {
args->nodesInVBO++;
unsigned long nodeIndex = node->getBufferIndex();
if (args->hasIndexFound[nodeIndex]) {
args->duplicateVBOIndex++;
printLog("duplicateVBO found... index=%ld, isDirty=%s, shouldRender=%s \n", nodeIndex,
node->isDirty() ? "yes" : "no" , node->getShouldRender() ? "yes" : "no" );
} else {
args->hasIndexFound[nodeIndex] = true;
}
if (nodeIndex > args->expectedMax) {
args->nodesInVBOOverExpectedMax++;
}
}
return true; // keep going!
}
void VoxelSystem::collectStatsForTreesAndVBOs() {
glBufferIndex minDirty = GLBUFFER_INDEX_UNKNOWN;
glBufferIndex maxDirty = 0;
for (glBufferIndex i = 0; i < _voxelsInWriteArrays; i++) {
if (_voxelDirtyArray[i]) {
minDirty = std::min(minDirty,i);
maxDirty = std::max(maxDirty,i);
}
}
collectStatsForTreesAndVBOsArgs args;
args.expectedMax = _voxelsInWriteArrays;
_tree->recurseTreeWithOperation(collectStatsForTreesAndVBOsOperation,&args);
printLog("_voxelsDirty=%s _voxelsInWriteArrays=%ld minDirty=%ld maxDirty=%ld \n", (_voxelsDirty ? "yes" : "no"),
_voxelsInWriteArrays, minDirty, maxDirty);
printLog("stats: total %ld, dirty %ld, colored %ld, shouldRender %ld, inVBO %ld, nodesInVBOOverExpectedMax %ld, duplicateVBOIndex %ld\n",
args.totalNodes, args.dirtyNodes, args.coloredNodes, args.shouldRenderNodes,
args.nodesInVBO, args.nodesInVBOOverExpectedMax, args.duplicateVBOIndex);
glBufferIndex minInVBO = GLBUFFER_INDEX_UNKNOWN;
glBufferIndex maxInVBO = 0;
for (glBufferIndex i = 0; i < MAX_VOXELS_PER_SYSTEM; i++) {
if (args.hasIndexFound[i]) {
minInVBO = std::min(minInVBO,i);
maxInVBO = std::max(maxInVBO,i);
}
}
printLog("minInVBO=%ld maxInVBO=%ld _voxelsInWriteArrays=%ld _voxelsInReadArrays=%ld\n",
minInVBO, maxInVBO, _voxelsInWriteArrays, _voxelsInReadArrays);
}
void VoxelSystem::deleteVoxelAt(float x, float y, float z, float s) {
//printLog("VoxelSystem::deleteVoxelAt(%f,%f,%f,%f)\n",x,y,z,s);
_tree->deleteVoxelAt(x, y, z, s);
setupNewVoxelsForDrawing();
};
VoxelNode* VoxelSystem::getVoxelAt(float x, float y, float z, float s) const {
return _tree->getVoxelAt(x, y, z, s);
};
void VoxelSystem::createVoxel(float x, float y, float z, float s, unsigned char red, unsigned char green, unsigned char blue) {
//printLog("VoxelSystem::createVoxel(%f,%f,%f,%f)\n",x,y,z,s);
_tree->createVoxel(x, y, z, s, red, green, blue);
setupNewVoxelsForDrawing();
};
void VoxelSystem::createLine(glm::vec3 point1, glm::vec3 point2, float unitSize, rgbColor color) {
_tree->createLine(point1, point2, unitSize, color);
setupNewVoxelsForDrawing();
};
void VoxelSystem::createSphere(float r,float xc, float yc, float zc, float s, bool solid, creationMode mode, bool debug) {
_tree->createSphere(r, xc, yc, zc, s, solid, mode, debug);
setupNewVoxelsForDrawing();
};

