This commit is contained in:
atlante45 2013-08-02 17:18:35 -07:00
parent d765b58551
commit bceb416d8a

View file

@ -19,7 +19,6 @@
#include "Application.h"
#include "Webcam.h"
#include "avatar/Face.h"
using namespace cv;
using namespace std;
@ -33,7 +32,7 @@ int jointVectorMetaType = qRegisterMetaType<JointVector>("JointVector");
int matMetaType = qRegisterMetaType<Mat>("cv::Mat");
int rotatedRectMetaType = qRegisterMetaType<RotatedRect>("cv::RotatedRect");
Webcam::Webcam() : _enabled(false), _active(false), _colorTextureID(0), _depthTextureID(0), _skeletonTrackingOn(false) {
Webcam::Webcam() : _enabled(false), _active(false), _colorTextureID(0), _depthTextureID(0) {
// the grabber simply runs as fast as possible
_grabber = new FrameGrabber();
_grabber->moveToThread(&_grabberThread);
@ -58,11 +57,8 @@ void Webcam::setEnabled(bool enabled) {
}
}
const float UNINITIALIZED_FACE_DEPTH = 0.0f;
void Webcam::reset() {
_initialFaceRect = RotatedRect();
_initialFaceDepth = UNINITIALIZED_FACE_DEPTH;
if (_enabled) {
// send a message to the grabber
@ -153,10 +149,7 @@ Webcam::~Webcam() {
delete _grabber;
}
const float METERS_PER_MM = 1.0f / 1000.0f;
void Webcam::setFrame(const Mat& color, int format, const Mat& depth, float midFaceDepth,
float aspectRatio, const RotatedRect& faceRect, bool sending, const JointVector& joints) {
void Webcam::setFrame(const Mat& color, int format, const Mat& depth, const RotatedRect& faceRect, const JointVector& joints) {
IplImage colorImage = color;
glPixelStorei(GL_UNPACK_ROW_LENGTH, colorImage.widthStep / 3);
if (_colorTextureID == 0) {
@ -193,11 +186,9 @@ void Webcam::setFrame(const Mat& color, int format, const Mat& depth, float midF
glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);
glBindTexture(GL_TEXTURE_2D, 0);
// store our various data, update our frame count for fps computation
_aspectRatio = aspectRatio;
// store our face rect and joints, update our frame count for fps computation
_faceRect = faceRect;
_sending = sending;
_joints = _skeletonTrackingOn ? joints : JointVector();
_joints = joints;
_frameCount++;
const int MAX_FPS = 60;
@ -241,28 +232,22 @@ void Webcam::setFrame(const Mat& color, int format, const Mat& depth, float midF
const float ROTATION_SMOOTHING = 0.95f;
_estimatedRotation.z = glm::mix(_faceRect.angle, _estimatedRotation.z, ROTATION_SMOOTHING);
// determine position based on translation and scaling of the face rect/mean face depth
// determine position based on translation and scaling of the face rect
if (_initialFaceRect.size.area() == 0) {
_initialFaceRect = _faceRect;
_estimatedPosition = glm::vec3();
_initialFaceDepth = midFaceDepth;
} else {
float proportion, z;
if (midFaceDepth == UNINITIALIZED_FACE_DEPTH) {
proportion = sqrtf(_initialFaceRect.size.area() / (float)_faceRect.size.area());
const float INITIAL_DISTANCE_TO_CAMERA = 0.333f;
z = INITIAL_DISTANCE_TO_CAMERA * proportion - INITIAL_DISTANCE_TO_CAMERA;
} else {
