Merge branch 'master' of https://github.com/highfidelity/hifi into fix-attachments

This commit is contained in:
ZappoMan 2015-06-10 08:53:33 -07:00
commit aa05d9f67c
15 changed files with 416 additions and 150 deletions

View file

@ -313,7 +313,6 @@ void Avatar::removeFromScene(AvatarSharedPointer self, std::shared_ptr<render::S
for (auto attachmentModel : _attachmentModels) {
attachmentModel->removeFromScene(scene, pendingChanges);
}
}
void Avatar::render(RenderArgs* renderArgs, const glm::vec3& cameraPosition, bool postLighting) {

View file

@ -55,7 +55,7 @@ AvatarManager::AvatarManager(QObject* parent) :
_avatarFades() {
// register a meta type for the weak pointer we'll use for the owning avatar mixer for each avatar
qRegisterMetaType<QWeakPointer<Node> >("NodeWeakPointer");
_myAvatar = std::shared_ptr<MyAvatar>(new MyAvatar());
_myAvatar = std::make_shared<MyAvatar>();
}
void AvatarManager::init() {
@ -97,9 +97,9 @@ void AvatarManager::updateOtherAvatars(float deltaTime) {
// simulate avatars
AvatarHash::iterator avatarIterator = _avatarHash.begin();
while (avatarIterator != _avatarHash.end()) {
Avatar* avatar = reinterpret_cast<Avatar*>(avatarIterator.value().get());
auto avatar = std::dynamic_pointer_cast<Avatar>(avatarIterator.value());
if (avatar == _myAvatar.get() || !avatar->isInitialized()) {
if (avatar == _myAvatar || !avatar->isInitialized()) {
// DO NOT update _myAvatar! Its update has already been done earlier in the main loop.
// DO NOT update or fade out uninitialized Avatars
++avatarIterator;
@ -121,26 +121,30 @@ void AvatarManager::simulateAvatarFades(float deltaTime) {
const float SHRINK_RATE = 0.9f;
const float MIN_FADE_SCALE = 0.001f;
render::ScenePointer scene = Application::getInstance()->getMain3DScene();
render::PendingChanges pendingChanges;
while (fadingIterator != _avatarFades.end()) {
Avatar* avatar = static_cast<Avatar*>(fadingIterator->get());
auto avatar = std::static_pointer_cast<Avatar>(*fadingIterator);
avatar->setTargetScale(avatar->getScale() * SHRINK_RATE, true);
if (avatar->getTargetScale() < MIN_FADE_SCALE) {
avatar->removeFromScene(*fadingIterator, scene, pendingChanges);
fadingIterator = _avatarFades.erase(fadingIterator);
} else {
avatar->simulate(deltaTime);
++fadingIterator;
}
}
scene->enqueuePendingChanges(pendingChanges);
}
AvatarSharedPointer AvatarManager::newSharedAvatar() {
return AvatarSharedPointer(new Avatar());
return AvatarSharedPointer(std::make_shared<Avatar>());
}
// virtual
AvatarSharedPointer AvatarManager::addAvatar(const QUuid& sessionUUID, const QWeakPointer<Node>& mixerWeakPointer) {
std::shared_ptr<Avatar> avatar = std::dynamic_pointer_cast<Avatar>(AvatarHashMap::addAvatar(sessionUUID, mixerWeakPointer));
auto avatar = std::dynamic_pointer_cast<Avatar>(AvatarHashMap::addAvatar(sessionUUID, mixerWeakPointer));
render::ScenePointer scene = Application::getInstance()->getMain3DScene();
render::PendingChanges pendingChanges;
avatar->addToScene(avatar, scene, pendingChanges);
@ -171,10 +175,6 @@ void AvatarManager::removeAvatar(const QUuid& sessionUUID) {
_avatarFades.push_back(avatarIterator.value());
_avatarHash.erase(avatarIterator);
}
render::ScenePointer scene = Application::getInstance()->getMain3DScene();
render::PendingChanges pendingChanges;
avatar->removeFromScene(avatar, scene, pendingChanges);
scene->enqueuePendingChanges(pendingChanges);
}
}
@ -182,12 +182,12 @@ void AvatarManager::clearOtherAvatars() {
// clear any avatars that came from an avatar-mixer
AvatarHash::iterator avatarIterator = _avatarHash.begin();
while (avatarIterator != _avatarHash.end()) {
Avatar* avatar = reinterpret_cast<Avatar*>(avatarIterator.value().get());
if (avatar == _myAvatar.get() || !avatar->isInitialized()) {
auto avatar = std::static_pointer_cast<Avatar>(avatarIterator.value());
if (avatar == _myAvatar || !avatar->isInitialized()) {
// don't remove myAvatar or uninitialized avatars from the list
++avatarIterator;
} else {
removeAvatarMotionState(avatar);
removeAvatarMotionState(avatar.get());
_avatarFades.push_back(avatarIterator.value());
avatarIterator = _avatarHash.erase(avatarIterator);
}
@ -250,7 +250,7 @@ void AvatarManager::handleCollisionEvents(CollisionEvents& collisionEvents) {
void AvatarManager::updateAvatarPhysicsShape(const QUuid& id) {
AvatarHash::iterator avatarItr = _avatarHash.find(id);
if (avatarItr != _avatarHash.end()) {
Avatar* avatar = static_cast<Avatar*>(avatarItr.value().get());
auto avatar = std::static_pointer_cast<Avatar>(avatarItr.value());
AvatarMotionState* motionState = avatar->_motionState;
if (motionState) {
motionState->addDirtyFlags(EntityItem::DIRTY_SHAPE);
@ -259,7 +259,7 @@ void AvatarManager::updateAvatarPhysicsShape(const QUuid& id) {
avatar->computeShapeInfo(shapeInfo);
btCollisionShape* shape = ObjectMotionState::getShapeManager()->getShape(shapeInfo);
if (shape) {
AvatarMotionState* motionState = new AvatarMotionState(avatar, shape);
AvatarMotionState* motionState = new AvatarMotionState(avatar.get(), shape);
avatar->_motionState = motionState;
_motionStatesToAdd.insert(motionState);
_avatarMotionStates.insert(motionState);