View file

@ -57,6 +57,7 @@ public:
void trueColorize();
void falseColorizeInView(ViewFrustum* viewFrustum);
void falseColorizeDistanceFromView(ViewFrustum* viewFrustum);
void falseColorizeRandomEveryOther();
void killLocalVoxels();
void setRenderPipelineWarnings(bool on) { _renderWarningsOn = on; };
@ -67,6 +68,14 @@ public:
bool findRayIntersection(const glm::vec3& origin, const glm::vec3& direction,
VoxelDetail& detail, float& distance, BoxFace& face);
void collectStatsForTreesAndVBOs();
void deleteVoxelAt(float x, float y, float z, float s);
VoxelNode* getVoxelAt(float x, float y, float z, float s) const;
void createVoxel(float x, float y, float z, float s, unsigned char red, unsigned char green, unsigned char blue);
void createLine(glm::vec3 point1, glm::vec3 point2, float unitSize, rgbColor color);
void createSphere(float r,float xc, float yc, float zc, float s, bool solid, creationMode mode, bool debug = false);
private:
int _callsToTreesToArrays;
@ -82,9 +91,11 @@ private:
static bool falseColorizeDistanceFromViewOperation(VoxelNode* node, void* extraData);
static bool getDistanceFromViewRangeOperation(VoxelNode* node, void* extraData);
static bool removeOutOfViewOperation(VoxelNode* node, void* extraData);
static bool falseColorizeRandomEveryOtherOperation(VoxelNode* node, void* extraData);
static bool collectStatsForTreesAndVBOsOperation(VoxelNode* node, void* extraData);
int newway__updateNodeInArray(VoxelNode* node);
int oldway__updateNodeInArray(VoxelNode* node);
int updateNodeInArraysAsFullVBO(VoxelNode* node);
int updateNodeInArraysAsPartialVBO(VoxelNode* node);
// these are kinda hacks, used by getDistanceFromViewRangeOperation() probably shouldn't be here
static float _maxDistance;
@ -103,7 +114,7 @@ private:
unsigned long _voxelsInReadArrays;
unsigned long _unusedArraySpace;
bool _alwaysRenderFullVBO;
bool _renderFullVBO;
double _setupNewVoxelsForDrawingLastElapsed;
double _setupNewVoxelsForDrawingLastFinished;
@ -120,11 +131,18 @@ private:
ViewFrustum _lastKnowViewFrustum;
int newTreeToArrays(VoxelNode *currentNode);
void cleanupRemovedVoxels();
void setupNewVoxelsForDrawing();
void copyWrittenDataToReadArrays();
void updateVBOs();
bool _voxelsDirty;
public:
void updateVBOs();
void updateFullVBOs(); // all voxels in the VBO
void updatePartialVBOs(); // multiple segments, only dirty voxels
};
#endif