z = (midFaceDepth - _initialFaceDepth) * METERS_PER_MM;
proportion = midFaceDepth / _initialFaceDepth;
}
float proportion = sqrtf(_initialFaceRect.size.area() / (float)_faceRect.size.area());
const float DISTANCE_TO_CAMERA = 0.333f;
const float POSITION_SCALE = 0.5f;
_estimatedPosition = glm::vec3(
float z = DISTANCE_TO_CAMERA * proportion - DISTANCE_TO_CAMERA;
glm::vec3 position = glm::vec3(
(_faceRect.center.x - _initialFaceRect.center.x) * proportion * POSITION_SCALE / _textureSize.width,
(_faceRect.center.y - _initialFaceRect.center.y) * proportion * POSITION_SCALE / _textureSize.width,
z);
const float POSITION_SMOOTHING = 0.95f;
_estimatedPosition = glm::mix(position, _estimatedPosition, POSITION_SMOOTHING);
}
}
@ -273,8 +258,8 @@ void Webcam::setFrame(const Mat& color, int format, const Mat& depth, float midF
QTimer::singleShot(qMax((int)remaining / 1000, 0), _grabber, SLOT(grabFrame()));
}
FrameGrabber::FrameGrabber() : _initialized(false), _videoSendMode(FULL_FRAME_VIDEO), _capture(0), _searchWindow(0, 0, 0, 0),
_smoothedMidFaceDepth(UNINITIALIZED_FACE_DEPTH), _colorCodec(), _depthCodec(), _frameCount(0) {
FrameGrabber::FrameGrabber() : _initialized(false), _capture(0), _searchWindow(0, 0, 0, 0),
_depthOffset(0.0), _codec(), _frameCount(0) {
}
FrameGrabber::~FrameGrabber() {
@ -367,13 +352,6 @@ static void XN_CALLBACK_TYPE calibrationCompleted(SkeletonCapability& capability
}
#endif
void FrameGrabber::cycleVideoSendMode() {
_videoSendMode = (VideoSendMode)((_videoSendMode + 1) % VIDEO_SEND_MODE_COUNT);
_searchWindow = cv::Rect(0, 0, 0, 0);
destroyCodecs();
}
void FrameGrabber::reset() {
_searchWindow = cv::Rect(0, 0, 0, 0);
@ -389,7 +367,10 @@ void FrameGrabber::shutdown() {
cvReleaseCapture(&_capture);
_capture = 0;
}
destroyCodecs();
if (_codec.name != 0) {
vpx_codec_destroy(&_codec);
_codec.name = 0;
}
_initialized = false;
thread()->quit();
@ -442,6 +423,7 @@ void FrameGrabber::grabFrame() {
_userID, (XnSkeletonJoint)parentJoint, parentOrientation);
rotation = glm::inverse(xnToGLM(parentOrientation.orientation)) * rotation;
}
const float METERS_PER_MM = 1.0f / 1000.0f;
joints[avatarJoint] = Joint(xnToGLM(transform.position.position, true) * METERS_PER_MM,
rotation, xnToGLM(projected));
}
@ -465,290 +447,181 @@ void FrameGrabber::grabFrame() {
color = image;
}
// if we don't have a search window (yet), try using the face cascade
int channels = 0;
float ranges[] = { 0, 180 };
const float* range = ranges;
if (_searchWindow.area() == 0) {
vector<Rect> faces;
_faceCascade.detectMultiScale(color, faces, 1.1, 6);
if (!faces.empty()) {
_searchWindow = faces.front();
updateHSVFrame(color, format);
Mat faceHsv(_hsvFrame, _searchWindow);
Mat faceMask(_mask, _searchWindow);
int sizes = 30;
calcHist(&faceHsv, 1, &channels, faceMask, _histogram, 1, &sizes, &range);
double min, max;
minMaxLoc(_histogram, &min, &max);
_histogram.convertTo(_histogram, -1, (max == 0.0) ? 0.0 : 255.0 / max);
}
}