View file

@ -1902,8 +1902,8 @@ FBXGeometry extractFBXGeometry(const FBXNode& node, const QVariantHash& mapping,
} else {
material._material->setDiffuse(material.diffuse);
}
material._material->setSpecular(material.specular);
material._material->setShininess(material.shininess);
material._material->setMetallic(glm::length(material.specular));
material._material->setGloss(material.shininess);
if (material.opacity <= 0.0f) {
material._material->setOpacity(1.0f);

View file

@ -134,8 +134,8 @@ void setMeshPartDefaults(FBXMeshPart& meshPart, QString materialID) {
meshPart._material = model::MaterialPointer(new model::Material());
meshPart._material->setDiffuse(glm::vec3(1.0, 1.0, 1.0));
meshPart._material->setOpacity(1.0);
meshPart._material->setSpecular(glm::vec3(1.0, 1.0, 1.0));
meshPart._material->setShininess(96.0);
meshPart._material->setMetallic(0.0);
meshPart._material->setGloss(96.0);
meshPart._material->setEmissive(glm::vec3(0.0, 0.0, 0.0));
}
@ -481,8 +481,8 @@ FBXGeometry OBJReader::readOBJ(QIODevice* device, const QVariantHash& mapping, Q
meshPart.specularTexture.filename = material->specularTextureFilename;
// ... and some things are set in the underlying material.
meshPart._material->setDiffuse(material->diffuseColor);
meshPart._material->setSpecular(material->specularColor);
meshPart._material->setShininess(material->shininess);
meshPart._material->setMetallic(glm::length(material->specularColor));
meshPart._material->setGloss(material->shininess);
meshPart._material->setOpacity(material->opacity);
}
// qCDebug(modelformat) << "OBJ Reader part:" << meshPartCount << "name:" << leadFace.groupName << "material:" << groupMaterialName << "diffuse:" << meshPart._material->getDiffuse() << "faces:" << faceGroup.count() << "triangle indices will start with:" << mesh.vertices.count();
@ -566,10 +566,10 @@ void fbxDebugDump(const FBXGeometry& fbxgeo) {
qCDebug(modelformat) << " quadIndices.count() =" << meshPart.quadIndices.count();
qCDebug(modelformat) << " triangleIndices.count() =" << meshPart.triangleIndices.count();
qCDebug(modelformat) << " diffuseColor =" << meshPart.diffuseColor << "mat =" << meshPart._material->getDiffuse();
qCDebug(modelformat) << " specularColor =" << meshPart.specularColor << "mat =" << meshPart._material->getSpecular();
qCDebug(modelformat) << " specularColor =" << meshPart.specularColor << "mat =" << meshPart._material->getMetallic();
qCDebug(modelformat) << " emissiveColor =" << meshPart.emissiveColor << "mat =" << meshPart._material->getEmissive();
qCDebug(modelformat) << " emissiveParams =" << meshPart.emissiveParams;
qCDebug(modelformat) << " shininess =" << meshPart.shininess << "mat =" << meshPart._material->getShininess();
qCDebug(modelformat) << " gloss =" << meshPart.shininess << "mat =" << meshPart._material->getGloss();
qCDebug(modelformat) << " opacity =" << meshPart.opacity << "mat =" << meshPart._material->getOpacity();
qCDebug(modelformat) << " materialID =" << meshPart.materialID;
qCDebug(modelformat) << " diffuse texture =" << meshPart.diffuseTexture.filename;

View file

@ -437,6 +437,8 @@ public:
explicit operator bool() const { return bool(_texture); }
bool operator !() const { return (!_texture); }
bool isValid() const { return bool(_texture); }
};
typedef std::vector<TextureView> TextureViews;