View file

@ -98,12 +98,13 @@ int packetsPerSecond = 0;
int bytesPerSecond = 0;
int bytesCount = 0;
int WIDTH = 1200; // Window size
int WIDTH = 1200; // Window size
int HEIGHT = 800;
int fullscreen = 0;
float aspectRatio = 1.0f;
bool USING_FIRST_PERSON_EFFECT = false;
//CameraMode defaultCameraMode = CAMERA_MODE_FIRST_PERSON;
CameraMode defaultCameraMode = CAMERA_MODE_THIRD_PERSON;
bool wantColorRandomizer = true; // for addSphere and load file
@ -112,7 +113,7 @@ Oscilloscope audioScope(256,200,true);
ViewFrustum viewFrustum; // current state of view frustum, perspective, orientation, etc.
Avatar myAvatar(true); // The rendered avatar of oneself
Camera myCamera; // My view onto the world (sometimes on myself :)
Camera myCamera; // My view onto the world
Camera viewFrustumOffsetCamera; // The camera we use to sometimes show the view frustum from an offset mode
AvatarRenderer avatarRenderer;
@ -325,8 +326,10 @@ void init(void) {
if (noiseOn) {
myAvatar.setNoise(noise);
}
myAvatar.setPosition(start_location);
myCamera.setPosition(start_location);
myCamera.setMode(defaultCameraMode);
#ifdef MARKER_CAPTURE
@ -370,10 +373,6 @@ void reset_sensors() {
headMouseY = HEIGHT/2;
myAvatar.reset();
if (serialPort.active) {
serialPort.resetTrailingAverages();
}
}
void sendVoxelEditMessage(PACKET_HEADER header, VoxelDetail& detail) {
@ -395,15 +394,9 @@ void updateAvatar(float deltaTime) {
myAvatar.updateHeadFromGyros(deltaTime, &serialPort, &gravity);
// Grab latest readings from the gyros
float measuredYawRate, measuredPitchRate;
if (USING_INVENSENSE_MPU9150) {
measuredPitchRate = serialPort.getLastPitchRate();
measuredYawRate = serialPort.getLastYawRate();
} else {
measuredPitchRate = serialPort.getRelativeValue(HEAD_PITCH_RATE);
measuredYawRate = serialPort.getRelativeValue(HEAD_YAW_RATE);
}
float measuredPitchRate = serialPort.getLastPitchRate();
float measuredYawRate = serialPort.getLastYawRate();
// Update gyro-based mouse (X,Y on screen)
const float MIN_MOUSE_RATE = 30.0;
const float MOUSE_SENSITIVITY = 0.1f;
@ -1031,90 +1024,32 @@ void display(void)
glLoadIdentity();
// camera settings
if (::lookingInMirror) {
// set the camera to looking at my own face
myCamera.setTargetPosition (myAvatar.getHeadPosition());
myCamera.setTargetYaw (myAvatar.getBodyYaw() - 180.0f); // 180 degrees from body yaw
myCamera.setPitch (0.0);
myCamera.setRoll (0.0);
myCamera.setUpShift (0.0);
myCamera.setDistance (0.2);
myCamera.setTightness (100.0f);
} else {
//float firstPersonPitch = 20.0f;
//float firstPersonUpShift = 0.0f;
//float firstPersonDistance = 0.0f;
//float firstPersonTightness = 100.0f;
float firstPersonPitch = 20.0f + myAvatar.getRenderPitch();
float firstPersonUpShift = 0.1f;
float firstPersonDistance = 0.4f;
float firstPersonTightness = 100.0f;
float thirdPersonPitch = 0.0f + myAvatar.getRenderPitch();
float thirdPersonUpShift = -0.2f;
float thirdPersonDistance = 1.2f;
float thirdPersonTightness = 8.0f;
if (USING_FIRST_PERSON_EFFECT) {
float ff = 0.0;
float min = 0.1;
float max = 0.5;
if (myAvatar.getIsNearInteractingOther()){
if (myAvatar.getSpeed() < max) {
float s = (myAvatar.getSpeed()- min)/max ;
ff = 1.0 - s;
}
}
myCamera.setPitch (thirdPersonPitch + ff * (firstPersonPitch - thirdPersonPitch ));
myCamera.setUpShift (thirdPersonUpShift + ff * (firstPersonUpShift - thirdPersonUpShift ));
myCamera.setDistance (thirdPersonDistance + ff * (firstPersonDistance - thirdPersonDistance ));
myCamera.setTightness (thirdPersonTightness + ff * (firstPersonTightness - thirdPersonTightness));
// this version uses a ramp-up/ramp-down timer in the camera to determine shift between first and thirs-person view
/*
if (myAvatar.getSpeed() < 0.02) {
if (myCamera.getMode() != CAMERA_MODE_FIRST_PERSON) {
myCamera.setMode(CAMERA_MODE_FIRST_PERSON);
}
//printf("myCamera.getModeShift() = %f\n", myCamera.getModeShift());
myCamera.setPitch (thirdPersonPitch + myCamera.getModeShift() * (firstPersonPitch - thirdPersonPitch ));
myCamera.setUpShift (thirdPersonUpShift + myCamera.getModeShift() * (firstPersonUpShift - thirdPersonUpShift ));
myCamera.setDistance (thirdPersonDistance + myCamera.getModeShift() * (firstPersonDistance - thirdPersonDistance ));
myCamera.setTightness (thirdPersonTightness + myCamera.getModeShift() * (firstPersonTightness - thirdPersonTightness));
} else {
if (myCamera.getMode() != CAMERA_MODE_THIRD_PERSON) {
myCamera.setMode(CAMERA_MODE_THIRD_PERSON);
}
//printf("myCamera.getModeShift() = %f\n", myCamera.getModeShift());
myCamera.setPitch (firstPersonPitch + myCamera.getModeShift() * (thirdPersonPitch - firstPersonPitch ));
myCamera.setUpShift (firstPersonUpShift + myCamera.getModeShift() * (thirdPersonUpShift - firstPersonUpShift ));
myCamera.setDistance (firstPersonDistance + myCamera.getModeShift() * (thirdPersonDistance - firstPersonDistance ));
myCamera.setTightness (firstPersonTightness + myCamera.getModeShift() * (thirdPersonTightness - firstPersonTightness));
}
*/
} else {
myCamera.setPitch (thirdPersonPitch );
myCamera.setUpShift (thirdPersonUpShift );
myCamera.setDistance (thirdPersonDistance );
myCamera.setTightness(thirdPersonTightness);
}
if (myCamera.getMode() == CAMERA_MODE_MIRROR) {
myAvatar.setDisplayingHead(true);
myCamera.setUpShift (0.0);
myCamera.setDistance (0.2);
myCamera.setTightness (100.0f);
myCamera.setTargetPosition(myAvatar.getHeadPosition());
myCamera.setTargetYaw (myAvatar.getBodyYaw());
myCamera.setRoll (0.0);
myCamera.setTargetRotation(myAvatar.getBodyYaw() - 180.0f, 0.0f, 0.0f);
} else if (myCamera.getMode() == CAMERA_MODE_FIRST_PERSON) {
myAvatar.setDisplayingHead(false);
myCamera.setUpShift (0.0f);
myCamera.setDistance (0.0f);
myCamera.setTightness (100.0f);
myCamera.setTargetPosition(myAvatar.getHeadPosition());
myCamera.setTargetRotation(myAvatar.getAbsoluteHeadYaw(), myAvatar.getAbsoluteHeadPitch(), 0.0f);
} else if (myCamera.getMode() == CAMERA_MODE_THIRD_PERSON) {
myAvatar.setDisplayingHead(true);
myCamera.setUpShift (-0.2f);
myCamera.setDistance (1.5f);
myCamera.setTightness (8.0f);
myCamera.setTargetPosition(myAvatar.getHeadPosition());
