mirror of
https://github.com/overte-org/overte.git
synced 2025-04-19 13:43:49 +02:00
Merge remote-tracking branch 'upstream/master' into conditional-ds
This commit is contained in:
commit
a8075e44ca
13 changed files with 884 additions and 745 deletions
|
@ -1,106 +1,107 @@
|
|||
#version 120
|
||||
|
||||
//
|
||||
// For licensing information, see http://http.developer.nvidia.com/GPUGems/gpugems_app01.html:
|
||||
//
|
||||
// NVIDIA Statement on the Software
|
||||
//
|
||||
// The source code provided is freely distributable, so long as the NVIDIA header remains unaltered and user modifications are
|
||||
// detailed.
|
||||
//
|
||||
// No Warranty
|
||||
//
|
||||
// THE SOFTWARE AND ANY OTHER MATERIALS PROVIDED BY NVIDIA ON THE ENCLOSED CD-ROM ARE PROVIDED "AS IS." NVIDIA DISCLAIMS ALL
|
||||
// WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF TITLE, MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
//
|
||||
// Limitation of Liability
|
||||
//
|
||||
// NVIDIA SHALL NOT BE LIABLE TO ANY USER, DEVELOPER, DEVELOPER'S CUSTOMERS, OR ANY OTHER PERSON OR ENTITY CLAIMING THROUGH OR
|
||||
// UNDER DEVELOPER FOR ANY LOSS OF PROFITS, INCOME, SAVINGS, OR ANY OTHER CONSEQUENTIAL, INCIDENTAL, SPECIAL, PUNITIVE, DIRECT
|
||||
// OR INDIRECT DAMAGES (WHETHER IN AN ACTION IN CONTRACT, TORT OR BASED ON A WARRANTY), EVEN IF NVIDIA HAS BEEN ADVISED OF THE
|
||||
// POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS SHALL APPLY NOTWITHSTANDING ANY FAILURE OF THE ESSENTIAL PURPOSE OF ANY
|
||||
// LIMITED REMEDY. IN NO EVENT SHALL NVIDIA'S AGGREGATE LIABILITY TO DEVELOPER OR ANY OTHER PERSON OR ENTITY CLAIMING THROUGH
|
||||
// OR UNDER DEVELOPER EXCEED THE AMOUNT OF MONEY ACTUALLY PAID BY DEVELOPER TO NVIDIA FOR THE SOFTWARE OR ANY OTHER MATERIALS.
|
||||
//
|
||||
|
||||
//
|
||||
// Atmospheric scattering fragment shader
|
||||
//
|
||||
// Author: Sean O'Neil
|
||||
//
|
||||
// Copyright (c) 2004 Sean O'Neil
|
||||
//
|
||||
|
||||
uniform vec3 v3CameraPos; // The camera's current position
|
||||
uniform vec3 v3InvWavelength; // 1 / pow(wavelength, 4) for the red, green, and blue channels
|
||||
uniform float fInnerRadius; // The inner (planetary) radius
|
||||
uniform float fKrESun; // Kr * ESun
|
||||
uniform float fKmESun; // Km * ESun
|
||||
uniform float fKr4PI; // Kr * 4 * PI
|
||||
uniform float fKm4PI; // Km * 4 * PI
|
||||
uniform float fScale; // 1 / (fOuterRadius - fInnerRadius)
|
||||
uniform float fScaleDepth; // The scale depth (i.e. the altitude at which the atmosphere's average density is found)
|
||||
uniform float fScaleOverScaleDepth; // fScale / fScaleDepth
|
||||
|
||||
const int nSamples = 2;
|
||||
const float fSamples = 2.0;
|
||||
|
||||
uniform vec3 v3LightPos;
|
||||
uniform float g;
|
||||
uniform float g2;
|
||||
|
||||
varying vec3 position;
|
||||
|
||||
float scale(float fCos)
|
||||
{
|
||||
float x = 1.0 - fCos;
|
||||
return fScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25))));
|
||||
}
|
||||
|
||||
void main (void)
|
||||
{
|
||||
// Get the ray from the camera to the vertex, and its length (which is the far point of the ray passing through the atmosphere)
|
||||
vec3 v3Pos = position;
|
||||
vec3 v3Ray = v3Pos - v3CameraPos;
|
||||
float fFar = length(v3Ray);
|
||||
v3Ray /= fFar;
|
||||
|
||||
// Calculate the ray's starting position, then calculate its scattering offset
|
||||
vec3 v3Start = v3CameraPos;
|
||||
float fHeight = length(v3Start);
|
||||
float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fHeight));
|
||||
float fStartAngle = dot(v3Ray, v3Start) / fHeight;
|
||||
float fStartOffset = fDepth * scale(fStartAngle);
|
||||
|
||||
// Initialize the scattering loop variables
|
||||
//gl_FrontColor = vec4(0.0, 0.0, 0.0, 0.0);
|
||||
float fSampleLength = fFar / fSamples;
|
||||
float fScaledLength = fSampleLength * fScale;
|
||||
vec3 v3SampleRay = v3Ray * fSampleLength;
|
||||
vec3 v3SamplePoint = v3Start + v3SampleRay * 0.5;
|
||||
|
||||
// Now loop through the sample rays
|
||||
vec3 v3FrontColor = vec3(0.0, 0.0, 0.0);
|
||||
for(int i=0; i<nSamples; i++)
|
||||
{
|
||||
float fHeight = length(v3SamplePoint);
|
||||
float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fHeight));
|
||||
float fLightAngle = dot(v3LightPos, v3SamplePoint) / fHeight;
|
||||
float fCameraAngle = dot((v3Ray), v3SamplePoint) / fHeight * 0.99;
|
||||
float fScatter = (fStartOffset + fDepth * (scale(fLightAngle) - scale(fCameraAngle)));
|
||||
vec3 v3Attenuate = exp(-fScatter * (v3InvWavelength * fKr4PI + fKm4PI));
|
||||
v3FrontColor += v3Attenuate * (fDepth * fScaledLength);
|
||||
v3SamplePoint += v3SampleRay;
|
||||
}
|
||||
|
||||
// Finally, scale the Mie and Rayleigh colors and set up the varying variables for the pixel shader
|
||||
vec3 secondaryFrontColor = v3FrontColor * fKmESun;
|
||||
vec3 frontColor = v3FrontColor * (v3InvWavelength * fKrESun);
|
||||
vec3 v3Direction = v3CameraPos - v3Pos;
|
||||
|
||||
float fCos = dot(v3LightPos, v3Direction) / length(v3Direction);
|
||||
float fMiePhase = 1.5 * ((1.0 - g2) / (2.0 + g2)) * (1.0 + fCos*fCos) / pow(1.0 + g2 - 2.0*g*fCos, 1.5);
|
||||
gl_FragColor.rgb = frontColor.rgb + fMiePhase * secondaryFrontColor.rgb;
|
||||
gl_FragColor.a = gl_FragColor.b;
|
||||
}
|
||||
#version 120
|
||||
|
||||
//
|
||||
// For licensing information, see http://http.developer.nvidia.com/GPUGems/gpugems_app01.html:
|
||||
//
|
||||
// NVIDIA Statement on the Software
|
||||
//
|
||||
// The source code provided is freely distributable, so long as the NVIDIA header remains unaltered and user modifications are
|
||||
// detailed.