View file

@ -14,7 +14,7 @@ using namespace model;
using namespace gpu;
Material::Material() :
_flags(0),
_key(0),
_schemaBuffer(),
_textureMap() {
@ -26,13 +26,13 @@ Material::Material() :
}
Material::Material(const Material& material) :
_flags(material._flags),
_key(material._key),
_schemaBuffer(material._schemaBuffer),
_textureMap(material._textureMap) {
}
Material& Material::operator= (const Material& material) {
_flags = (material._flags);
_key = (material._key);
_schemaBuffer = (material._schemaBuffer);
_textureMap = (material._textureMap);
@ -43,52 +43,32 @@ Material::~Material() {
}
void Material::setDiffuse(const Color& diffuse) {
if (glm::any(glm::greaterThan(diffuse, Color(0.0f)))) {
_flags.set(DIFFUSE_BIT);
} else {
_flags.reset(DIFFUSE_BIT);
}
_key.setDiffuse(glm::any(glm::greaterThan(diffuse, Color(0.0f))));
_schemaBuffer.edit<Schema>()._diffuse = diffuse;
}
void Material::setSpecular(const Color& specular) {
if (glm::any(glm::greaterThan(specular, Color(0.0f)))) {
_flags.set(SPECULAR_BIT);
} else {
_flags.reset(SPECULAR_BIT);
}
_schemaBuffer.edit<Schema>()._specular = specular;
void Material::setMetallic(float metallic) {
_key.setMetallic(metallic > 0.0f);
_schemaBuffer.edit<Schema>()._metallic = glm::vec3(metallic);
}
void Material::setEmissive(const Color& emissive) {
if (glm::any(glm::greaterThan(emissive, Color(0.0f)))) {
_flags.set(EMISSIVE_BIT);
} else {
_flags.reset(EMISSIVE_BIT);
}
_key.setEmissive(glm::any(glm::greaterThan(emissive, Color(0.0f))));
_schemaBuffer.edit<Schema>()._emissive = emissive;
}
void Material::setShininess(float shininess) {
if (shininess > 0.0f) {
_flags.set(SHININESS_BIT);
} else {
_flags.reset(SHININESS_BIT);
}
_schemaBuffer.edit<Schema>()._shininess = shininess;
void Material::setGloss(float gloss) {
_key.setGloss((gloss > 0.0f));
_schemaBuffer.edit<Schema>()._gloss = gloss;
}
void Material::setOpacity(float opacity) {
if (opacity >= 1.0f) {
_flags.reset(TRANSPARENT_BIT);
} else {
_flags.set(TRANSPARENT_BIT);
}
_key.setTransparent((opacity < 1.0f));
_schemaBuffer.edit<Schema>()._opacity = opacity;
}
void Material::setTextureView(MapChannel channel, const gpu::TextureView& view) {
_flags.set(DIFFUSE_MAP_BIT + channel);
_key.setMapChannel(channel, (view.isValid()));
_textureMap[channel] = view;
}