myCamera.setTargetRotation(myAvatar.getBodyYaw(), 0.0f, 0.0f);
}
// important...
myCamera.update( 1.f/FPS );
// Render anything (like HUD items) that we want to be in 3D but not in worldspace
@ -1354,6 +1289,20 @@ int doRandomizeVoxelColors(int state) {
return state;
}
int doFalseRandomizeEveryOtherVoxelColors(int state) {
if (state == MENU_ROW_PICKED) {
::voxels.falseColorizeRandomEveryOther();
}
return state;
}
int doTreeStats(int state) {
if (state == MENU_ROW_PICKED) {
::voxels.collectStatsForTreesAndVBOs();
}
return state;
}
int doFalseRandomizeVoxelColors(int state) {
if (state == MENU_ROW_PICKED) {
::voxels.falseColorizeRandom();
@ -1450,9 +1399,11 @@ void initMenu() {
menuColumnDebug->addRow("Kill Local Voxels", doKillLocalVoxels);
menuColumnDebug->addRow("Randomize Voxel TRUE Colors", doRandomizeVoxelColors);
menuColumnDebug->addRow("FALSE Color Voxels Randomly", doFalseRandomizeVoxelColors);
menuColumnDebug->addRow("FALSE Color Voxel Every Other Randomly", doFalseRandomizeEveryOtherVoxelColors);
menuColumnDebug->addRow("FALSE Color Voxels by Distance", doFalseColorizeByDistance);
menuColumnDebug->addRow("FALSE Color Voxel Out of View", doFalseColorizeInView);
menuColumnDebug->addRow("Show TRUE Colors", doTrueVoxelColors);
menuColumnDebug->addRow("Calculate Tree Stats", doTreeStats);
}
void testPointToVoxel() {
@ -1521,17 +1472,27 @@ void addVoxelInFrontOfAvatar() {
detail.blue = 128;
sendVoxelEditMessage(PACKET_HEADER_SET_VOXEL, detail);
// create the voxel locally so it appears immediately
voxels.createVoxel(detail.x, detail.y, detail.z, detail.s, detail.red, detail.green, detail.blue);
}
void addVoxelUnderCursor() {
if (::mouseVoxel.s != 0) {
sendVoxelEditMessage(PACKET_HEADER_SET_VOXEL, ::mouseVoxel);
// create the voxel locally so it appears immediately
voxels.createVoxel(::mouseVoxel.x, ::mouseVoxel.y, ::mouseVoxel.z, ::mouseVoxel.s,
::mouseVoxel.red, ::mouseVoxel.green, ::mouseVoxel.blue);
}
}
void deleteVoxelUnderCursor() {
if (::mouseVoxel.s != 0) {
sendVoxelEditMessage(PACKET_HEADER_ERASE_VOXEL, ::mouseVoxel);
// delete the voxel locally so it disappears immediately
voxels.deleteVoxelAt(::mouseVoxel.x, ::mouseVoxel.y, ::mouseVoxel.z, ::mouseVoxel.s);
}
}
@ -1618,7 +1579,12 @@ void key(unsigned char k, int x, int y) {
}
// Process keypresses
if (k == 'q' || k == 'Q') ::terminate();
if (k == 'S') {
::voxels.collectStatsForTreesAndVBOs();
}
if (k == 'q' || k == 'Q') ::terminate();
if (k == '/') ::renderStatsOn = !::renderStatsOn; // toggle stats
if (k == '*') ::renderStarsOn = !::renderStarsOn; // toggle stars
if (k == 'V' || k == 'v') ::renderVoxels = !::renderVoxels; // toggle voxels
@ -1675,6 +1641,12 @@ void key(unsigned char k, int x, int y) {
::lookingInMirror = !::lookingInMirror;
#ifndef _WIN32
audio.setMixerLoopbackFlag(::lookingInMirror);
if (::lookingInMirror) {
myCamera.setMode(CAMERA_MODE_MIRROR);
} else {
myCamera.setMode(defaultCameraMode);
}
#endif
}
@ -1834,7 +1806,7 @@ void idle(void) {
}
// Read serial port interface devices
if (serialPort.active && USING_INVENSENSE_MPU9150) {
if (serialPort.active) {
serialPort.readData();
}
@ -1868,10 +1840,6 @@ void idle(void) {
lastTimeIdle = check;
}
// Read serial data
if (serialPort.active && !USING_INVENSENSE_MPU9150) {
serialPort.readData();
}
}
void reshape(int width, int height) {
@ -1944,14 +1912,18 @@ glm::vec3 getGravity(glm::vec3 pos) {
return glm::vec3(0.f, 0.f, 0.f);
}
}
void mouseFunc(int button, int state, int x, int y) {
mouseX = x;
mouseY = y;
switch (button) {
case GLUT_LEFT_BUTTON:
if (state == GLUT_DOWN && !menu.mouseClick(x, y)) {
//catch mouse actions on the menu
bool menuClickedOrUnclicked = menu.mouseClick(x, y);
if (!menuClickedOrUnclicked) {
if (button == GLUT_LEFT_BUTTON) {
mouseX = x;
mouseY = y;
if (state == GLUT_DOWN) {
mousePressed = 1;
if (::mouseMode == ADD_VOXEL_MODE || ::mouseMode == COLOR_VOXEL_MODE) {
addVoxelUnderCursor();
@ -1959,19 +1931,16 @@ void mouseFunc(int button, int state, int x, int y) {
} else { // ::mouseMode == DELETE_VOXEL_MODE
deleteVoxelUnderCursor();
}
} else {
} else if (state == GLUT_UP) {
mousePressed = 0;
}
break;
case GLUT_RIGHT_BUTTON:
if (state == GLUT_DOWN) {
deleteVoxelUnderCursor();
}
break;
} else if (button == GLUT_RIGHT_BUTTON && state == GLUT_DOWN) {
deleteVoxelUnderCursor();
}
}
}
void motionFunc(int x, int y) {
mouseX = x;
mouseY = y;
@ -1997,6 +1966,10 @@ void audioMixerUpdate(in_addr_t newMixerAddress, in_port_t newMixerPort) {
#endif
int main(int argc, const char * argv[]) {
gettimeofday(&applicationStartupTime, NULL);
printLog("Interface Startup:\n");
voxels.setViewFrustum(&::viewFrustum);
shared_lib::printLog = & ::printLog;
@ -2014,7 +1987,6 @@ int main(int argc, const char * argv[]) {
AgentList::getInstance()->getAgentSocket().setBlocking(false);
}
gettimeofday(&applicationStartupTime, NULL);
const char* domainIP = getCmdOption(argc, argv, "--domain");
if (domainIP) {
strcpy(DOMAIN_IP,domainIP);
@ -2051,13 +2023,17 @@ int main(int argc, const char * argv[]) {
glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH);
glutInitWindowSize(WIDTH, HEIGHT);
glutCreateWindow("Interface");
printLog( "Created Display Window.\n" );
#ifdef _WIN32
glewInit();
printLog( "Glew Init complete.\n" );
#endif
// we need to create a QApplication instance in order to use Qt's font rendering
app = new QApplication(argc, const_cast<char**>(argv));
printLog( "Created QT Application.\n" );
// Before we render anything, let's set up our viewFrustumOffsetCamera with a sufficiently large
// field of view and near and far clip to make it interesting.
@ -2065,11 +2041,9 @@ int main(int argc, const char * argv[]) {
viewFrustumOffsetCamera.setNearClip(0.1);
viewFrustumOffsetCamera.setFarClip(500.0*TREE_SCALE);
printLog( "Created Display Window.\n" );
initMenu();
initDisplay();
printLog( "Initialized Display.\n" );
glutDisplayFunc(display);
glutReshapeFunc(reshape);
@ -2081,6 +2055,8 @@ int main(int argc, const char * argv[]) {
glutPassiveMotionFunc(mouseoverFunc);
glutMouseFunc(mouseFunc);
glutIdleFunc(idle);
printLog( "Initialized Display.\n" );
init();
printLog( "Init() complete.\n" );