RotatedRect faceRect;
if (_searchWindow.area() > 0) {
updateHSVFrame(color, format);
calcBackProject(&_hsvFrame, 1, &channels, _histogram, _backProject, &range);
bitwise_and(_backProject, _mask, _backProject);
faceRect = CamShift(_backProject, _searchWindow, TermCriteria(CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 10, 1));
Rect faceBounds = faceRect.boundingRect();
Rect imageBounds(0, 0, color.cols, color.rows);
_searchWindow = Rect(clip(faceBounds.tl(), imageBounds), clip(faceBounds.br(), imageBounds));
}
#ifdef HAVE_OPENNI
if (_depthGenerator.IsValid()) {
// convert from 11 to 8 bits, centered about the mean face depth (if possible)
if (_searchWindow.area() > 0) {
const double DEPTH_OFFSET_SMOOTHING = 0.95;
const double EIGHT_BIT_MIDPOINT = 128.0;
double meanOffset = EIGHT_BIT_MIDPOINT - mean(depth(_searchWindow))[0];
_depthOffset = (_depthOffset == 0.0) ? meanOffset : glm::mix(meanOffset, _depthOffset, DEPTH_OFFSET_SMOOTHING);
}
depth.convertTo(_grayDepthFrame, CV_8UC1, 1.0, _depthOffset);
}
#endif
const int ENCODED_FACE_WIDTH = 128;
const int ENCODED_FACE_HEIGHT = 128;
int encodedWidth;
int encodedHeight;
float colorBitrateMultiplier = 1.0f;
float depthBitrateMultiplier = 1.0f;
Mat faceTransform;
float aspectRatio;
if (_videoSendMode == FULL_FRAME_VIDEO) {
// no need to find the face if we're sending full frame video
_smoothedFaceRect = RotatedRect(Point2f(color.cols / 2.0f, color.rows / 2.0f), Size2f(color.cols, color.rows), 0.0f);
encodedWidth = color.cols;
encodedHeight = color.rows;
aspectRatio = FULL_FRAME_ASPECT;
colorBitrateMultiplier = 4.0f;
int combinedFaceHeight = ENCODED_FACE_HEIGHT * (depth.empty() ? 1 : 2);
if (_codec.name == 0) {
// initialize encoder context
vpx_codec_enc_cfg_t codecConfig;
vpx_codec_enc_config_default(vpx_codec_vp8_cx(), &codecConfig, 0);
codecConfig.rc_target_bitrate = ENCODED_FACE_WIDTH * combinedFaceHeight * codecConfig.rc_target_bitrate /
codecConfig.g_w / codecConfig.g_h;
codecConfig.g_w = ENCODED_FACE_WIDTH;
codecConfig.g_h = combinedFaceHeight;
vpx_codec_enc_init(&_codec, vpx_codec_vp8_cx(), &codecConfig, 0);
}
// correct for 180 degree rotations
if (faceRect.angle < -90.0f) {
faceRect.angle += 180.0f;
} else if (faceRect.angle > 90.0f) {
faceRect.angle -= 180.0f;
}
// compute the smoothed face rect
if (_smoothedFaceRect.size.area() == 0) {
_smoothedFaceRect = faceRect;
} else {
// if we don't have a search window (yet), try using the face cascade
int channels = 0;
float ranges[] = { 0, 180 };
const float* range = ranges;
if (_searchWindow.area() == 0) {
vector<Rect> faces;
_faceCascade.detectMultiScale(color, faces, 1.1, 6);
if (!faces.empty()) {
_searchWindow = faces.front();
updateHSVFrame(color, format);
Mat faceHsv(_hsvFrame, _searchWindow);
Mat faceMask(_mask, _searchWindow);
int sizes = 30;
calcHist(&faceHsv, 1, &channels, faceMask, _histogram, 1, &sizes, &range);
double min, max;
minMaxLoc(_histogram, &min, &max);