View file

@ -23,6 +23,177 @@
namespace model {
// Material Key is a coarse trait description of a material used to classify the materials
class MaterialKey {
public:
enum FlagBit {
EMISSIVE_VAL_BIT = 0,
DIFFUSE_VAL_BIT,
METALLIC_VAL_BIT,
GLOSS_VAL_BIT,
TRANSPARENT_VAL_BIT,
EMISSIVE_MAP_BIT,
DIFFUSE_MAP_BIT,
METALLIC_MAP_BIT,
GLOSS_MAP_BIT,
TRANSPARENT_MAP_BIT,
NORMAL_MAP_BIT,
NUM_FLAGS,
};
typedef std::bitset<NUM_FLAGS> Flags;
enum MapChannel {
EMISSIVE_MAP = 0,
DIFFUSE_MAP,
METALLIC_MAP,
GLOSS_MAP,
TRANSPARENT_MAP,
NORMAL_MAP,
NUM_MAP_CHANNELS,
};
// The signature is the Flags
Flags _flags;
MaterialKey() : _flags(0) {}
MaterialKey(const Flags& flags) : _flags(flags) {}
class Builder {
Flags _flags{ 0 };
public:
Builder() {}
MaterialKey build() const { return MaterialKey(_flags); }
Builder& withEmissive() { _flags.set(EMISSIVE_VAL_BIT); return (*this); }
Builder& withDiffuse() { _flags.set(DIFFUSE_VAL_BIT); return (*this); }
Builder& withMetallic() { _flags.set(METALLIC_VAL_BIT); return (*this); }
Builder& withGloss() { _flags.set(GLOSS_VAL_BIT); return (*this); }
Builder& withTransparent() { _flags.set(TRANSPARENT_VAL_BIT); return (*this); }
Builder& withEmissiveMap() { _flags.set(EMISSIVE_MAP_BIT); return (*this); }
Builder& withDiffuseMap() { _flags.set(DIFFUSE_MAP_BIT); return (*this); }
Builder& withMetallicMap() { _flags.set(METALLIC_MAP_BIT); return (*this); }
Builder& withGlossMap() { _flags.set(GLOSS_MAP_BIT); return (*this); }
Builder& withTransparentMap() { _flags.set(TRANSPARENT_MAP_BIT); return (*this); }
Builder& withNormalMap() { _flags.set(NORMAL_MAP_BIT); return (*this); }
// Convenient standard keys that we will keep on using all over the place
static MaterialKey opaqueDiffuse() { return Builder().withDiffuse().build(); }
};
void setEmissive(bool value) { _flags.set(EMISSIVE_VAL_BIT, value); }
bool isEmissive() const { return _flags[EMISSIVE_VAL_BIT]; }
void setEmissiveMap(bool value) { _flags.set(EMISSIVE_MAP_BIT, value); }
bool isEmissiveMap() const { return _flags[EMISSIVE_MAP_BIT]; }
void setDiffuse(bool value) { _flags.set(DIFFUSE_VAL_BIT, value); }
bool isDiffuse() const { return _flags[DIFFUSE_VAL_BIT]; }
void setDiffuseMap(bool value) { _flags.set(DIFFUSE_MAP_BIT, value); }
bool isDiffuseMap() const { return _flags[DIFFUSE_MAP_BIT]; }
void setMetallic(bool value) { _flags.set(METALLIC_VAL_BIT, value); }
bool isMetallic() const { return _flags[METALLIC_VAL_BIT]; }
void setMetallicMap(bool value) { _flags.set(METALLIC_MAP_BIT, value); }
bool isMetallicMap() const { return _flags[METALLIC_MAP_BIT]; }
void setGloss(bool value) { _flags.set(GLOSS_VAL_BIT, value); }
bool isGloss() const { return _flags[GLOSS_VAL_BIT]; }
void setGlossMap(bool value) { _flags.set(GLOSS_MAP_BIT, value); }
bool isGlossMap() const { return _flags[GLOSS_MAP_BIT]; }
void setTransparent(bool value) { _flags.set(TRANSPARENT_VAL_BIT, value); }
bool isTransparent() const { return _flags[TRANSPARENT_VAL_BIT]; }
bool isOpaque() const { return !_flags[TRANSPARENT_VAL_BIT]; }
void setTransparentMap(bool value) { _flags.set(TRANSPARENT_MAP_BIT, value); }
bool isTransparentMap() const { return _flags[TRANSPARENT_MAP_BIT]; }
void setNormalMap(bool value) { _flags.set(NORMAL_MAP_BIT, value); }
bool isNormalMap() const { return _flags[NORMAL_MAP_BIT]; }
void setMapChannel(MapChannel channel, bool value) { _flags.set(EMISSIVE_MAP_BIT + channel, value); }
bool isMapChannel(MapChannel channel) const { return _flags[EMISSIVE_MAP_BIT + channel]; }
};
class MaterialFilter {
public:
MaterialKey::Flags _value{ 0 };
MaterialKey::Flags _mask{ 0 };
MaterialFilter(const MaterialKey::Flags& value = MaterialKey::Flags(0), const MaterialKey::Flags& mask = MaterialKey::Flags(0)) : _value(value), _mask(mask) {}
class Builder {
MaterialKey::Flags _value{ 0 };
MaterialKey::Flags _mask{ 0 };
public:
Builder() {}
MaterialFilter build() const { return MaterialFilter(_value, _mask); }
Builder& withoutEmissive() { _value.reset(MaterialKey::EMISSIVE_VAL_BIT); _mask.set(MaterialKey::EMISSIVE_VAL_BIT); return (*this); }
Builder& withEmissive() { _value.set(MaterialKey::EMISSIVE_VAL_BIT); _mask.set(MaterialKey::EMISSIVE_VAL_BIT); return (*this); }
Builder& withoutEmissiveMap() { _value.reset(MaterialKey::EMISSIVE_MAP_BIT); _mask.set(MaterialKey::EMISSIVE_MAP_BIT); return (*this); }
Builder& withEmissiveMap() { _value.set(MaterialKey::EMISSIVE_MAP_BIT); _mask.set(MaterialKey::EMISSIVE_MAP_BIT); return (*this); }
Builder& withoutDiffuse() { _value.reset(MaterialKey::DIFFUSE_VAL_BIT); _mask.set(MaterialKey::DIFFUSE_VAL_BIT); return (*this); }
Builder& withDiffuse() { _value.set(MaterialKey::DIFFUSE_VAL_BIT); _mask.set(MaterialKey::DIFFUSE_VAL_BIT); return (*this); }
Builder& withoutDiffuseMap() { _value.reset(MaterialKey::DIFFUSE_MAP_BIT); _mask.set(MaterialKey::DIFFUSE_MAP_BIT); return (*this); }