View file

@ -50,7 +50,7 @@ namespace starfield {
return false;
}
printLog("Stars.cpp: read %u vertices, using %lu\n", _valRecordsRead, _ptrVertices->size());
printLog("Loaded %u stars.\n", _valRecordsRead);
return true;
}

View file

@ -42,6 +42,8 @@ AvatarData::AvatarData() :
_headYaw(0),
_headPitch(0),
_headRoll(0),
_headLeanSideways(0),
_headLeanForward(0),
_handState(0),
_cameraPosition(0,0,0),
_cameraDirection(0,0,0),
@ -84,7 +86,13 @@ int AvatarData::getBroadcastData(unsigned char* destinationBuffer) {
destinationBuffer += packFloatAngleToTwoByte(destinationBuffer, _headPitch);
destinationBuffer += packFloatAngleToTwoByte(destinationBuffer, _headRoll);
// Hand Position
// Head lean X,Z (head lateral and fwd/back motion relative to torso)
memcpy(destinationBuffer, &_headLeanSideways, sizeof(float));
destinationBuffer += sizeof(float);
memcpy(destinationBuffer, &_headLeanForward, sizeof(float));
destinationBuffer += sizeof(float);
// Hand Position
memcpy(destinationBuffer, &_handPosition, sizeof(float) * 3);
destinationBuffer += sizeof(float) * 3;
@ -150,6 +158,12 @@ int AvatarData::parseData(unsigned char* sourceBuffer, int numBytes) {
sourceBuffer += unpackFloatAngleFromTwoByte((uint16_t *)sourceBuffer, &_headPitch);
sourceBuffer += unpackFloatAngleFromTwoByte((uint16_t *)sourceBuffer, &_headRoll);
// Head position relative to pelvis
memcpy(&_headLeanSideways, sourceBuffer, sizeof(float));
sourceBuffer += sizeof(float);
memcpy(&_headLeanForward, sourceBuffer, sizeof(float));
sourceBuffer += sizeof(float);
// Hand Position
memcpy(&_handPosition, sourceBuffer, sizeof(float) * 3);
sourceBuffer += sizeof(float) * 3;