_histogram.convertTo(_histogram, -1, (max == 0.0) ? 0.0 : 255.0 / max);
}
}
RotatedRect faceRect;
if (_searchWindow.area() > 0) {
updateHSVFrame(color, format);
calcBackProject(&_hsvFrame, 1, &channels, _histogram, _backProject, &range);
bitwise_and(_backProject, _mask, _backProject);
faceRect = CamShift(_backProject, _searchWindow, TermCriteria(CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 10, 1));
Rect faceBounds = faceRect.boundingRect();
Rect imageBounds(0, 0, color.cols, color.rows);
_searchWindow = Rect(clip(faceBounds.tl(), imageBounds), clip(faceBounds.br(), imageBounds));
}
encodedWidth = ENCODED_FACE_WIDTH;
encodedHeight = ENCODED_FACE_HEIGHT;
depthBitrateMultiplier = 2.0f;
// correct for 180 degree rotations
if (faceRect.angle < -90.0f) {
faceRect.angle += 180.0f;
} else if (faceRect.angle > 90.0f) {
faceRect.angle -= 180.0f;
}
// compute the smoothed face rect
if (_smoothedFaceRect.size.area() == 0) {
_smoothedFaceRect = faceRect;
} else {
const float FACE_RECT_SMOOTHING = 0.9f;
_smoothedFaceRect.center.x = glm::mix(faceRect.center.x, _smoothedFaceRect.center.x, FACE_RECT_SMOOTHING);
_smoothedFaceRect.center.y = glm::mix(faceRect.center.y, _smoothedFaceRect.center.y, FACE_RECT_SMOOTHING);
_smoothedFaceRect.size.width = glm::mix(faceRect.size.width, _smoothedFaceRect.size.width, FACE_RECT_SMOOTHING);
_smoothedFaceRect.size.height = glm::mix(faceRect.size.height, _smoothedFaceRect.size.height, FACE_RECT_SMOOTHING);
_smoothedFaceRect.angle = glm::mix(faceRect.angle, _smoothedFaceRect.angle, FACE_RECT_SMOOTHING);
}
// use the face rect to compute the face transform, aspect ratio
Point2f sourcePoints[4];
_smoothedFaceRect.points(sourcePoints);
Point2f destPoints[] = { Point2f(0, encodedHeight), Point2f(0, 0), Point2f(encodedWidth, 0) };
faceTransform = getAffineTransform(sourcePoints, destPoints);
aspectRatio = _smoothedFaceRect.size.width / _smoothedFaceRect.size.height;
const float FACE_RECT_SMOOTHING = 0.9f;
_smoothedFaceRect.center.x = glm::mix(faceRect.center.x, _smoothedFaceRect.center.x, FACE_RECT_SMOOTHING);
_smoothedFaceRect.center.y = glm::mix(faceRect.center.y, _smoothedFaceRect.center.y, FACE_RECT_SMOOTHING);
_smoothedFaceRect.size.width = glm::mix(faceRect.size.width, _smoothedFaceRect.size.width, FACE_RECT_SMOOTHING);
_smoothedFaceRect.size.height = glm::mix(faceRect.size.height, _smoothedFaceRect.size.height, FACE_RECT_SMOOTHING);
_smoothedFaceRect.angle = glm::mix(faceRect.angle, _smoothedFaceRect.angle, FACE_RECT_SMOOTHING);
}
const ushort ELEVEN_BIT_MINIMUM = 0;
const uchar EIGHT_BIT_MIDPOINT = 128;
double depthOffset;
// resize/rotate face into encoding rectangle
_faceColor.create(ENCODED_FACE_WIDTH, ENCODED_FACE_HEIGHT, CV_8UC3);
Point2f sourcePoints[4];
_smoothedFaceRect.points(sourcePoints);
Point2f destPoints[] = { Point2f(0, ENCODED_FACE_HEIGHT), Point2f(0, 0), Point2f(ENCODED_FACE_WIDTH, 0) };
Mat transform = getAffineTransform(sourcePoints, destPoints);
warpAffine(color, _faceColor, transform, _faceColor.size());
// convert from RGB to YV12
const int ENCODED_BITS_PER_Y = 8;
const int ENCODED_BITS_PER_VU = 2;
const int ENCODED_BITS_PER_PIXEL = ENCODED_BITS_PER_Y + 2 * ENCODED_BITS_PER_VU;
const int BITS_PER_BYTE = 8;
_encodedFace.fill(128, ENCODED_FACE_WIDTH * combinedFaceHeight * ENCODED_BITS_PER_PIXEL / BITS_PER_BYTE);
vpx_image_t vpxImage;
vpx_img_wrap(&vpxImage, VPX_IMG_FMT_YV12, ENCODED_FACE_WIDTH, combinedFaceHeight, 1, (unsigned char*)_encodedFace.data());
uchar* yline = vpxImage.planes[0];
uchar* vline = vpxImage.planes[1];
uchar* uline = vpxImage.planes[2];
const int Y_RED_WEIGHT = (int)(0.299 * 256);
const int Y_GREEN_WEIGHT = (int)(0.587 * 256);
const int Y_BLUE_WEIGHT = (int)(0.114 * 256);
const int V_RED_WEIGHT = (int)(0.713 * 256);
const int U_BLUE_WEIGHT = (int)(0.564 * 256);
int redIndex = 0;
int greenIndex = 1;
int blueIndex = 2;
if (format == GL_BGR) {
redIndex = 2;
blueIndex = 0;
}
for (int i = 0; i < ENCODED_FACE_HEIGHT; i += 2) {
uchar* ydest = yline;
uchar* vdest = vline;
uchar* udest = uline;
for (int j = 0; j < ENCODED_FACE_WIDTH; j += 2) {
uchar* tl = _faceColor.ptr(i, j);
uchar* tr = _faceColor.ptr(i, j + 1);
uchar* bl = _faceColor.ptr(i + 1, j);
uchar* br = _faceColor.ptr(i + 1, j + 1);
ydest[0] = (tl[redIndex] * Y_RED_WEIGHT + tl[1] * Y_GREEN_WEIGHT + tl[blueIndex] * Y_BLUE_WEIGHT) >> 8;
ydest[1] = (tr[redIndex] * Y_RED_WEIGHT + tr[1] * Y_GREEN_WEIGHT + tr[blueIndex] * Y_BLUE_WEIGHT) >> 8;
ydest[ENCODED_FACE_WIDTH] = (bl[redIndex] * Y_RED_WEIGHT + bl[greenIndex] *
Y_GREEN_WEIGHT + bl[blueIndex] * Y_BLUE_WEIGHT) >> 8;
ydest[ENCODED_FACE_WIDTH + 1] = (br[redIndex] * Y_RED_WEIGHT + br[greenIndex] *
Y_GREEN_WEIGHT + br[blueIndex] * Y_BLUE_WEIGHT) >> 8;
ydest += 2;
int totalRed = tl[redIndex] + tr[redIndex] + bl[redIndex] + br[redIndex];
int totalGreen = tl[greenIndex] + tr[greenIndex] + bl[greenIndex] + br[greenIndex];
int totalBlue = tl[blueIndex] + tr[blueIndex] + bl[blueIndex] + br[blueIndex];
int totalY = (totalRed * Y_RED_WEIGHT + totalGreen * Y_GREEN_WEIGHT + totalBlue * Y_BLUE_WEIGHT) >> 8;
*vdest++ = (((totalRed - totalY) * V_RED_WEIGHT) >> 10) + 128;
*udest++ = (((totalBlue - totalY) * U_BLUE_WEIGHT) >> 10) + 128;
}
yline += vpxImage.stride[0] * 2;
vline += vpxImage.stride[1];
uline += vpxImage.stride[2];
}
// if we have depth data, warp that and just copy it in
if (!depth.empty()) {
if (_videoSendMode == FACE_VIDEO) {
// warp the face depth without interpolation (because it will contain invalid zero values)
_faceDepth.create(encodedHeight, encodedWidth, CV_16UC1);
warpAffine(depth, _faceDepth, faceTransform, _faceDepth.size(), INTER_NEAREST);
_faceDepth.create(ENCODED_FACE_WIDTH, ENCODED_FACE_HEIGHT, CV_8UC1);
warpAffine(_grayDepthFrame, _faceDepth, transform, _faceDepth.size());
} else {
_faceDepth = depth;
}
_smoothedFaceDepth.create(encodedHeight, encodedWidth, CV_16UC1);
// smooth the depth over time
const ushort ELEVEN_BIT_MAXIMUM = 2047;
const float DEPTH_SMOOTHING = 0.25f;
ushort* src = _faceDepth.ptr<ushort>();
ushort* dest = _smoothedFaceDepth.ptr<ushort>();
ushort minimumDepth = numeric_limits<ushort>::max();
for (int i = 0; i < encodedHeight; i++) {
for (int j = 0; j < encodedWidth; j++) {
ushort depth = *src++;
if (depth != ELEVEN_BIT_MINIMUM && depth != ELEVEN_BIT_MAXIMUM) {
minimumDepth = min(minimumDepth, depth);
*dest = (*dest == ELEVEN_BIT_MINIMUM) ? depth : (ushort)glm::mix(depth, *dest, DEPTH_SMOOTHING);
}
dest++;
}
}
const ushort MINIMUM_DEPTH_OFFSET = 64;
const float FIXED_MID_DEPTH = 640.0f;
float midFaceDepth = (_videoSendMode == FACE_VIDEO) ? (minimumDepth + MINIMUM_DEPTH_OFFSET) : FIXED_MID_DEPTH;
// smooth the mid face depth over time
const float MID_FACE_DEPTH_SMOOTHING = 0.5f;
_smoothedMidFaceDepth = (_smoothedMidFaceDepth == UNINITIALIZED_FACE_DEPTH) ? midFaceDepth :
glm::mix(midFaceDepth, _smoothedMidFaceDepth, MID_FACE_DEPTH_SMOOTHING);
// convert from 11 to 8 bits for preview/local display
depthOffset = EIGHT_BIT_MIDPOINT - _smoothedMidFaceDepth;
depth.convertTo(_grayDepthFrame, CV_8UC1, 1.0, depthOffset);
}
QByteArray payload;
if (_videoSendMode != NO_VIDEO) {
if (_colorCodec.name == 0) {
// initialize encoder context(s)
vpx_codec_enc_cfg_t codecConfig;
vpx_codec_enc_config_default(vpx_codec_vp8_cx(), &codecConfig, 0);
codecConfig.rc_target_bitrate = ENCODED_FACE_WIDTH * ENCODED_FACE_HEIGHT * colorBitrateMultiplier *
codecConfig.rc_target_bitrate / codecConfig.g_w / codecConfig.g_h;
codecConfig.g_w = encodedWidth;
codecConfig.g_h = encodedHeight;
vpx_codec_enc_init(&_colorCodec, vpx_codec_vp8_cx(), &codecConfig, 0);
if (!depth.empty()) {
codecConfig.rc_target_bitrate *= depthBitrateMultiplier;
vpx_codec_enc_init(&_depthCodec, vpx_codec_vp8_cx(), &codecConfig, 0);
}
}
Mat transform;
if (_videoSendMode == FACE_VIDEO) {
// resize/rotate face into encoding rectangle
_faceColor.create(encodedHeight, encodedWidth, CV_8UC3);
warpAffine(color, _faceColor, faceTransform, _faceColor.size());
} else {
_faceColor = color;
}
// convert from RGB to YV12: see http://www.fourcc.org/yuv.php and
// http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.html#cvtcolor
const int ENCODED_BITS_PER_Y = 8;
const int ENCODED_BITS_PER_VU = 2;
const int ENCODED_BITS_PER_PIXEL = ENCODED_BITS_PER_Y + 2 * ENCODED_BITS_PER_VU;
const int BITS_PER_BYTE = 8;
_encodedFace.resize(encodedWidth * encodedHeight * ENCODED_BITS_PER_PIXEL / BITS_PER_BYTE);
vpx_image_t vpxImage;
vpx_img_wrap(&vpxImage, VPX_IMG_FMT_YV12, encodedWidth, encodedHeight, 1,
(unsigned char*)_encodedFace.data());
uchar* yline = vpxImage.planes[0];
uchar* vline = vpxImage.planes[1];
uchar* uline = vpxImage.planes[2];
const int Y_RED_WEIGHT = (int)(0.299 * 256);
const int Y_GREEN_WEIGHT = (int)(0.587 * 256);
const int Y_BLUE_WEIGHT = (int)(0.114 * 256);
const int V_RED_WEIGHT = (int)(0.713 * 256);
const int U_BLUE_WEIGHT = (int)(0.564 * 256);
int redIndex = 0;
int greenIndex = 1;
int blueIndex = 2;
if (format == GL_BGR) {
redIndex = 2;
blueIndex = 0;
}
for (int i = 0; i < encodedHeight; i += 2) {
uchar* ydest = yline;
uchar* vdest = vline;
uchar* udest = uline;
for (int j = 0; j < encodedWidth; j += 2) {
uchar* tl = _faceColor.ptr(i, j);
uchar* tr = _faceColor.ptr(i, j + 1);
uchar* bl = _faceColor.ptr(i + 1, j);
uchar* br = _faceColor.ptr(i + 1, j + 1);
ydest[0] = (tl[redIndex] * Y_RED_WEIGHT + tl[1] * Y_GREEN_WEIGHT + tl[blueIndex] * Y_BLUE_WEIGHT) >> 8;
ydest[1] = (tr[redIndex] * Y_RED_WEIGHT + tr[1] * Y_GREEN_WEIGHT + tr[blueIndex] * Y_BLUE_WEIGHT) >> 8;
ydest[vpxImage.stride[0]] = (bl[redIndex] * Y_RED_WEIGHT + bl[greenIndex] *
Y_GREEN_WEIGHT + bl[blueIndex] * Y_BLUE_WEIGHT) >> 8;
ydest[vpxImage.stride[0] + 1] = (br[redIndex] * Y_RED_WEIGHT + br[greenIndex] *
Y_GREEN_WEIGHT + br[blueIndex] * Y_BLUE_WEIGHT) >> 8;
ydest += 2;
int totalRed = tl[redIndex] + tr[redIndex] + bl[redIndex] + br[redIndex];
int totalGreen = tl[greenIndex] + tr[greenIndex] + bl[greenIndex] + br[greenIndex];
int totalBlue = tl[blueIndex] + tr[blueIndex] + bl[blueIndex] + br[blueIndex];
int totalY = (totalRed * Y_RED_WEIGHT + totalGreen * Y_GREEN_WEIGHT + totalBlue * Y_BLUE_WEIGHT) >> 8;
*vdest++ = (((totalRed - totalY) * V_RED_WEIGHT) >> 10) + 128;
*udest++ = (((totalBlue - totalY) * U_BLUE_WEIGHT) >> 10) + 128;
}
yline += vpxImage.stride[0] * 2;
vline += vpxImage.stride[1];
uline += vpxImage.stride[2];
}
// encode the frame
vpx_codec_encode(&_colorCodec, &vpxImage, ++_frameCount, 1, 0, VPX_DL_REALTIME);
// start the payload off with the aspect ratio (zero for full frame)
payload.append((const char*)&aspectRatio, sizeof(float));
// extract the encoded frame
vpx_codec_iter_t iterator = 0;
const vpx_codec_cx_pkt_t* packet;
while ((packet = vpx_codec_get_cx_data(&_colorCodec, &iterator)) != 0) {
if (packet->kind == VPX_CODEC_CX_FRAME_PKT) {
// prepend the length, which will indicate whether there's a depth frame too
payload.append((const char*)&packet->data.frame.sz, sizeof(packet->data.frame.sz));
payload.append((const char*)packet->data.frame.buf, packet->data.frame.sz);
}
}
if (!depth.empty()) {
// convert with mask
uchar* yline = vpxImage.planes[0];
uchar* vline = vpxImage.planes[1];
uchar* uline = vpxImage.planes[2];
const uchar EIGHT_BIT_MAXIMUM = 255;
for (int i = 0; i < encodedHeight; i += 2) {
uchar* ydest = yline;
uchar* vdest = vline;
uchar* udest = uline;
for (int j = 0; j < encodedWidth; j += 2) {
ushort tl = *_smoothedFaceDepth.ptr<ushort>(i, j);
ushort tr = *_smoothedFaceDepth.ptr<ushort>(i, j + 1);
ushort bl = *_smoothedFaceDepth.ptr<ushort>(i + 1, j);
ushort br = *_smoothedFaceDepth.ptr<ushort>(i + 1, j + 1);
uchar mask = EIGHT_BIT_MAXIMUM;
ydest[0] = (tl == ELEVEN_BIT_MINIMUM) ? (mask = EIGHT_BIT_MIDPOINT) :
saturate_cast<uchar>(tl + depthOffset);
ydest[1] = (tr == ELEVEN_BIT_MINIMUM) ? (mask = EIGHT_BIT_MIDPOINT) :
saturate_cast<uchar>(tr + depthOffset);
ydest[vpxImage.stride[0]] = (bl == ELEVEN_BIT_MINIMUM) ? (mask = EIGHT_BIT_MIDPOINT) :
saturate_cast<uchar>(bl + depthOffset);
ydest[vpxImage.stride[0] + 1] = (br == ELEVEN_BIT_MINIMUM) ? (mask = EIGHT_BIT_MIDPOINT) :
saturate_cast<uchar>(br + depthOffset);
ydest += 2;
*vdest++ = mask;
*udest++ = EIGHT_BIT_MIDPOINT;
}
yline += vpxImage.stride[0] * 2;
vline += vpxImage.stride[1];
uline += vpxImage.stride[2];
}
// encode the frame
vpx_codec_encode(&_depthCodec, &vpxImage, _frameCount, 1, 0, VPX_DL_REALTIME);
// extract the encoded frame
vpx_codec_iter_t iterator = 0;
const vpx_codec_cx_pkt_t* packet;
while ((packet = vpx_codec_get_cx_data(&_depthCodec, &iterator)) != 0) {
if (packet->kind == VPX_CODEC_CX_FRAME_PKT) {
payload.append((const char*)packet->data.frame.buf, packet->data.frame.sz);
}
}
uchar* dest = (uchar*)_encodedFace.data() + vpxImage.stride[0] * ENCODED_FACE_HEIGHT;
for (int i = 0; i < ENCODED_FACE_HEIGHT; i++) {
memcpy(dest, _faceDepth.ptr(i), ENCODED_FACE_WIDTH);
dest += vpxImage.stride[0];
}
}
QMetaObject::invokeMethod(Application::getInstance(), "sendAvatarFaceVideoMessage",
Q_ARG(int, _frameCount), Q_ARG(QByteArray, payload));
// encode the frame
vpx_codec_encode(&_codec, &vpxImage, ++_frameCount, 1, 0, VPX_DL_REALTIME);
// extract the encoded frame
vpx_codec_iter_t iterator = 0;
const vpx_codec_cx_pkt_t* packet;
while ((packet = vpx_codec_get_cx_data(&_codec, &iterator)) != 0) {
if (packet->kind == VPX_CODEC_CX_FRAME_PKT) {
// prepend the aspect ratio
QByteArray payload(sizeof(float), 0);
*(float*)payload.data() = _smoothedFaceRect.size.width / _smoothedFaceRect.size.height;
payload.append((const char*)packet->data.frame.buf, packet->data.frame.sz);
QMetaObject::invokeMethod(Application::getInstance(), "sendAvatarFaceVideoMessage", Q_ARG(int, _frameCount),
Q_ARG(QByteArray, payload));
}
}
QMetaObject::invokeMethod(Application::getInstance()->getWebcam(), "setFrame",
Q_ARG(cv::Mat, color), Q_ARG(int, format), Q_ARG(cv::Mat, _grayDepthFrame), Q_ARG(float, _smoothedMidFaceDepth),
Q_ARG(float, aspectRatio), Q_ARG(cv::RotatedRect, _smoothedFaceRect), Q_ARG(bool, !payload.isEmpty()),
Q_ARG(JointVector, joints));
Q_ARG(cv::Mat, color), Q_ARG(int, format), Q_ARG(cv::Mat, _grayDepthFrame),
Q_ARG(cv::RotatedRect, _smoothedFaceRect), Q_ARG(JointVector, joints));
}
bool FrameGrabber::init() {
@ -817,17 +690,6 @@ void FrameGrabber::updateHSVFrame(const Mat& frame, int format) {
inRange(_hsvFrame, Scalar(0, 55, 65), Scalar(180, 256, 256), _mask);
}
void FrameGrabber::destroyCodecs() {
if (_colorCodec.name != 0) {
vpx_codec_destroy(&_colorCodec);
_colorCodec.name = 0;
}
if (_depthCodec.name != 0) {
vpx_codec_destroy(&_depthCodec);
_depthCodec.name = 0;
}
}
Joint::Joint(const glm::vec3& position, const glm::quat& rotation, const glm::vec3& projected) :
isValid(true), position(position), rotation(rotation), projected(projected) {
}