Builder& withDiffuseMap() { _value.set(MaterialKey::DIFFUSE_MAP_BIT); _mask.set(MaterialKey::DIFFUSE_MAP_BIT); return (*this); }
Builder& withoutMetallic() { _value.reset(MaterialKey::METALLIC_VAL_BIT); _mask.set(MaterialKey::METALLIC_VAL_BIT); return (*this); }
Builder& withMetallic() { _value.set(MaterialKey::METALLIC_VAL_BIT); _mask.set(MaterialKey::METALLIC_VAL_BIT); return (*this); }
Builder& withoutMetallicMap() { _value.reset(MaterialKey::METALLIC_MAP_BIT); _mask.set(MaterialKey::METALLIC_MAP_BIT); return (*this); }
Builder& withMetallicMap() { _value.set(MaterialKey::METALLIC_MAP_BIT); _mask.set(MaterialKey::METALLIC_MAP_BIT); return (*this); }
Builder& withoutGloss() { _value.reset(MaterialKey::GLOSS_VAL_BIT); _mask.set(MaterialKey::GLOSS_VAL_BIT); return (*this); }
Builder& withGloss() { _value.set(MaterialKey::GLOSS_VAL_BIT); _mask.set(MaterialKey::GLOSS_VAL_BIT); return (*this); }
Builder& withoutGlossMap() { _value.reset(MaterialKey::GLOSS_MAP_BIT); _mask.set(MaterialKey::GLOSS_MAP_BIT); return (*this); }
Builder& withGlossMap() { _value.set(MaterialKey::GLOSS_MAP_BIT); _mask.set(MaterialKey::GLOSS_MAP_BIT); return (*this); }
Builder& withoutTransparent() { _value.reset(MaterialKey::TRANSPARENT_VAL_BIT); _mask.set(MaterialKey::TRANSPARENT_VAL_BIT); return (*this); }
Builder& withTransparent() { _value.set(MaterialKey::TRANSPARENT_VAL_BIT); _mask.set(MaterialKey::TRANSPARENT_VAL_BIT); return (*this); }
Builder& withoutTransparentMap() { _value.reset(MaterialKey::TRANSPARENT_MAP_BIT); _mask.set(MaterialKey::TRANSPARENT_MAP_BIT); return (*this); }
Builder& withTransparentMap() { _value.set(MaterialKey::TRANSPARENT_MAP_BIT); _mask.set(MaterialKey::TRANSPARENT_MAP_BIT); return (*this); }
Builder& withoutNormalMap() { _value.reset(MaterialKey::NORMAL_MAP_BIT); _mask.set(MaterialKey::NORMAL_MAP_BIT); return (*this); }
Builder& withNormalMap() { _value.set(MaterialKey::NORMAL_MAP_BIT); _mask.set(MaterialKey::NORMAL_MAP_BIT); return (*this); }
// Convenient standard keys that we will keep on using all over the place
static MaterialFilter opaqueDiffuse() { return Builder().withDiffuse().withoutTransparent().build(); }
};
// Item Filter operator testing if a key pass the filter
bool test(const MaterialKey& key) const { return (key._flags & _mask) == (_value & _mask); }
class Less {
public:
bool operator() (const MaterialFilter& left, const MaterialFilter& right) const {
if (left._value.to_ulong() == right._value.to_ulong()) {
return left._mask.to_ulong() < right._mask.to_ulong();
} else {
return left._value.to_ulong() < right._value.to_ulong();
}
}
};
};
class Material {
public:
typedef gpu::BufferView UniformBufferView;
@ -30,52 +201,27 @@ public:
typedef glm::vec3 Color;
enum MapChannel {
DIFFUSE_MAP = 0,
SPECULAR_MAP,
SHININESS_MAP,
EMISSIVE_MAP,
OPACITY_MAP,
NORMAL_MAP,
NUM_MAPS,
};
typedef MaterialKey::MapChannel MapChannel;
typedef std::map<MapChannel, TextureView> TextureMap;
typedef std::bitset<NUM_MAPS> MapFlags;
enum FlagBit {
DIFFUSE_BIT = 0,
SPECULAR_BIT,
SHININESS_BIT,
EMISSIVE_BIT,
TRANSPARENT_BIT,
DIFFUSE_MAP_BIT,
SPECULAR_MAP_BIT,
SHININESS_MAP_BIT,
EMISSIVE_MAP_BIT,
OPACITY_MAP_BIT,
NORMAL_MAP_BIT,
NUM_FLAGS,
};
typedef std::bitset<NUM_FLAGS> Flags;
typedef std::bitset<MaterialKey::NUM_MAP_CHANNELS> MapFlags;
Material();
Material(const Material& material);
Material& operator= (const Material& material);
virtual ~Material();
const MaterialKey& getKey() const { return _key; }
const Color& getEmissive() const { return _schemaBuffer.get<Schema>()._emissive; }
const Color& getDiffuse() const { return _schemaBuffer.get<Schema>()._diffuse; }
const Color& getSpecular() const { return _schemaBuffer.get<Schema>()._specular; }
float getShininess() const { return _schemaBuffer.get<Schema>()._shininess; }
float getMetallic() const { return _schemaBuffer.get<Schema>()._metallic.x; }
float getGloss() const { return _schemaBuffer.get<Schema>()._gloss; }
float getOpacity() const { return _schemaBuffer.get<Schema>()._opacity; }
void setDiffuse(const Color& diffuse);
void setSpecular(const Color& specular);
void setEmissive(const Color& emissive);
void setShininess(float shininess);
void setDiffuse(const Color& diffuse);
void setMetallic(float metallic);
void setGloss(float gloss);
void setOpacity(float opacity);
// Schema to access the attribute values of the material
@ -84,8 +230,8 @@ public:
Color _diffuse{0.5f};
float _opacity{1.f};
Color _specular{0.03f};
float _shininess{0.1f};
Color _metallic{0.03f};
float _gloss{0.1f};
Color _emissive{0.0f};
float _spare0{0.0f};
glm::vec4 _spareVec4{0.0f}; // for alignment beauty, Material size == Mat4x4
@ -100,7 +246,7 @@ public:
protected:
Flags _flags;
MaterialKey _key;
UniformBufferView _schemaBuffer;
TextureMap _textureMap;