View file

@ -55,6 +55,12 @@ public:
void addHeadYaw(float y){_headYaw -= y; }
void addHeadRoll(float r){_headRoll += r; }
// Head vector deflection from pelvix in X,Z
void setHeadLeanSideways(float s) {_headLeanSideways = s; };
float getHeadLeanSideways() const { return _headLeanSideways; };
void setHeadLeanForward(float f) {_headLeanForward = f; };
float getHeadLeanForward() const { return _headLeanForward; };
// Hand State
void setHandState(char s) { _handState = s; };
char getHandState() const {return _handState; };
@ -104,6 +110,9 @@ protected:
float _headYaw;
float _headPitch;
float _headRoll;
float _headLeanSideways;
float _headLeanForward;
// Audio loudness (used to drive facial animation)
float _audioLoudness;

View file

@ -254,15 +254,13 @@ void Agent::printLog(Agent const& agent) {
char publicAddressBuffer[16] = {'\0'};
unsigned short publicAddressPort = loadBufferWithSocketInfo(publicAddressBuffer, agent.publicSocket);
char localAddressBuffer[16] = {'\0'};
unsigned short localAddressPort = loadBufferWithSocketInfo(localAddressBuffer, agent.localSocket);
//char localAddressBuffer[16] = {'\0'};
//unsigned short localAddressPort = loadBufferWithSocketInfo(localAddressBuffer, agent.localSocket);
::printLog("ID: %d T: %s (%c) PA: %s:%d LA: %s:%d\n",
::printLog("# %d %s (%c) @ %s:%d\n",
agent.agentId,
agent.getTypeName(),
agent.type,
publicAddressBuffer,
publicAddressPort,
localAddressBuffer,
localAddressPort);
publicAddressPort);
}

View file

@ -284,7 +284,7 @@ void AgentList::addAgentToList(Agent* newAgent) {
++_numAgents;
printLog("Added agent - ");
printLog("Added ");
Agent::printLog(*newAgent);
}
@ -377,7 +377,7 @@ void *removeSilentAgents(void *args) {
if ((checkTimeUSecs - agent->getLastHeardMicrostamp()) > AGENT_SILENCE_THRESHOLD_USECS
&& agent->getType() != AGENT_TYPE_VOXEL) {
printLog("Killing agent - ");
printLog("Killed ");
Agent::printLog(*agent);
agent->setAlive(false);
@ -416,12 +416,12 @@ void *checkInWithDomainServer(void *args) {
sockaddr_in tempAddress;
memcpy(&tempAddress.sin_addr, pHostInfo->h_addr_list[0], pHostInfo->h_length);
strcpy(DOMAIN_IP, inet_ntoa(tempAddress.sin_addr));
printLog("Domain server: %s - %s\n", DOMAIN_HOSTNAME, DOMAIN_IP);
printLog("Domain Server: %s \n", DOMAIN_HOSTNAME);
} else {
printLog("Failed lookup domainserver\n");
}
} else printLog("Using static domainserver IP: %s\n", DOMAIN_IP);
} else printLog("Domain Server IP: %s\n", DOMAIN_IP);
AgentList* parentAgentList = (AgentList*) args;