|
||||
//
|
||||
// No Warranty
|
||||
//
|
||||
// THE SOFTWARE AND ANY OTHER MATERIALS PROVIDED BY NVIDIA ON THE ENCLOSED CD-ROM ARE PROVIDED "AS IS." NVIDIA DISCLAIMS ALL
|
||||
// WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF TITLE, MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
//
|
||||
// Limitation of Liability
|
||||
//
|
||||
// NVIDIA SHALL NOT BE LIABLE TO ANY USER, DEVELOPER, DEVELOPER'S CUSTOMERS, OR ANY OTHER PERSON OR ENTITY CLAIMING THROUGH OR
|
||||
// UNDER DEVELOPER FOR ANY LOSS OF PROFITS, INCOME, SAVINGS, OR ANY OTHER CONSEQUENTIAL, INCIDENTAL, SPECIAL, PUNITIVE, DIRECT
|
||||
// OR INDIRECT DAMAGES (WHETHER IN AN ACTION IN CONTRACT, TORT OR BASED ON A WARRANTY), EVEN IF NVIDIA HAS BEEN ADVISED OF THE
|
||||
// POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS SHALL APPLY NOTWITHSTANDING ANY FAILURE OF THE ESSENTIAL PURPOSE OF ANY
|
||||
// LIMITED REMEDY. IN NO EVENT SHALL NVIDIA'S AGGREGATE LIABILITY TO DEVELOPER OR ANY OTHER PERSON OR ENTITY CLAIMING THROUGH
|
||||
// OR UNDER DEVELOPER EXCEED THE AMOUNT OF MONEY ACTUALLY PAID BY DEVELOPER TO NVIDIA FOR THE SOFTWARE OR ANY OTHER MATERIALS.
|
||||
//
|
||||
|
||||
//
|
||||
// Atmospheric scattering fragment shader
|
||||
//
|
||||
// Author: Sean O'Neil
|
||||
//
|
||||
// Copyright (c) 2004 Sean O'Neil
|
||||
//
|
||||
|
||||
uniform vec3 v3CameraPos; // The camera's current position
|
||||
uniform vec3 v3InvWavelength; // 1 / pow(wavelength, 4) for the red, green, and blue channels
|
||||
uniform float fInnerRadius; // The inner (planetary) radius
|
||||
uniform float fKrESun; // Kr * ESun
|
||||
uniform float fKmESun; // Km * ESun
|
||||
uniform float fKr4PI; // Kr * 4 * PI
|
||||
uniform float fKm4PI; // Km * 4 * PI
|
||||
uniform float fScale; // 1 / (fOuterRadius - fInnerRadius)
|
||||
uniform float fScaleDepth; // The scale depth (i.e. the altitude at which the atmosphere's average density is found)
|
||||
uniform float fScaleOverScaleDepth; // fScale / fScaleDepth
|
||||
|
||||
const int nSamples = 2;
|
||||
const float fSamples = 2.0;
|
||||
|
||||
uniform vec3 v3LightPos;
|
||||
uniform float g;
|
||||
uniform float g2;
|
||||
|
||||
varying vec3 position;
|
||||
|
||||
float scale(float fCos)
|
||||
{
|
||||
float x = 1.0 - fCos;
|
||||
return fScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25))));
|
||||
}
|
||||
|
||||
void main (void)
|
||||
{
|
||||
// Get the ray from the camera to the vertex, and its length (which is the far point of the ray passing through the atmosphere)
|
||||
vec3 v3Pos = position;
|
||||
vec3 v3Ray = v3Pos - v3CameraPos;
|
||||
float fFar = length(v3Ray);
|
||||
v3Ray /= fFar;
|
||||
|
||||
// Calculate the ray's starting position, then calculate its scattering offset
|
||||
vec3 v3Start = v3CameraPos;
|
||||
float fHeight = length(v3Start);
|
||||
float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fHeight));
|
||||
float fStartAngle = dot(v3Ray, v3Start) / fHeight;
|
||||
float fStartOffset = fDepth * scale(fStartAngle);
|
||||
|
||||
// Initialize the scattering loop variables
|
||||
//gl_FrontColor = vec4(0.0, 0.0, 0.0, 0.0);
|
||||
float fSampleLength = fFar / fSamples;
|
||||
float fScaledLength = fSampleLength * fScale;
|
||||
vec3 v3SampleRay = v3Ray * fSampleLength;
|
||||
vec3 v3SamplePoint = v3Start + v3SampleRay * 0.5;
|
||||
|
||||
// Now loop through the sample rays
|
||||
vec3 v3FrontColor = vec3(0.0, 0.0, 0.0);
|
||||
for(int i=0; i<nSamples; i++)
|
||||
{
|
||||
float fHeight = length(v3SamplePoint);
|
||||
float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fHeight));
|
||||
float fLightAngle = dot(v3LightPos, v3SamplePoint) / fHeight;
|
||||
float fCameraAngle = dot((v3Ray), v3SamplePoint) / fHeight * 0.99;
|
||||
float fScatter = (fStartOffset + fDepth * (scale(fLightAngle) - scale(fCameraAngle)));
|
||||
vec3 v3Attenuate = exp(-fScatter * (v3InvWavelength * fKr4PI + fKm4PI));
|
||||
v3FrontColor += v3Attenuate * (fDepth * fScaledLength);
|
||||
v3SamplePoint += v3SampleRay;
|
||||
}
|
||||
|
||||
// Finally, scale the Mie and Rayleigh colors and set up the varying variables for the pixel shader
|
||||
vec3 secondaryFrontColor = v3FrontColor * fKmESun;
|
||||
vec3 frontColor = v3FrontColor * (v3InvWavelength * fKrESun);
|
||||
vec3 v3Direction = v3CameraPos - v3Pos;
|
||||
|
||||
float fCos = dot(v3LightPos, v3Direction) / length(v3Direction);
|
||||
float fMiePhase = 1.5 * ((1.0 - g2) / (2.0 + g2)) * (1.0 + fCos*fCos) / pow(1.0 + g2 - 2.0*g*fCos, 1.5);
|
||||
gl_FragColor.rgb = frontColor.rgb + fMiePhase * secondaryFrontColor.rgb;
|
||||
gl_FragColor.a = gl_FragColor.b;
|
||||
gl_FragColor.rgb = pow(gl_FragColor.rgb, vec3(1.0/2.2));
|
||||
}
|
||||
|
|
|
@ -110,4 +110,5 @@ void main (void)
|
|||
vec3 secondaryColor = v3FrontColor * fKmESun;
|
||||
gl_FragColor.rgb = color + fMiePhase * secondaryColor;
|
||||
gl_FragColor.a = gl_FragColor.b;
|
||||
gl_FragColor.rgb = pow(gl_FragColor.rgb, vec3(1.0/2.2));
|
||||
}
|
||||
|
|
File diff suppressed because it is too large
Load diff
|
@ -112,7 +112,6 @@ private slots:
|
|||
void decreaseVoxelSize();
|
||||
void increaseVoxelSize();
|
||||
void chooseVoxelPaintColor();
|
||||
void setAutosave(bool wantsAutosave);
|
||||
void loadSettings(QSettings* set = NULL);
|
||||
void saveSettings(QSettings* set = NULL);
|
||||
void importSettings();
|
||||
|
@ -132,6 +131,7 @@ private:
|
|||
void initDisplay();
|
||||
void init();
|
||||
|
||||
void update(float deltaTime);
|
||||
void updateAvatar(float deltaTime);
|
||||
void loadViewFrustum(Camera& camera, ViewFrustum& viewFrustum);
|
||||
|
||||
|
@ -176,10 +176,12 @@ private:
|
|||
QAction* _mouseLook; // Whether the have the mouse near edge of screen move your view
|
||||
QAction* _showHeadMouse; // Whether the have the mouse near edge of screen move your view
|
||||
QAction* _transmitterDrives; // Whether to have Transmitter data move/steer the Avatar
|
||||
QAction* _gravityUse; // Whether gravity is on or not
|
||||
QAction* _renderVoxels; // Whether to render voxels
|
||||
QAction* _renderVoxelTextures; // Whether to render noise textures on voxels
|
||||
QAction* _renderStarsOn; // Whether to display the stars
|
||||
QAction* _renderAtmosphereOn; // Whether to display the atmosphere
|
||||
QAction* _renderGroundPlaneOn; // Whether to display the ground plane
|
||||
QAction* _renderAvatarsOn; // Whether to render avatars
|
||||
QAction* _renderStatsOn; // Whether to show onscreen text overlay with stats
|
||||
QAction* _renderFrameTimerOn; // Whether to show onscreen text overlay with stats
|
||||
|
@ -226,7 +228,7 @@ private:
|
|||
ViewFrustum _viewFrustum; // current state of view frustum, perspective, orientation, etc.
|
||||
|
||||
enum FrustumDrawMode { FRUSTUM_DRAW_MODE_ALL, FRUSTUM_DRAW_MODE_VECTORS, FRUSTUM_DRAW_MODE_PLANES,
|
||||
FRUSTUM_DRAW_MODE_NEAR_PLANE, FRUSTUM_DRAW_MODE_FAR_PLANE, FRUSTUM_DRAW_MODE_COUNT };
|
||||
FRUSTUM_DRAW_MODE_NEAR_PLANE, FRUSTUM_DRAW_MODE_FAR_PLANE, FRUSTUM_DRAW_MODE_KEYHOLE, FRUSTUM_DRAW_MODE_COUNT };
|
||||
FrustumDrawMode _frustumDrawingMode;
|
||||
|
||||
float _viewFrustumOffsetYaw; // the following variables control yaw, pitch, roll and distance form regular
|
||||
|
@ -293,8 +295,6 @@ private:
|
|||
int _packetsPerSecond;
|
||||
int _bytesPerSecond;
|
||||
int _bytesCount;
|
||||
|
||||
bool _autosave; // True if the autosave is on.
|
||||
};
|
||||
|
||||
#endif /* defined(__interface__Application__) */
|
||||
|
|
|
@ -1225,6 +1225,8 @@ void Avatar::loadData(QSettings* set) {
|
|||
_position.y = set->value("position_y", _position.y).toFloat();
|
||||
_position.z = set->value("position_z", _position.z).toFloat();
|
||||
|
||||
_voxels.setVoxelURL(set->value("voxelURL").toUrl());
|
||||
|
||||
set->endGroup();
|
||||
}
|
||||
|
||||
|
@ -1244,6 +1246,8 @@ void Avatar::saveData(QSettings* set) {
|
|||
set->setValue("position_y", _position.y);
|
||||
set->setValue("position_z", _position.z);
|
||||
|
||||
set->setValue("voxelURL", _voxels.getVoxelURL());
|
||||
|
||||
set->endGroup();
|
||||
}
|
||||
|
||||
|
|
|
@ -71,7 +71,7 @@ void Camera::updateFollowMode(float deltaTime) {
|
|||
_distance = _previousDistance * (1.0f - _modeShift) + _newDistance * _modeShift;
|
||||
_tightness = _previousTightness * (1.0f - _modeShift) + _newTightness * _modeShift;
|
||||
|
||||
if (_linearModeShift > 1.0f ) {
|
||||
if (_needsToInitialize || _linearModeShift > 1.0f) {
|
||||
_linearModeShift = 1.0f;
|
||||
_modeShift = 1.0f;
|
||||
_upShift = _newUpShift;
|
||||
|
|
|
@ -27,7 +27,7 @@ public:
|
|||
static unsigned const TEXT_COLOR = 0xb299ff; // text foreground color (bytes, RGB)
|
||||
|
||||
static FILE* const DEFAULT_STREAM; // = stdout; // stream to also log to (defined in .cpp)
|
||||
static unsigned const DEFAULT_CHAR_WIDTH = 7; // width of a single character
|
||||
static unsigned const DEFAULT_CHAR_WIDTH = 5; // width of a single character
|
||||
static unsigned const DEFAULT_CHAR_HEIGHT = 16; // height of a single character
|
||||
static unsigned const DEFAULT_CONSOLE_WIDTH = 400; // width of the (right-aligned) log console
|
||||
|
||||
|
|
|
@ -24,28 +24,29 @@ enum BoxFace {
|
|||
|
||||
const int FACE_COUNT = 6;
|
||||
|
||||
class AABox
|
||||
class AABox
|
||||
{
|
||||
|
||||
public:
|
||||
|
||||
AABox(const glm::vec3& corner, float x, float y, float z) : _corner(corner), _size(x,y,z) { };
|
||||
AABox(const glm::vec3& corner, const glm::vec3& size) : _corner(corner), _size(size) { };
|
||||
AABox(const glm::vec3& corner, float size) : _corner(corner), _size(size, size, size) { };
|
||||
AABox(const glm::vec3& corner, float x, float y, float z) : _corner(corner), _size(x, y, z) { };
|
||||
AABox(const glm::vec3& corner, const glm::vec3& size) : _corner(corner), _size(size) { };
|
||||
AABox() : _corner(0,0,0), _size(0,0,0) { }
|
||||
~AABox() { }
|
||||
|
||||
void setBox(const glm::vec3& corner, float x, float y, float z) { setBox(corner,glm::vec3(x,y,z)); };
|
||||
void setBox(const glm::vec3& corner, const glm::vec3& size);
|
||||
void setBox(const glm::vec3& corner, float x, float y, float z) { setBox(corner,glm::vec3(x,y,z)); };
|
||||
void setBox(const glm::vec3& corner, const glm::vec3& size);
|
||||
|
||||
// for use in frustum computations
|
||||
glm::vec3 getVertexP(const glm::vec3& normal) const;
|
||||
glm::vec3 getVertexN(const glm::vec3& normal) const;
|
||||
|
||||
void scale(float scale);
|
||||
|
||||
const glm::vec3& getCorner() const { return _corner; };
|
||||
const glm::vec3& getSize() const { return _size; };
|
||||
const glm::vec3& getCenter() const { return _center; };
|
||||
// for use in frustum computations
|
||||
glm::vec3 getVertexP(const glm::vec3& normal) const;
|
||||
glm::vec3 getVertexN(const glm::vec3& normal) const;
|
||||
|
||||
void scale(float scale);
|
||||
|
||||
const glm::vec3& getCorner() const { return _corner; };
|
||||
const glm::vec3& getSize() const { return _size; };
|
||||
const glm::vec3& getCenter() const { return _center; };
|
||||
|
||||
bool contains(const glm::vec3& point) const;
|
||||
bool expandedContains(const glm::vec3& point, float expansion) const;
|
||||
|
@ -55,16 +56,16 @@ public:
|
|||
bool findCapsulePenetration(const glm::vec3& start, const glm::vec3& end, float radius, glm::vec3& penetration) const;
|
||||
|
||||
private:
|
||||
|
||||
|
||||
glm::vec3 getClosestPointOnFace(const glm::vec3& point, BoxFace face) const;
|
||||
glm::vec3 getClosestPointOnFace(const glm::vec4& origin, const glm::vec4& direction, BoxFace face) const;
|
||||
glm::vec4 getPlane(BoxFace face) const;
|
||||
|
||||
|
||||
static BoxFace getOppositeFace(BoxFace face);
|
||||
|
||||
glm::vec3 _corner;
|
||||
glm::vec3 _center;
|
||||
glm::vec3 _size;
|
||||
|
||||
glm::vec3 _corner;
|
||||
glm::vec3 _center;
|
||||
glm::vec3 _size;
|
||||
};
|
||||
|
||||
|
||||
|
|
|
@ -29,6 +29,7 @@ ViewFrustum::ViewFrustum() :
|
|||
_aspectRatio(1.0),
|
||||
_nearClip(0.1),
|
||||
_farClip(500.0),
|
||||
_keyholeRadius(DEFAULT_KEYHOLE_RADIUS),
|
||||
_farTopLeft(0,0,0),
|
||||
_farTopRight(0,0,0),
|
||||
_farBottomLeft(0,0,0),
|
||||
|
@ -36,7 +37,9 @@ ViewFrustum::ViewFrustum() :
|
|||
_nearTopLeft(0,0,0),
|
||||
_nearTopRight(0,0,0),
|
||||
_nearBottomLeft(0,0,0),
|
||||
_nearBottomRight(0,0,0) { }
|
||||
_nearBottomRight(0,0,0)
|
||||
{
|
||||
}
|
||||
|
||||
void ViewFrustum::setOrientation(const glm::quat& orientationAsQuaternion) {
|
||||
_orientation = orientationAsQuaternion;
|
||||
|
@ -114,42 +117,6 @@ void ViewFrustum::calculate() {
|
|||
|
||||
}
|
||||
|
||||
void ViewFrustum::dump() const {
|
||||
|
||||
printLog("position.x=%f, position.y=%f, position.z=%f\n", _position.x, _position.y, _position.z);
|
||||
printLog("direction.x=%f, direction.y=%f, direction.z=%f\n", _direction.x, _direction.y, _direction.z);
|
||||
printLog("up.x=%f, up.y=%f, up.z=%f\n", _up.x, _up.y, _up.z);
|
||||
printLog("right.x=%f, right.y=%f, right.z=%f\n", _right.x, _right.y, _right.z);
|
||||
|
||||
printLog("farDist=%f\n", _farClip);
|
||||
|
||||
printLog("nearDist=%f\n", _nearClip);
|
||||
|
||||
printLog("eyeOffsetPosition=%f,%f,%f\n", _eyeOffsetPosition.x, _eyeOffsetPosition.y, _eyeOffsetPosition.z);
|
||||
|
||||
printLog("eyeOffsetOrientation=%f,%f,%f,%f\n", _eyeOffsetOrientation.x, _eyeOffsetOrientation.y,
|
||||
_eyeOffsetOrientation.z, _eyeOffsetOrientation.w);
|
||||
|
||||
printLog("farTopLeft.x=%f, farTopLeft.y=%f, farTopLeft.z=%f\n",
|
||||
_farTopLeft.x, _farTopLeft.y, _farTopLeft.z);
|
||||
printLog("farTopRight.x=%f, farTopRight.y=%f, farTopRight.z=%f\n",
|
||||
_farTopRight.x, _farTopRight.y, _farTopRight.z);
|
||||
printLog("farBottomLeft.x=%f, farBottomLeft.y=%f, farBottomLeft.z=%f\n",
|
||||
_farBottomLeft.x, _farBottomLeft.y, _farBottomLeft.z);
|
||||
printLog("farBottomRight.x=%f, farBottomRight.y=%f, farBottomRight.z=%f\n",
|
||||
_farBottomRight.x, _farBottomRight.y, _farBottomRight.z);
|
||||
|
||||
printLog("nearTopLeft.x=%f, nearTopLeft.y=%f, nearTopLeft.z=%f\n",
|
||||
_nearTopLeft.x, _nearTopLeft.y, _nearTopLeft.z);
|
||||
printLog("nearTopRight.x=%f, nearTopRight.y=%f, nearTopRight.z=%f\n",
|
||||
_nearTopRight.x, _nearTopRight.y, _nearTopRight.z);
|
||||
printLog("nearBottomLeft.x=%f, nearBottomLeft.y=%f, nearBottomLeft.z=%f\n",
|
||||
_nearBottomLeft.x, _nearBottomLeft.y, _nearBottomLeft.z);
|
||||
printLog("nearBottomRight.x=%f, nearBottomRight.y=%f, nearBottomRight.z=%f\n",
|
||||
_nearBottomRight.x, _nearBottomRight.y, _nearBottomRight.z);
|
||||
}
|
||||
|
||||
|
||||
//enum { TOP_PLANE = 0, BOTTOM_PLANE, LEFT_PLANE, RIGHT_PLANE, NEAR_PLANE, FAR_PLANE };
|
||||
const char* ViewFrustum::debugPlaneName (int plane) const {
|
||||
switch (plane) {
|
||||
|
@ -163,52 +130,147 @@ const char* ViewFrustum::debugPlaneName (int plane) const {
|
|||
return "Unknown";
|
||||
}
|
||||
|
||||
ViewFrustum::location ViewFrustum::pointInSphere(const glm::vec3& point, const glm::vec3& center, float radius ) const {
|
||||
|
||||
ViewFrustum::location ViewFrustum::pointInFrustum(const glm::vec3& point) const {
|
||||
|
||||
//printf("ViewFrustum::pointInFrustum() point=%f,%f,%f\n",point.x,point.y,point.z);
|
||||
//dump();
|
||||
|
||||
ViewFrustum::location result = INSIDE;
|
||||
for(int i=0; i < 6; i++) {
|
||||
float distance = _planes[i].distance(point);
|
||||
|
||||
//printf("plane[%d] %s -- distance=%f \n",i,debugPlaneName(i),distance);
|
||||
ViewFrustum::location result = INTERSECT;
|
||||
|
||||
if (distance < 0) {
|
||||
return OUTSIDE;
|
||||
float distance = glm::distance(point, center);
|
||||
if (distance > radius) {
|
||||
result = OUTSIDE;
|
||||
} else if (distance < radius) {
|
||||
result = INSIDE;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// To determine if two spheres intersect, simply calculate the distance between the centers of the two spheres.
|
||||
// If the distance is greater than the sum of the two sphere radii, they don’t intersect. Otherwise they intersect.
|
||||
// If the distance plus the radius of sphere A is less than the radius of sphere B then, sphere A is inside of sphere B
|
||||
ViewFrustum::location ViewFrustum::sphereInSphere(const glm::vec3& centerA, float radiusA,
|
||||
const glm::vec3& centerB, float radiusB ) const {
|
||||
|
||||
ViewFrustum::location result = INTERSECT;
|
||||
|
||||
float distanceFromAtoB = glm::distance(centerA, centerB);
|
||||
if (distanceFromAtoB > (radiusA + radiusB)) {
|
||||
result = OUTSIDE;
|
||||
} else if ((distanceFromAtoB + radiusA) < radiusB) {
|
||||
result = INSIDE;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
// A box is inside a sphere if all of its corners are inside the sphere
|
||||
// A box intersects a sphere if any of its edges (as rays) interesect the sphere
|
||||
// A box is outside a sphere if none of its edges (as rays) interesect the sphere
|
||||
ViewFrustum::location ViewFrustum::boxInSphere(const AABox& box, const glm::vec3& center, float radius) const {
|
||||
glm::vec3 penetration;
|
||||
bool intersects = box.findSpherePenetration(center, radius, penetration);
|
||||
|
||||
ViewFrustum::location result = OUTSIDE;
|
||||
|
||||
// if the box intersects the sphere, then it may also be inside... calculate further
|
||||
if (intersects) {
|
||||
result = INTERSECT;
|
||||
|
||||
// test all the corners, if they are all inside the sphere, the entire box is in the sphere
|
||||
glm::vec3 testPoint = box.getCorner();
|
||||
glm::vec3 size = box.getSize();
|
||||
if (pointInSphere(testPoint, center, radius)) {
|
||||
testPoint = box.getCorner() + glm::vec3(size.x, 0.0f, 0.0f);
|
||||
if (pointInSphere(testPoint, center, radius)) {
|
||||
testPoint = box.getCorner() + glm::vec3(0.0f, 0.0f, size.z);
|
||||
if (pointInSphere(testPoint, center, radius)) {
|
||||
testPoint = box.getCorner() + glm::vec3(size.x, 0.0f, size.z);
|
||||
if (pointInSphere(testPoint, center, radius)) {
|
||||
testPoint = box.getCorner() + glm::vec3(0.0f, size.y, 0.0f);
|
||||
if (pointInSphere(testPoint, center, radius)) {
|
||||
testPoint = box.getCorner() + glm::vec3(size.x, size.y, 0.0f);
|
||||
if (pointInSphere(testPoint, center, radius)) {
|
||||
testPoint = box.getCorner() + glm::vec3(0.0f, size.y, size.z);
|
||||
if (pointInSphere(testPoint, center, radius)) {
|
||||
testPoint = box.getCorner() + glm::vec3(size.x, size.y, size.z);
|
||||
if (pointInSphere(testPoint, center, radius)) {
|
||||
result = INSIDE;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return(result);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
ViewFrustum::location ViewFrustum::pointInFrustum(const glm::vec3& point) const {
|
||||
ViewFrustum::location regularResult = INSIDE;
|
||||
ViewFrustum::location keyholeResult = OUTSIDE;
|
||||
|
||||
// If we have a keyholeRadius, check that first, since it's cheaper
|
||||
if (_keyholeRadius >= 0.0f) {
|
||||
keyholeResult = pointInSphere(point, _position, _keyholeRadius);
|
||||
}
|
||||
if (keyholeResult == INSIDE) {
|
||||
return keyholeResult;
|
||||
}
|
||||
|
||||
// If we're not known to be INSIDE the keyhole, then check the regular frustum
|
||||
for(int i=0; i < 6; i++) {
|
||||
float distance = _planes[i].distance(point);
|
||||
if (distance < 0) {
|
||||
return keyholeResult; // escape early will be the value from checking the keyhole
|
||||
}
|
||||
}
|
||||
|
||||
return regularResult;
|
||||
}
|
||||
|
||||
ViewFrustum::location ViewFrustum::sphereInFrustum(const glm::vec3& center, float radius) const {
|
||||
ViewFrustum::location result = INSIDE;
|
||||
ViewFrustum::location regularResult = INSIDE;
|
||||
ViewFrustum::location keyholeResult = OUTSIDE;
|
||||
|
||||
// If we have a keyholeRadius, check that first, since it's cheaper
|
||||
if (_keyholeRadius >= 0.0f) {
|
||||
keyholeResult = sphereInSphere(center, radius, _position, _keyholeRadius);
|
||||
}
|
||||
if (keyholeResult == INSIDE) {
|
||||
return keyholeResult;
|
||||
}
|
||||
|
||||
float distance;
|
||||
for(int i=0; i < 6; i++) {
|
||||
distance = _planes[i].distance(center);
|
||||
if (distance < -radius)
|
||||
return OUTSIDE;
|
||||
else if (distance < radius)
|
||||
result = INTERSECT;
|
||||
if (distance < -radius) {
|
||||
// This is outside the regular frustum, so just return the value from checking the keyhole
|
||||
return keyholeResult;
|
||||
} else if (distance < radius) {
|
||||
regularResult = INTERSECT;
|
||||
}
|
||||
}
|
||||
return(result);
|
||||
|
||||
return regularResult;
|
||||
}
|
||||
|
||||
|
||||
ViewFrustum::location ViewFrustum::boxInFrustum(const AABox& box) const {
|
||||
ViewFrustum::location regularResult = INSIDE;
|
||||
ViewFrustum::location keyholeResult = OUTSIDE;
|
||||
|
||||
// If we have a keyholeRadius, check that first, since it's cheaper
|
||||
if (_keyholeRadius >= 0.0f) {
|
||||
keyholeResult = boxInSphere(box, _position, _keyholeRadius);
|
||||
}
|
||||
if (keyholeResult == INSIDE) {
|
||||
return keyholeResult;
|
||||
}
|
||||
|
||||
//printf("ViewFrustum::boxInFrustum() box.corner=%f,%f,%f x=%f\n",
|
||||
// box.getCorner().x,box.getCorner().y,box.getCorner().z,box.getSize().x);
|
||||
ViewFrustum::location result = INSIDE;
|
||||
for(int i=0; i < 6; i++) {
|
||||
|
||||
//printf("plane[%d] -- point(%f,%f,%f) normal(%f,%f,%f) d=%f \n",i,
|
||||
// _planes[i].getPoint().x, _planes[i].getPoint().y, _planes[i].getPoint().z,
|
||||
// _planes[i].getNormal().x, _planes[i].getNormal().y, _planes[i].getNormal().z,
|
||||
// _planes[i].getDCoefficient()
|
||||
//);
|
||||
|
||||
glm::vec3 normal = _planes[i].getNormal();
|
||||
glm::vec3 boxVertexP = box.getVertexP(normal);
|
||||
float planeToBoxVertexPDistance = _planes[i].distance(boxVertexP);
|
||||
|
@ -216,19 +278,14 @@ ViewFrustum::location ViewFrustum::boxInFrustum(const AABox& box) const {
|
|||
glm::vec3 boxVertexN = box.getVertexN(normal);
|
||||
float planeToBoxVertexNDistance = _planes[i].distance(boxVertexN);
|
||||
|
||||
//printf("plane[%d] normal=(%f,%f,%f) bVertexP=(%f,%f,%f) planeToBoxVertexPDistance=%f boxVertexN=(%f,%f,%f) planeToBoxVertexNDistance=%f\n",i,
|
||||
// normal.x,normal.y,normal.z,
|
||||
// boxVertexP.x,boxVertexP.y,boxVertexP.z,planeToBoxVertexPDistance,
|
||||
// boxVertexN.x,boxVertexN.y,boxVertexN.z,planeToBoxVertexNDistance
|
||||
// );
|
||||
|
||||
if (planeToBoxVertexPDistance < 0) {
|
||||
return OUTSIDE;
|
||||
// This is outside the regular frustum, so just return the value from checking the keyhole
|
||||
return keyholeResult;
|
||||
} else if (planeToBoxVertexNDistance < 0) {
|
||||
result = INTERSECT;
|
||||
regularResult = INTERSECT;
|
||||
}
|
||||
}
|
||||
return(result);
|
||||
return regularResult;
|
||||
}
|
||||
|
||||
bool testMatches(glm::quat lhs, glm::quat rhs) {
|
||||
|
|
|
@ -16,44 +16,9 @@
|
|||
#include "Plane.h"
|
||||
#include "AABox.h"
|
||||
|
||||
const float DEFAULT_KEYHOLE_RADIUS = 2.0f;
|
||||
|
||||
class ViewFrustum {
|
||||
private:
|
||||
|
||||
// camera location/orientation attributes
|
||||
glm::vec3 _position;
|
||||
glm::quat _orientation;
|
||||
|
||||
// calculated for orientation
|
||||
glm::vec3 _direction;
|
||||
glm::vec3 _up;
|
||||
glm::vec3 _right;
|
||||
|
||||
// Lens attributes
|
||||
float _fieldOfView;
|
||||
float _aspectRatio;
|
||||
float _nearClip;
|
||||
float _farClip;
|
||||
glm::vec3 _eyeOffsetPosition;
|
||||
glm::quat _eyeOffsetOrientation;
|
||||
|
||||
// Calculated values
|
||||
glm::vec3 _offsetPosition;
|
||||
glm::vec3 _offsetDirection;
|
||||
glm::vec3 _offsetUp;
|
||||
glm::vec3 _offsetRight;
|
||||
glm::vec3 _farTopLeft;
|
||||
glm::vec3 _farTopRight;
|
||||
glm::vec3 _farBottomLeft;
|
||||
glm::vec3 _farBottomRight;
|
||||
glm::vec3 _nearTopLeft;
|
||||
glm::vec3 _nearTopRight;
|
||||
glm::vec3 _nearBottomLeft;
|
||||
glm::vec3 _nearBottomRight;
|
||||
enum { TOP_PLANE = 0, BOTTOM_PLANE, LEFT_PLANE, RIGHT_PLANE, NEAR_PLANE, FAR_PLANE };
|
||||
Plane _planes[6]; // How will this be used?
|
||||
|
||||
const char* debugPlaneName (int plane) const;
|
||||
|
||||
public:
|
||||
// setters for camera attributes
|
||||
void setPosition (const glm::vec3& p) { _position = p; };
|
||||
|
@ -74,7 +39,6 @@ public:
|
|||
void setEyeOffsetPosition (const glm::vec3& p) { _eyeOffsetPosition = p; };
|
||||
void setEyeOffsetOrientation (const glm::quat& o) { _eyeOffsetOrientation = o; };
|
||||
|
||||
|
||||
// getters for lens attributes
|
||||
float getFieldOfView() const { return _fieldOfView; };
|
||||
float getAspectRatio() const { return _aspectRatio; };
|
||||
|
@ -98,12 +62,14 @@ public:
|
|||
const glm::vec3& getNearBottomLeft() const { return _nearBottomLeft; };
|
||||
const glm::vec3& getNearBottomRight() const { return _nearBottomRight;};
|
||||
|
||||
// get/set for keyhole attribute
|
||||
void setKeyholeRadius(float keyholdRadius) { _keyholeRadius = keyholdRadius; };
|
||||
float getKeyholeRadius() const { return _keyholeRadius; };
|
||||
|
||||
void calculate();
|
||||
|
||||
ViewFrustum();
|
||||
|
||||
void dump() const;
|
||||
|
||||
typedef enum {OUTSIDE, INTERSECT, INSIDE} location;
|
||||
|
||||
ViewFrustum::location pointInFrustum(const glm::vec3& point) const;
|
||||
|
@ -120,6 +86,53 @@ public:
|
|||
glm::vec4& nearClipPlane, glm::vec4& farClipPlane) const;
|
||||
|
||||
void printDebugDetails() const;
|
||||
|
||||
private:
|
||||
|
||||
// Used for keyhole calculations
|
||||
ViewFrustum::location pointInSphere(const glm::vec3& point, const glm::vec3& center, float radius) const;
|
||||
ViewFrustum::location sphereInSphere(const glm::vec3& centerA, float radiusA, const glm::vec3& centerB, float radiusB) const;
|
||||
ViewFrustum::location boxInSphere(const AABox& box, const glm::vec3& center, float radius) const;
|
||||
|
||||
// camera location/orientation attributes
|
||||
glm::vec3 _position;
|
||||
glm::quat _orientation;
|
||||
|
||||
// calculated for orientation
|
||||
glm::vec3 _direction;
|
||||
glm::vec3 _up;
|
||||
glm::vec3 _right;
|
||||
|
||||
// Lens attributes
|
||||
float _fieldOfView;
|
||||
float _aspectRatio;
|
||||
float _nearClip;
|
||||
float _farClip;
|
||||
glm::vec3 _eyeOffsetPosition;
|
||||
glm::quat _eyeOffsetOrientation;
|
||||
|
||||
// keyhole attributes
|
||||
float _keyholeRadius;
|
||||
|
||||
|
||||
// Calculated values
|
||||
glm::vec3 _offsetPosition;
|
||||
glm::vec3 _offsetDirection;
|
||||
glm::vec3 _offsetUp;
|
||||
glm::vec3 _offsetRight;
|
||||
glm::vec3 _farTopLeft;
|
||||
glm::vec3 _farTopRight;
|
||||
glm::vec3 _farBottomLeft;
|
||||
glm::vec3 _farBottomRight;
|
||||
glm::vec3 _nearTopLeft;
|
||||
glm::vec3 _nearTopRight;
|
||||
glm::vec3 _nearBottomLeft;
|
||||
glm::vec3 _nearBottomRight;
|
||||
enum { TOP_PLANE = 0, BOTTOM_PLANE, LEFT_PLANE, RIGHT_PLANE, NEAR_PLANE, FAR_PLANE };
|
||||
Plane _planes[6]; // How will this be used?
|
||||
|
||||
const char* debugPlaneName (int plane) const;
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
|
|
@ -35,7 +35,7 @@ void VoxelNode::init(unsigned char * octalCode) {
|
|||
_currentColor[0] = _currentColor[1] = _currentColor[2] = _currentColor[3] = 0;
|
||||
#endif
|
||||
_trueColor[0] = _trueColor[1] = _trueColor[2] = _trueColor[3] = 0;
|
||||
|
||||
_density = 0.0f;
|
||||
|
||||
// default pointers to child nodes to NULL
|
||||
for (int i = 0; i < NUMBER_OF_CHILDREN; i++) {
|
||||
|
@ -161,10 +161,10 @@ void VoxelNode::safeDeepDeleteChildAtIndex(int childIndex, bool& stagedForDeleti
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
// will average the child colors...
|
||||
void VoxelNode::setColorFromAverageOfChildren() {
|
||||
int colorArray[4] = {0,0,0,0};
|
||||
float density = 0.0f;
|
||||
for (int i = 0; i < NUMBER_OF_CHILDREN; i++) {
|
||||
if (_children[i] && !_children[i]->isStagedForDeletion() && _children[i]->isColored()) {
|
||||
for (int j = 0; j < 3; j++) {
|
||||
|
@ -172,11 +172,24 @@ void VoxelNode::setColorFromAverageOfChildren() {
|
|||
}
|
||||
colorArray[3]++;
|
||||
}
|
||||
if (_children[i]) {
|
||||
density += _children[i]->getDensity();
|
||||
}
|
||||
}
|
||||
density /= (float) NUMBER_OF_CHILDREN;
|
||||
//
|
||||
// The VISIBLE_ABOVE_DENSITY sets the density of matter above which an averaged color voxel will
|
||||
// be set. It is an important physical constant in our universe. A number below 0.5 will cause
|
||||
// things to get 'fatter' at a distance, because upward averaging will make larger voxels out of
|
||||
// less data, which is (probably) going to be preferable because it gives a sense that there is
|
||||
// something out there to go investigate. A number above 0.5 would cause the world to become
|
||||
// more 'empty' at a distance. Exactly 0.5 would match the physical world, at least for materials
|
||||
// that are not shiny and have equivalent ambient reflectance.
|
||||
//
|
||||
const float VISIBLE_ABOVE_DENSITY = 0.10f;
|
||||
nodeColor newColor = { 0, 0, 0, 0};
|
||||
if (colorArray[3] > 4) {
|
||||
// we need at least 4 colored children to have an average color value
|
||||
// or if we have none we generate random values
|
||||
if (density > VISIBLE_ABOVE_DENSITY) {
|
||||
// The density of material in the space of the voxel sets whether it is actually colored
|
||||
for (int c = 0; c < 3; c++) {
|
||||
// set the average color value
|
||||
newColor[c] = colorArray[c] / colorArray[3];
|
||||
|
@ -184,10 +197,9 @@ void VoxelNode::setColorFromAverageOfChildren() {
|
|||
// set the alpha to 1 to indicate that this isn't transparent
|
||||
newColor[3] = 1;
|
||||
}
|
||||
// actually set our color, note, if we didn't have enough children
|
||||
// this will be the default value all zeros, and therefore be marked as
|
||||
// transparent with a 4th element of 0
|
||||
// Set the color from the average of the child colors, and update the density
|
||||
setColor(newColor);
|
||||
setDensity(density);
|
||||
}
|
||||
|
||||
// Note: !NO_FALSE_COLOR implementations of setFalseColor(), setFalseColored(), and setColor() here.
|
||||
|
@ -214,20 +226,21 @@ void VoxelNode::setFalseColored(bool isFalseColored) {
|
|||
_falseColored = isFalseColored;
|
||||
_isDirty = true;
|
||||
markWithChangedTime();
|
||||
_density = 1.0f; // If color set, assume leaf, re-averaging will update density if needed.
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
void VoxelNode::setColor(const nodeColor& color) {
|
||||
if (_trueColor[0] != color[0] || _trueColor[1] != color[1] || _trueColor[2] != color[2]) {
|
||||
//printLog("VoxelNode::setColor() was: (%d,%d,%d) is: (%d,%d,%d)\n",
|
||||
// _trueColor[0],_trueColor[1],_trueColor[2],color[0],color[1],color[2]);
|
||||
memcpy(&_trueColor,&color,sizeof(nodeColor));
|
||||
if (!_falseColored) {
|
||||
memcpy(&_currentColor,&color,sizeof(nodeColor));
|
||||
}
|
||||
_isDirty = true;
|
||||
markWithChangedTime();
|
||||
_density = 1.0f; // If color set, assume leaf, re-averaging will update density if needed.
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
|
|
@ -36,6 +36,7 @@ private:
|
|||
unsigned char* _octalCode;
|
||||
VoxelNode* _children[8];
|
||||
int _childCount;
|
||||
float _density; // If leaf: density = 1, if internal node: 0-1 density of voxels inside
|
||||
|
||||
void calculateAABox();
|
||||
|
||||
|
@ -102,11 +103,14 @@ public:
|
|||
void setColor(const nodeColor& color);
|
||||
const nodeColor& getTrueColor() const { return _trueColor; };
|
||||
const nodeColor& getColor() const { return _currentColor; };
|
||||
void setDensity(const float density) { _density = density; };
|
||||
const float getDensity() const { return _density; };
|
||||
#else
|
||||
void setFalseColor(colorPart red, colorPart green, colorPart blue) { /* no op */ };
|
||||
void setFalseColored(bool isFalseColored) { /* no op */ };
|
||||
bool getFalseColored() { return false; };
|
||||
void setColor(const nodeColor& color) { memcpy(_trueColor,color,sizeof(nodeColor)); };
|
||||
void setDensity(const float density) { _density = density; };
|
||||
const nodeColor& getTrueColor() const { return _trueColor; };
|
||||
const nodeColor& getColor() const { return _trueColor; };
|
||||
#endif
|
||||
|
|
|
@ -387,16 +387,6 @@ void persistVoxelsWhenDirty() {
|
|||
|
||||
// check the dirty bit and persist here...
|
||||
if (::wantVoxelPersist && ::serverTree.isDirty() && sinceLastTime > VOXEL_PERSIST_INTERVAL) {
|
||||
|
||||
{
|
||||
PerformanceWarning warn(::shouldShowAnimationDebug,
|
||||
"persistVoxelsWhenDirty() - reaverageVoxelColors()", ::shouldShowAnimationDebug);
|
||||
|
||||
// after done inserting all these voxels, then reaverage colors
|
||||
serverTree.reaverageVoxelColors(serverTree.rootNode);
|
||||
}
|
||||
|
||||
|
||||
{
|
||||
PerformanceWarning warn(::shouldShowAnimationDebug,
|
||||
"persistVoxelsWhenDirty() - writeToSVOFile()", ::shouldShowAnimationDebug);
|
||||
|
@ -505,6 +495,15 @@ int main(int argc, const char * argv[]) {
|
|||
if (::wantVoxelPersist) {
|
||||
printf("loading voxels from file...\n");
|
||||
persistantFileRead = ::serverTree.readFromSVOFile(::wantLocalDomain ? LOCAL_VOXELS_PERSIST_FILE : VOXELS_PERSIST_FILE);
|
||||
if (persistantFileRead) {
|
||||
PerformanceWarning warn(::shouldShowAnimationDebug,
|
||||
"persistVoxelsWhenDirty() - reaverageVoxelColors()", ::shouldShowAnimationDebug);
|
||||
|
||||
// after done inserting all these voxels, then reaverage colors
|
||||
serverTree.reaverageVoxelColors(serverTree.rootNode);
|
||||
printf("Voxels reAveraged\n");
|
||||
}
|
||||
|
||||
::serverTree.clearDirtyBit(); // the tree is clean since we just loaded it
|
||||
printf("DONE loading voxels from file... fileRead=%s\n", debug::valueOf(persistantFileRead));
|
||||
unsigned long nodeCount = ::serverTree.getVoxelCount();
|
||||
|
|
Loading…
Reference in a new issue