View file

@ -44,70 +44,73 @@ void Skybox::setCubemap(const gpu::TexturePointer& cubemap) {
void Skybox::render(gpu::Batch& batch, const ViewFrustum& viewFrustum, const Skybox& skybox) {
if (skybox.getCubemap() && skybox.getCubemap()->isDefined()) {
if (skybox.getCubemap()) {
if (skybox.getCubemap()->isDefined()) {
static gpu::PipelinePointer thePipeline;
static gpu::BufferPointer theBuffer;
static gpu::Stream::FormatPointer theFormat;
static gpu::BufferPointer theConstants;
int SKYBOX_CONSTANTS_SLOT = 0; // need to be defined by the compilation of the shader
if (!thePipeline) {
auto skyVS = gpu::ShaderPointer(gpu::Shader::createVertex(std::string(Skybox_vert)));
auto skyFS = gpu::ShaderPointer(gpu::Shader::createPixel(std::string(Skybox_frag)));
auto skyShader = gpu::ShaderPointer(gpu::Shader::createProgram(skyVS, skyFS));
static gpu::PipelinePointer thePipeline;
static gpu::BufferPointer theBuffer;
static gpu::Stream::FormatPointer theFormat;
static gpu::BufferPointer theConstants;
int SKYBOX_CONSTANTS_SLOT = 0; // need to be defined by the compilation of the shader
if (!thePipeline) {
auto skyVS = gpu::ShaderPointer(gpu::Shader::createVertex(std::string(Skybox_vert)));
auto skyFS = gpu::ShaderPointer(gpu::Shader::createPixel(std::string(Skybox_frag)));
auto skyShader = gpu::ShaderPointer(gpu::Shader::createProgram(skyVS, skyFS));
gpu::Shader::BindingSet bindings;
bindings.insert(gpu::Shader::Binding(std::string("cubeMap"), 0));
if (!gpu::Shader::makeProgram(*skyShader, bindings)) {
gpu::Shader::BindingSet bindings;
bindings.insert(gpu::Shader::Binding(std::string("cubeMap"), 0));
if (!gpu::Shader::makeProgram(*skyShader, bindings)) {
}
}
SKYBOX_CONSTANTS_SLOT = skyShader->getBuffers().findLocation("skyboxBuffer");
if (SKYBOX_CONSTANTS_SLOT == gpu::Shader::INVALID_LOCATION) {
SKYBOX_CONSTANTS_SLOT = skyShader->getUniforms().findLocation("skyboxBuffer");
}
SKYBOX_CONSTANTS_SLOT = skyShader->getBuffers().findLocation("skyboxBuffer");
if (SKYBOX_CONSTANTS_SLOT == gpu::Shader::INVALID_LOCATION) {
SKYBOX_CONSTANTS_SLOT = skyShader->getUniforms().findLocation("skyboxBuffer");
}
auto skyState = gpu::StatePointer(new gpu::State());
auto skyState = gpu::StatePointer(new gpu::State());
thePipeline = gpu::PipelinePointer(gpu::Pipeline::create(skyShader, skyState));
thePipeline = gpu::PipelinePointer(gpu::Pipeline::create(skyShader, skyState));
const float CLIP = 1.0;
const glm::vec2 vertices[4] = { {-CLIP, -CLIP}, {CLIP, -CLIP}, {-CLIP, CLIP}, {CLIP, CLIP}};
theBuffer.reset(new gpu::Buffer(sizeof(vertices), (const gpu::Byte*) vertices));
const float CLIP = 1.0;
const glm::vec2 vertices[4] = { {-CLIP, -CLIP}, {CLIP, -CLIP}, {-CLIP, CLIP}, {CLIP, CLIP}};
theBuffer.reset(new gpu::Buffer(sizeof(vertices), (const gpu::Byte*) vertices));
theFormat.reset(new gpu::Stream::Format());
theFormat->setAttribute(gpu::Stream::POSITION, gpu::Stream::POSITION, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::XYZ));
theFormat.reset(new gpu::Stream::Format());
theFormat->setAttribute(gpu::Stream::POSITION, gpu::Stream::POSITION, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::XYZ));
auto color = glm::vec4(1.0f);
theConstants.reset(new gpu::Buffer(sizeof(color), (const gpu::Byte*) &color));
auto color = glm::vec4(1.0f);
theConstants.reset(new gpu::Buffer(sizeof(color), (const gpu::Byte*) &color));
}
glm::mat4 projMat;
viewFrustum.evalProjectionMatrix(projMat);
Transform viewTransform;
viewFrustum.evalViewTransform(viewTransform);
if (glm::all(glm::equal(skybox.getColor(), glm::vec3(0.0f)))) {
auto color = glm::vec4(1.0f);
theConstants->setSubData(0, sizeof(color), (const gpu::Byte*) &color);
} else {
theConstants->setSubData(0, sizeof(Color), (const gpu::Byte*) &skybox.getColor());
}
batch.setProjectionTransform(projMat);
batch.setViewTransform(viewTransform);
batch.setModelTransform(Transform()); // only for Mac
batch.setPipeline(thePipeline);
batch.setInputBuffer(gpu::Stream::POSITION, theBuffer, 0, 8);
batch.setUniformBuffer(SKYBOX_CONSTANTS_SLOT, theConstants, 0, theConstants->getSize());
batch.setInputFormat(theFormat);
batch.setUniformTexture(0, skybox.getCubemap());
batch.draw(gpu::TRIANGLE_STRIP, 4);
}
glm::mat4 projMat;
viewFrustum.evalProjectionMatrix(projMat);
Transform viewTransform;
viewFrustum.evalViewTransform(viewTransform);
if (glm::all(glm::equal(skybox.getColor(), glm::vec3(0.0f)))) {
auto color = glm::vec4(1.0f);
theConstants->setSubData(0, sizeof(color), (const gpu::Byte*) &color);
} else {
theConstants->setSubData(0, sizeof(Color), (const gpu::Byte*) &skybox.getColor());
}
batch.setProjectionTransform(projMat);
batch.setViewTransform(viewTransform);
batch.setModelTransform(Transform()); // only for Mac
batch.setPipeline(thePipeline);
batch.setInputBuffer(gpu::Stream::POSITION, theBuffer, 0, 8);
batch.setUniformBuffer(SKYBOX_CONSTANTS_SLOT, theConstants, 0, theConstants->getSize());
batch.setInputFormat(theFormat);
batch.setUniformTexture(0, skybox.getCubemap());
batch.draw(gpu::TRIANGLE_STRIP, 4);
} else {
// skybox has no cubemap, just clear the color buffer
auto color = skybox.getColor();
batch.clearFramebuffer(gpu::Framebuffer::BUFFER_COLOR0, glm::vec4(color, 1.0f), 0.f, 0);
batch.clearFramebuffer(gpu::Framebuffer::BUFFER_COLOR0, glm::vec4(color, 0.0f), 0.f, 0);
}
}