View file

@ -10,118 +10,63 @@
#include "AudioRingBuffer.h"
AudioRingBuffer::AudioRingBuffer(int ringSamples, int bufferSamples) :
ringBufferLengthSamples(ringSamples),
bufferLengthSamples(bufferSamples),
endOfLastWrite(NULL),
started(false),
_ringBufferLengthSamples(ringSamples),
_bufferLengthSamples(bufferSamples),
_endOfLastWrite(NULL),
_started(false),
_shouldBeAddedToMix(false),
_shouldLoopbackForAgent(false) {
buffer = new int16_t[ringBufferLengthSamples];
nextOutput = buffer;
_buffer = new int16_t[_ringBufferLengthSamples];
_nextOutput = _buffer;
};
AudioRingBuffer::AudioRingBuffer(const AudioRingBuffer &otherRingBuffer) {
ringBufferLengthSamples = otherRingBuffer.ringBufferLengthSamples;
bufferLengthSamples = otherRingBuffer.bufferLengthSamples;
started = otherRingBuffer.started;
_ringBufferLengthSamples = otherRingBuffer._ringBufferLengthSamples;
_bufferLengthSamples = otherRingBuffer._bufferLengthSamples;
_started = otherRingBuffer._started;
_shouldBeAddedToMix = otherRingBuffer._shouldBeAddedToMix;
_shouldLoopbackForAgent = otherRingBuffer._shouldLoopbackForAgent;
buffer = new int16_t[ringBufferLengthSamples];
memcpy(buffer, otherRingBuffer.buffer, sizeof(int16_t) * ringBufferLengthSamples);
_buffer = new int16_t[_ringBufferLengthSamples];
memcpy(_buffer, otherRingBuffer._buffer, sizeof(int16_t) * _ringBufferLengthSamples);
nextOutput = buffer + (otherRingBuffer.nextOutput - otherRingBuffer.buffer);
endOfLastWrite = buffer + (otherRingBuffer.endOfLastWrite - otherRingBuffer.buffer);
_nextOutput = _buffer + (otherRingBuffer._nextOutput - otherRingBuffer._buffer);
_endOfLastWrite = _buffer + (otherRingBuffer._endOfLastWrite - otherRingBuffer._buffer);
}
AudioRingBuffer::~AudioRingBuffer() {
delete[] buffer;
delete[] _buffer;
};
AudioRingBuffer* AudioRingBuffer::clone() const {
return new AudioRingBuffer(*this);
}
int16_t* AudioRingBuffer::getNextOutput() {
return nextOutput;
}
void AudioRingBuffer::setNextOutput(int16_t *newPointer) {
nextOutput = newPointer;
}
int16_t* AudioRingBuffer::getEndOfLastWrite() {
return endOfLastWrite;
}
void AudioRingBuffer::setEndOfLastWrite(int16_t *newPointer) {
endOfLastWrite = newPointer;
}
int16_t* AudioRingBuffer::getBuffer() {
return buffer;
}
bool AudioRingBuffer::isStarted() {
return started;
}
void AudioRingBuffer::setStarted(bool status) {
started = status;
}
float* AudioRingBuffer::getPosition() {
return position;
}
void AudioRingBuffer::setPosition(float *newPosition) {
position[0] = newPosition[0];
position[1] = newPosition[1];
position[2] = newPosition[2];
}
float AudioRingBuffer::getAttenuationRatio() {
return attenuationRatio;
}
void AudioRingBuffer::setAttenuationRatio(float newAttenuation) {
attenuationRatio = newAttenuation;
}
float AudioRingBuffer::getBearing() {
return bearing;
}
void AudioRingBuffer::setBearing(float newBearing) {
bearing = newBearing;
}
const int AGENT_LOOPBACK_MODIFIER = 307;
int AudioRingBuffer::parseData(unsigned char* sourceBuffer, int numBytes) {
if (numBytes > (bufferLengthSamples * sizeof(int16_t))) {
if (numBytes > (_bufferLengthSamples * sizeof(int16_t))) {
unsigned char *dataPtr = sourceBuffer + 1;
for (int p = 0; p < 3; p ++) {
memcpy(&position[p], dataPtr, sizeof(float));
dataPtr += sizeof(float);
}
memcpy(&_position, dataPtr, sizeof(_position));
dataPtr += (sizeof(_position));
unsigned int attenuationByte = *(dataPtr++);
attenuationRatio = attenuationByte / 255.0f;
_attenuationRatio = attenuationByte / 255.0f;
memcpy(&bearing, dataPtr, sizeof(float));
dataPtr += sizeof(bearing);
memcpy(&_bearing, dataPtr, sizeof(float));
dataPtr += sizeof(_bearing);
if (bearing > 180 || bearing < -180) {
if (_bearing > 180 || _bearing < -180) {
// we were passed an invalid bearing because this agent wants loopback (pressed the H key)
_shouldLoopbackForAgent = true;
// correct the bearing
bearing = bearing > 0
? bearing - AGENT_LOOPBACK_MODIFIER
: bearing + AGENT_LOOPBACK_MODIFIER;
_bearing = _bearing > 0
? _bearing - AGENT_LOOPBACK_MODIFIER
: _bearing + AGENT_LOOPBACK_MODIFIER;
} else {
_shouldLoopbackForAgent = false;
}
@ -129,33 +74,33 @@ int AudioRingBuffer::parseData(unsigned char* sourceBuffer, int numBytes) {
sourceBuffer = dataPtr;
}
if (endOfLastWrite == NULL) {
endOfLastWrite = buffer;
} else if (diffLastWriteNextOutput() > ringBufferLengthSamples - bufferLengthSamples) {
endOfLastWrite = buffer;
nextOutput = buffer;
started = false;
if (!_endOfLastWrite) {
_endOfLastWrite = _buffer;
} else if (diffLastWriteNextOutput() > _ringBufferLengthSamples - _bufferLengthSamples) {
_endOfLastWrite = _buffer;
_nextOutput = _buffer;
_started = false;
}
memcpy(endOfLastWrite, sourceBuffer, bufferLengthSamples * sizeof(int16_t));
memcpy(_endOfLastWrite, sourceBuffer, _bufferLengthSamples * sizeof(int16_t));
endOfLastWrite += bufferLengthSamples;
_endOfLastWrite += _bufferLengthSamples;
if (endOfLastWrite >= buffer + ringBufferLengthSamples) {
endOfLastWrite = buffer;
if (_endOfLastWrite >= _buffer + _ringBufferLengthSamples) {
_endOfLastWrite = _buffer;
}
return numBytes;
}
short AudioRingBuffer::diffLastWriteNextOutput() {
if (endOfLastWrite == NULL) {
if (!_endOfLastWrite) {
return 0;
} else {
short sampleDifference = endOfLastWrite - nextOutput;
short sampleDifference = _endOfLastWrite - _nextOutput;
if (sampleDifference < 0) {
sampleDifference += ringBufferLengthSamples;
sampleDifference += _ringBufferLengthSamples;
}
return sampleDifference;

View file

@ -12,6 +12,12 @@
#include <stdint.h>
#include "AgentData.h"
struct Position {
float x;
float y;
float z;
};
class AudioRingBuffer : public AgentData {
public:
AudioRingBuffer(int ringSamples, int bufferSamples);
@ -21,35 +27,36 @@ public:
int parseData(unsigned char* sourceBuffer, int numBytes);
AudioRingBuffer* clone() const;
int16_t* getNextOutput();
void setNextOutput(int16_t *newPointer);
int16_t* getEndOfLastWrite();
void setEndOfLastWrite(int16_t *newPointer);
int16_t* getBuffer();
bool isStarted();
void setStarted(bool status);
int16_t* getNextOutput() const { return _nextOutput; }
void setNextOutput(int16_t* nextOutput) { _nextOutput = nextOutput; }
int16_t* getEndOfLastWrite() const { return _endOfLastWrite; }
void setEndOfLastWrite(int16_t* endOfLastWrite) { _endOfLastWrite = endOfLastWrite; }
int16_t* getBuffer() const { return _buffer; }
bool isStarted() const { return _started; }
void setStarted(bool started) { _started = started; }
bool shouldBeAddedToMix() const { return _shouldBeAddedToMix; }
void setShouldBeAddedToMix(bool shouldBeAddedToMix) { _shouldBeAddedToMix = shouldBeAddedToMix; }
float* getPosition();
void setPosition(float newPosition[]);
float getAttenuationRatio();
void setAttenuationRatio(float newAttenuation);
float getBearing();
void setBearing(float newBearing);
const Position& getPosition() const { return _position; }
float getAttenuationRatio() const { return _attenuationRatio; }
float getBearing() const { return _bearing; }
bool shouldLoopbackForAgent() const { return _shouldLoopbackForAgent; }
short diffLastWriteNextOutput();
private:
int ringBufferLengthSamples;
int bufferLengthSamples;
float position[3];
float attenuationRatio;
float bearing;
int16_t *nextOutput;
int16_t *endOfLastWrite;
int16_t *buffer;
bool started;
int _ringBufferLengthSamples;
int _bufferLengthSamples;
Position _position;
float _attenuationRatio;
float _bearing;
int16_t* _nextOutput;
int16_t* _endOfLastWrite;
int16_t* _buffer;
bool _started;
bool _shouldBeAddedToMix;
bool _shouldLoopbackForAgent;
};

View file

@ -96,6 +96,7 @@ void UrlReader::getinfo(char const*& url,
if (time > s.st_mtime) {
// file on server is newer -> update cache file
_ptrCacheFile = fopen(_strCacheFile, "wb");
printf("From URL: ");
if (_ptrCacheFile != 0l) {
_valCacheMode = cache_write;
}
@ -108,6 +109,7 @@ void UrlReader::getinfo(char const*& url,
}
}
_ptrCacheFile = fopen(_strCacheFile, "rb");
printf("From file: ");
if (_ptrCacheFile != 0l) {
_valCacheMode = cache_read;
}

View file

@ -94,6 +94,7 @@ VoxelNode* VoxelNode::removeChildAtIndex(int childIndex) {
VoxelNode* returnedChild = _children[childIndex];
if (_children[childIndex]) {
_children[childIndex] = NULL;
_isDirty = true;
}
return returnedChild;
}
@ -150,9 +151,7 @@ void VoxelNode::setFalseColor(colorPart red, colorPart green, colorPart blue) {
_currentColor[1] = green;
_currentColor[2] = blue;
_currentColor[3] = 1; // XXXBHG - False colors are always considered set
//if (_shouldRender) {
_isDirty = true;
//}
_isDirty = true;
}
}
@ -163,9 +162,7 @@ void VoxelNode::setFalseColored(bool isFalseColored) {
memcpy(&_currentColor,&_trueColor,sizeof(nodeColor));
}
_falseColored = isFalseColored;
//if (_shouldRender) {
_isDirty = true;
//}
_isDirty = true;
}
};

View file

@ -61,6 +61,7 @@ public:
bool isDirty() const { return _isDirty; };
void clearDirtyBit() { _isDirty = false; };
void setDirtyBit() { _isDirty = true; };
unsigned long int getNodesChangedFromBitstream() const { return _nodesChangedFromBitstream; };
bool findRayIntersection(const glm::vec3& origin, const glm::vec3& direction,