View file

@ -24,7 +24,7 @@ typedef glm::vec3 Color;
class TextureUsage {
public:
gpu::Texture::Type _type{ gpu::Texture::TEX_2D };
Material::MapFlags _materialUsage{ Material::DIFFUSE_MAP };
Material::MapFlags _materialUsage{ MaterialKey::DIFFUSE_MAP };
int _environmentUsage = 0;
};

View file

@ -875,6 +875,9 @@ namespace render {
return payload->model->renderPart(args, payload->meshIndex, payload->partIndex, false);
}
}
/* template <> const model::MaterialKey& shapeGetMaterialKey(const OpaqueMeshPart::Pointer& payload) {
return payload->model->getPartMaterial(payload->meshIndex, payload->partIndex);
}*/
}
void Model::setVisibleInScene(bool newValue, std::shared_ptr<render::Scene> scene) {

View file

@ -44,7 +44,7 @@ template <> void render::jobRun(const ResolveDeferred& job, const SceneContextPo
RenderDeferredTask::RenderDeferredTask() : Task() {
_jobs.push_back(Job(PrepareDeferred()));
_jobs.push_back(Job(DrawBackground()));
_jobs.push_back(Job(DrawOpaque()));
_jobs.push_back(Job(DrawOpaqueDeferred()));
_jobs.push_back(Job(DrawLight()));
_jobs.push_back(Job(ResetGLState()));
_jobs.push_back(Job(RenderDeferred()));
@ -78,6 +78,84 @@ void RenderDeferredTask::run(const SceneContextPointer& sceneContext, const Rend
template <> void render::jobRun(const DrawOpaqueDeferred& job, const SceneContextPointer& sceneContext, const RenderContextPointer& renderContext) {
PerformanceTimer perfTimer("DrawOpaqueDeferred");
assert(renderContext->args);
assert(renderContext->args->_viewFrustum);
// render opaques
auto& scene = sceneContext->_scene;
auto& items = scene->getMasterBucket().at(ItemFilter::Builder::opaqueShape());
auto& renderDetails = renderContext->args->_details;
ItemIDsBounds inItems;
inItems.reserve(items.size());
for (auto id : items) {
inItems.emplace_back(ItemIDAndBounds(id));
}
ItemIDsBounds& renderedItems = inItems;
renderContext->_numFeedOpaqueItems = renderedItems.size();
ItemIDsBounds culledItems;
culledItems.reserve(inItems.size());
if (renderContext->_cullOpaque) {
renderDetails.pointTo(RenderDetails::OPAQUE_ITEM);
cullItems(sceneContext, renderContext, renderedItems, culledItems);
renderDetails.pointTo(RenderDetails::OTHER_ITEM);
renderedItems = culledItems;
}
renderContext->_numDrawnOpaqueItems = renderedItems.size();
ItemIDsBounds sortedItems;
sortedItems.reserve(culledItems.size());
if (renderContext->_sortOpaque) {
depthSortItems(sceneContext, renderContext, true, renderedItems, sortedItems); // Sort Front to back opaque items!
renderedItems = sortedItems;
}
// ItemIDsBounds sortedItems;
/* ItemMaterialBucketMap stateSortedItems;
stateSortedItems.allocateStandardMaterialBuckets();
if (true) {
for (auto& itemIDAndBound : renderedItems) {
stateSortedItems.insert(itemIDAndBound.id, scene->getItem(itemIDAndBound.id).getMaterialKey());
}
}
*/
if (renderContext->_renderOpaque) {
RenderArgs* args = renderContext->args;
gpu::Batch batch;
args->_batch = &batch;
glm::mat4 projMat;
Transform viewMat;
args->_viewFrustum->evalProjectionMatrix(projMat);
args->_viewFrustum->evalViewTransform(viewMat);
batch.setProjectionTransform(projMat);
batch.setViewTransform(viewMat);
renderContext->args->_renderMode = RenderArgs::NORMAL_RENDER_MODE;
{
GLenum buffers[3];
int bufferCount = 0;
buffers[bufferCount++] = GL_COLOR_ATTACHMENT0;
buffers[bufferCount++] = GL_COLOR_ATTACHMENT1;
buffers[bufferCount++] = GL_COLOR_ATTACHMENT2;
batch._glDrawBuffers(bufferCount, buffers);
}
renderItems(sceneContext, renderContext, renderedItems, renderContext->_maxDrawnOpaqueItems);
args->_context->render((*args->_batch));
args->_batch = nullptr;
}
}
template <> void render::jobRun(const DrawTransparentDeferred& job, const SceneContextPointer& sceneContext, const RenderContextPointer& renderContext) {
PerformanceTimer perfTimer("DrawTransparentDeferred");
assert(renderContext->args);

View file

@ -35,6 +35,14 @@ namespace render {
template <> void jobRun(const ResolveDeferred& job, const SceneContextPointer& sceneContext, const RenderContextPointer& renderContext);
}
class DrawOpaqueDeferred {
public:
};
namespace render {
template <> void jobRun(const DrawOpaqueDeferred& job, const SceneContextPointer& sceneContext, const RenderContextPointer& renderContext);
}
class DrawTransparentDeferred {
public:
};

View file

@ -445,3 +445,18 @@ template <> void render::jobRun(const DrawBackground& job, const SceneContextPoi
// Force the context sync
args->_context->syncCache();
}
void ItemMaterialBucketMap::insert(const ItemID& id, const model::MaterialKey& key) {
// Insert the itemID in every bucket where it filters true
for (auto& bucket : (*this)) {
if (bucket.first.test(key)) {
bucket.second.push_back(id);
}
}
}
void ItemMaterialBucketMap::allocateStandardMaterialBuckets() {
(*this)[model::MaterialFilter::Builder::opaqueDiffuse()];
}

View file

@ -62,6 +62,10 @@ void depthSortItems(const SceneContextPointer& sceneContext, const RenderContext
void renderItems(const SceneContextPointer& sceneContext, const RenderContextPointer& renderContext, const ItemIDsBounds& inItems, int maxDrawnItems = -1);
void materialSortItems(const SceneContextPointer& sceneContext, const RenderContextPointer& renderContext, const ItemIDsBounds& inItems, ItemIDsBounds& outItems);
class DrawOpaque {
public:
};
@ -101,6 +105,20 @@ public:
};
// A map of ItemIDs allowing to create bucket lists of SHAPE type items which are filtered by their
// Material
class ItemMaterialBucketMap : public std::map<model::MaterialFilter, ItemIDs, model::MaterialFilter::Less> {
public:
ItemMaterialBucketMap() {}
void insert(const ItemID& id, const model::MaterialKey& key);
// standard builders allocating the main buckets
void allocateStandardMaterialBuckets();
};
}
#endif // hifi_render_Task_h

View file

@ -24,6 +24,8 @@
#include <AABox.h>
#include <RenderArgs.h>
#include "model/Material.h"
namespace render {
class Context;
@ -216,6 +218,8 @@ public:
virtual void update(const UpdateFunctorPointer& functor) = 0;
virtual const model::MaterialKey getMaterialKey() const = 0;
~PayloadInterface() {}
protected:
};
@ -240,6 +244,9 @@ public:
void render(RenderArgs* args) { _payload->render(args); }
void update(const UpdateFunctorPointer& updateFunctor) { _payload->update(updateFunctor); }
// Shape Type Interface
const model::MaterialKey& getMaterialKey() const { return _payload->getMaterialKey(); }
protected:
PayloadPointer _payload;
ItemKey _key;
@ -275,16 +282,23 @@ template <class T> const ItemKey payloadGetKey(const std::shared_ptr<T>& payload
template <class T> const Item::Bound payloadGetBound(const std::shared_ptr<T>& payloadData) { return Item::Bound(); }
template <class T> void payloadRender(const std::shared_ptr<T>& payloadData, RenderArgs* args) { }
// Shape type interface
template <class T> const model::MaterialKey shapeGetMaterialKey(const std::shared_ptr<T>& payloadData) { return model::MaterialKey(); }
template <class T> class Payload : public Item::PayloadInterface {
public:
typedef std::shared_ptr<T> DataPointer;
typedef UpdateFunctor<T> Updater;
virtual void update(const UpdateFunctorPointer& functor) { static_cast<Updater*>(functor.get())->_func((*_data)); }
// Payload general interface
virtual const ItemKey getKey() const { return payloadGetKey<T>(_data); }
virtual const Item::Bound getBound() const { return payloadGetBound<T>(_data); }
virtual void render(RenderArgs* args) { payloadRender<T>(_data, args); }
virtual void update(const UpdateFunctorPointer& functor) { static_cast<Updater*>(functor.get())->_func((*_data)); }
virtual void render(RenderArgs* args) { payloadRender<T>(_data, args); }
// Shape Type interface
virtual const model::MaterialKey getMaterialKey() const { return shapeGetMaterialKey<T>(_data); }
Payload(const DataPointer& data) : _data(data) {}
protected: