Merge pull request #1440 from PhilipRosedale/buckyballs

Removed some more old balls/hair/particle code, added local-only version of buckyballs to try playing with
This commit is contained in:
Stephen Birarda 2014-01-03 14:21:29 -08:00
commit 91b07d93c8
11 changed files with 231 additions and 1009 deletions

View file

@ -1,119 +0,0 @@
//
// BendyLine.cpp
// interface
//
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
#include "BendyLine.h"
#include "Util.h"
#include "world.h"
const float DEFAULT_BENDY_LINE_SPRING_FORCE = 10.0f;
const float DEFAULT_BENDY_LINE_TORQUE_FORCE = 0.1f;
const float DEFAULT_BENDY_LINE_DRAG = 10.0f;
const float DEFAULT_BENDY_LINE_LENGTH = 0.09f;
const float DEFAULT_BENDY_LINE_THICKNESS = 0.03f;
BendyLine::BendyLine(){
_springForce = DEFAULT_BENDY_LINE_SPRING_FORCE;
_torqueForce = DEFAULT_BENDY_LINE_TORQUE_FORCE;
_drag = DEFAULT_BENDY_LINE_DRAG;
_length = DEFAULT_BENDY_LINE_LENGTH;
_thickness = DEFAULT_BENDY_LINE_THICKNESS;
_gravityForce = glm::vec3(0.0f, 0.0f, 0.0f);
_basePosition = glm::vec3(0.0f, 0.0f, 0.0f);
_baseDirection = glm::vec3(0.0f, 1.0f, 0.0f);
_midPosition = glm::vec3(0.0f, 0.0f, 0.0f);
_endPosition = glm::vec3(0.0f, 0.0f, 0.0f);
_midVelocity = glm::vec3(0.0f, 0.0f, 0.0f);
_endVelocity = glm::vec3(0.0f, 0.0f, 0.0f);
}
void BendyLine::reset() {
_midPosition = _basePosition + _baseDirection * _length * ONE_HALF;
_endPosition = _midPosition + _baseDirection * _length * ONE_HALF;
_midVelocity = glm::vec3(0.0f, 0.0f, 0.0f);
_endVelocity = glm::vec3(0.0f, 0.0f, 0.0f);
}
void BendyLine::update(float deltaTime) {
glm::vec3 midAxis = _midPosition - _basePosition;
glm::vec3 endAxis = _endPosition - _midPosition;
float midLength = glm::length(midAxis);
float endLength = glm::length(endAxis);
glm::vec3 midDirection;
glm::vec3 endDirection;
if (midLength > 0.0f) {
midDirection = midAxis / midLength;
} else {
midDirection = _baseDirection;
}
if (endLength > 0.0f) {
endDirection = endAxis / endLength;
} else {
endDirection = _baseDirection;
}
// add spring force
float midForce = midLength - _length * ONE_HALF;
float endForce = endLength - _length * ONE_HALF;
_midVelocity -= midDirection * midForce * _springForce * deltaTime;
_endVelocity -= endDirection * endForce * _springForce * deltaTime;
// add gravity force
_midVelocity += _gravityForce;
_endVelocity += _gravityForce;
// add torque force
_midVelocity += _baseDirection * _torqueForce * deltaTime;
_endVelocity += midDirection * _torqueForce * deltaTime;
// add drag force
float momentum = 1.0f - (_drag * deltaTime);
if (momentum < 0.0f) {
_midVelocity = glm::vec3(0.0f, 0.0f, 0.0f);
_endVelocity = glm::vec3(0.0f, 0.0f, 0.0f);
} else {
_midVelocity *= momentum;
_endVelocity *= momentum;
}
// update position by velocity
_midPosition += _midVelocity;
_endPosition += _endVelocity;
// clamp lengths
glm::vec3 newMidVector = _midPosition - _basePosition;
glm::vec3 newEndVector = _endPosition - _midPosition;
float newMidLength = glm::length(newMidVector);
float newEndLength = glm::length(newEndVector);
glm::vec3 newMidDirection;
glm::vec3 newEndDirection;
if (newMidLength > 0.0f) {
newMidDirection = newMidVector/newMidLength;
} else {
newMidDirection = _baseDirection;
}
if (newEndLength > 0.0f) {
newEndDirection = newEndVector/newEndLength;
} else {
newEndDirection = _baseDirection;
}
_endPosition = _midPosition + newEndDirection * _length * ONE_HALF;
_midPosition = _basePosition + newMidDirection * _length * ONE_HALF;
}

View file

@ -1,52 +0,0 @@
//
// BendyLine.h
// interface
//
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
//
#ifndef hifi_bendyLine_h
#define hifi_bendyLine_h
#include <SharedUtil.h>
#include <glm/glm.hpp>
#include <glm/gtc/quaternion.hpp>
class BendyLine {
public:
BendyLine();
void update(float deltaTime);
void reset();
void setLength (float length ) { _length = length; }
void setThickness (float thickness ) { _thickness = thickness; }
void setSpringForce (float springForce ) { _springForce = springForce; }
void setTorqueForce (float torqueForce ) { _torqueForce = torqueForce; }
void setDrag (float drag ) { _drag = drag; }
void setBasePosition (glm::vec3 basePosition ) { _basePosition = basePosition; }
void setBaseDirection(glm::vec3 baseDirection) { _baseDirection = baseDirection;}
void setGravityForce (glm::vec3 gravityForce ) { _gravityForce = gravityForce; }
glm::vec3 getBasePosition() { return _basePosition; }
glm::vec3 getMidPosition () { return _midPosition; }
glm::vec3 getEndPosition () { return _endPosition; }
float getThickness () { return _thickness; }
private:
float _springForce;
float _torqueForce;
float _drag;
float _length;
float _thickness;
glm::vec3 _gravityForce;
glm::vec3 _basePosition;
glm::vec3 _baseDirection;
glm::vec3 _midPosition;
glm::vec3 _endPosition;
glm::vec3 _midVelocity;
glm::vec3 _endVelocity;
};
#endif

View file

@ -0,0 +1,162 @@
//
// BuckyBalls.cpp
// hifi
//
// Created by Philip on 1/2/14.
//
//
#include "BuckyBalls.h"
#include "Util.h"
#include "world.h"
const int NUM_ELEMENTS = 3;
const float RANGE_BBALLS = 0.5f;
const float SIZE_BBALLS = 0.02f;
const float CORNER_BBALLS = 2.f;
const float GRAVITY_BBALLS = -0.25f;
const float BBALLS_ATTRACTION_DISTANCE = SIZE_BBALLS / 2.f;
const float COLLISION_RADIUS = 0.01f;
const float INITIAL_VELOCITY = 0.3f;
glm::vec3 colors[NUM_ELEMENTS];
// Make some bucky balls for the avatar
BuckyBalls::BuckyBalls() {
_bballIsGrabbed[0] = 0;
_bballIsGrabbed[1] = 0;
colors[0] = glm::vec3(0.13f, 0.55f, 0.13f);
colors[1] = glm::vec3(0.64f, 0.16f, 0.16f);
colors[2] = glm::vec3(0.31f, 0.58f, 0.80f);
qDebug("Creating buckyballs...\n");
for (int i = 0; i < NUM_BBALLS; i++) {
_bballPosition[i] = CORNER_BBALLS + randVector() * RANGE_BBALLS;
int element = (rand() % NUM_ELEMENTS);
if (element == 0) {
_bballRadius[i] = SIZE_BBALLS;
_bballColor[i] = colors[0];
} else if (element == 1) {
_bballRadius[i] = SIZE_BBALLS / 2.f;
_bballColor[i] = colors[1];
} else {
_bballRadius[i] = SIZE_BBALLS * 2.f;
_bballColor[i] = colors[2];
}
_bballColliding[i] = 0.f;
_bballElement[i] = element;
if (_bballElement[i] != 1) {
_bballVelocity[i] = randVector() * INITIAL_VELOCITY;
} else {
_bballVelocity[i] = glm::vec3(0);
}
}
}
void BuckyBalls::grab(PalmData& palm, const glm::vec3& fingerTipPosition, glm::quat avatarOrientation, float deltaTime) {
float penetration;
glm::vec3 diff;
if (palm.getControllerButtons() & BUTTON_FWD) {
if (!_bballIsGrabbed[palm.getSixenseID()]) {
// Look for a ball to grab
for (int i = 0; i < NUM_BBALLS; i++) {
diff = _bballPosition[i] - fingerTipPosition;
penetration = glm::length(diff) - (_bballRadius[i] + COLLISION_RADIUS);
if (penetration < 0.f) {
_bballIsGrabbed[palm.getSixenseID()] = i;
}
}
}
if (_bballIsGrabbed[palm.getSixenseID()]) {
// If ball being grabbed, move with finger
diff = _bballPosition[_bballIsGrabbed[palm.getSixenseID()]] - fingerTipPosition;
penetration = glm::length(diff) - (_bballRadius[_bballIsGrabbed[palm.getSixenseID()]] + COLLISION_RADIUS);
_bballPosition[_bballIsGrabbed[palm.getSixenseID()]] -= glm::normalize(diff) * penetration;
glm::vec3 fingerTipVelocity = avatarOrientation * palm.getTipVelocity();
if (_bballElement[_bballIsGrabbed[palm.getSixenseID()]] != 1) {
_bballVelocity[_bballIsGrabbed[palm.getSixenseID()]] = fingerTipVelocity;
}
_bballPosition[_bballIsGrabbed[palm.getSixenseID()]] = fingerTipPosition;
_bballColliding[_bballIsGrabbed[palm.getSixenseID()]] = 1.f;
}
} else {
_bballIsGrabbed[palm.getSixenseID()] = 0;
}
}
const float COLLISION_BLEND_RATE = 0.5f;
const float ATTRACTION_BLEND_RATE = 0.9f;
const float ATTRACTION_VELOCITY_BLEND_RATE = 0.10f;
void BuckyBalls::simulate(float deltaTime) {
// Look for collisions
for (int i = 0; i < NUM_BBALLS; i++) {
if (_bballElement[i] != 1) {
// For 'interacting' elements, look for other balls to interact with
for (int j = 0; j < NUM_BBALLS; j++) {
if (i != j) {
glm::vec3 diff = _bballPosition[i] - _bballPosition[j];
float penetration = glm::length(diff) - (_bballRadius[i] + _bballRadius[j]);
if (penetration < 0.f) {
// Colliding - move away and transfer velocity
_bballPosition[i] -= glm::normalize(diff) * penetration * COLLISION_BLEND_RATE;
if (glm::dot(_bballVelocity[i], diff) < 0.f) {
_bballVelocity[i] = _bballVelocity[i] * (1.f - COLLISION_BLEND_RATE) +
glm::reflect(_bballVelocity[i], glm::normalize(diff)) * COLLISION_BLEND_RATE;
}
}
else if ((penetration > EPSILON) && (penetration < BBALLS_ATTRACTION_DISTANCE)) {
// If they get close to each other, bring them together with magnetic force
_bballPosition[i] -= glm::normalize(diff) * penetration * ATTRACTION_BLEND_RATE;
// Also make their velocities more similar
_bballVelocity[i] = _bballVelocity[i] * (1.f - ATTRACTION_VELOCITY_BLEND_RATE) + _bballVelocity[j] * ATTRACTION_VELOCITY_BLEND_RATE;
}
}
}
}
}
// Update position and bounce on walls
const float BBALL_CONTINUOUS_DAMPING = 0.00f;
const float BBALL_WALL_COLLISION_DAMPING = 0.2f;
const float COLLISION_DECAY_RATE = 0.8f;
for (int i = 0; i < NUM_BBALLS; i++) {
_bballPosition[i] += _bballVelocity[i] * deltaTime;
if (_bballElement[i] != 1) {
_bballVelocity[i].y += GRAVITY_BBALLS * deltaTime;
}
_bballVelocity[i] -= _bballVelocity[i] * BBALL_CONTINUOUS_DAMPING * deltaTime;
for (int j = 0; j < 3; j++) {
if ((_bballPosition[i][j] + _bballRadius[i]) > (CORNER_BBALLS + RANGE_BBALLS)) {
_bballPosition[i][j] = (CORNER_BBALLS + RANGE_BBALLS) - _bballRadius[i];
_bballVelocity[i][j] *= -(1.f - BBALL_WALL_COLLISION_DAMPING);
}
if ((_bballPosition[i][j] - _bballRadius[i]) < (CORNER_BBALLS -RANGE_BBALLS)) {
_bballPosition[i][j] = (CORNER_BBALLS -RANGE_BBALLS) + _bballRadius[i];
_bballVelocity[i][j] *= -(1.f - BBALL_WALL_COLLISION_DAMPING);
}
}
_bballColliding[i] *= COLLISION_DECAY_RATE;
if (_bballColliding[i] < 0.1f) {
_bballColliding[i] = 0.f;
}
}
}
void BuckyBalls::render() {
for (int i = 0; i < NUM_BBALLS; i++) {
if (_bballColliding[i] > 0.f) {
const float GRAB_BRIGHTEN = 1.15f;
glColor3f(_bballColor[i].x * GRAB_BRIGHTEN, _bballColor[i].y * GRAB_BRIGHTEN, _bballColor[i].z * GRAB_BRIGHTEN);
} else {
glColor3f(_bballColor[i].x, _bballColor[i].y, _bballColor[i].z);
}
glPushMatrix();
glTranslatef(_bballPosition[i].x, _bballPosition[i].y, _bballPosition[i].z);
glutSolidSphere(_bballRadius[i], 15, 15);
glPopMatrix();
}
}

View file

@ -0,0 +1,47 @@
//
// BuckyBalls.h
// hifi
//
// Created by Philip on 1/2/14.
//
//
#ifndef __hifi__BuckyBalls__
#define __hifi__BuckyBalls__
#include <iostream>
#include <glm/glm.hpp>
#include <HandData.h>
#include <SharedUtil.h>
#include "GeometryUtil.h"
#include "InterfaceConfig.h"
#include "Util.h"
const int NUM_BBALLS = 200;
class BuckyBalls {
public:
BuckyBalls();
void grab(PalmData& palm, const glm::vec3& fingerTipPosition, glm::quat avatarOrientation, float deltaTime);
void simulate(float deltaTime);
void render();
private:
glm::vec3 _bballPosition[NUM_BBALLS];
glm::vec3 _bballVelocity[NUM_BBALLS];
glm::vec3 _bballColor[NUM_BBALLS];
float _bballRadius[NUM_BBALLS];
float _bballColliding[NUM_BBALLS];
int _bballElement[NUM_BBALLS];
int _bballIsGrabbed[2];
};
#endif /* defined(__hifi__BuckyBalls__) */

View file

@ -1,547 +0,0 @@
//
// ParticleSystem.cpp
// hifi
//
// Created by Jeffrey on July 10, 2013
//
#include <glm/glm.hpp>
#include "InterfaceConfig.h"
#include <SharedUtil.h>
#include "ParticleSystem.h"
#include "Application.h"
const float DEFAULT_PARTICLE_RADIUS = 0.01f;
const float DEFAULT_PARTICLE_BOUNCE = 1.0f;
const float DEFAULT_PARTICLE_AIR_FRICTION = 2.0f;
const float DEFAULT_PARTICLE_LIFESPAN = 1.0f;
const int DEFAULT_PARTICLE_SPHERE_RESOLUTION = 6;
const float DEFAULT_EMITTER_RENDER_LENGTH = 0.2f;
const float DEFAULT_PARTICLE_CONNECT_DISTANCE = 0.03f;
ParticleSystem::ParticleSystem() {
_timer = 0.0f;
_numEmitters = 0;
_upDirection = glm::vec3(0.0f, 1.0f, 0.0f); // default
for (unsigned int emitterIndex = 0; emitterIndex < MAX_EMITTERS; emitterIndex++) {
Emitter * e = &_emitter[emitterIndex];
e->active = false;
e->position = glm::vec3(0.0f, 0.0f, 0.0f);
e->previousPosition = glm::vec3(0.0f, 0.0f, 0.0f);
e->direction = glm::vec3(0.0f, 1.0f, 0.0f);
e->visible = false;
e->particleResolution = DEFAULT_PARTICLE_SPHERE_RESOLUTION;
e->particleLifespan = DEFAULT_PARTICLE_LIFESPAN;
e->showingBaseParticle = false;
e->emitReserve = 0.0;
e->thrust = 0.0f;
e->rate = 0.0f;
e->currentParticle = 0;
e->particleRenderStyle = PARTICLE_RENDER_STYLE_SPHERE;
e->numParticlesEmittedThisTime = 0;
e->maxParticleConnectDistance = DEFAULT_PARTICLE_CONNECT_DISTANCE;
for (int lifeStage = 0; lifeStage < NUM_PARTICLE_LIFE_STAGES; lifeStage++) {
setParticleAttributesToDefault(&_emitter[emitterIndex].particleAttributes[lifeStage]);
}
};
for (unsigned int p = 0; p < MAX_PARTICLES; p++) {
_particle[p].alive = false;
_particle[p].age = 0.0f;
_particle[p].radius = 0.0f;
_particle[p].emitterIndex = 0;
_particle[p].previousParticle = NULL_PARTICLE;
_particle[p].position = glm::vec3(0.0f, 0.0f, 0.0f);
_particle[p].velocity = glm::vec3(0.0f, 0.0f, 0.0f);
}
}
int ParticleSystem::addEmitter() {
if (_numEmitters < MAX_EMITTERS) {
_numEmitters ++;
return _numEmitters - 1;
}
return NULL_EMITTER;
}
void ParticleSystem::simulate(float deltaTime) {
_timer += deltaTime;
// update emitters
for (int emitterIndex = 0; emitterIndex < _numEmitters; emitterIndex++) {
assert(emitterIndex <= MAX_EMITTERS);
if (_emitter[emitterIndex].active) {
updateEmitter(emitterIndex, deltaTime);
}
}
// update particles
for (int p = 0; p < MAX_PARTICLES; p++) {
if (_particle[p].alive) {
if (_particle[p].age > _emitter[_particle[p].emitterIndex].particleLifespan) {
killParticle(p);
} else {
updateParticle(p, deltaTime);
}
}
}
}
void ParticleSystem::updateEmitter(int emitterIndex, float deltaTime) {
_emitter[emitterIndex].emitReserve += _emitter[emitterIndex].rate * deltaTime;
_emitter[emitterIndex].numParticlesEmittedThisTime = (int)_emitter[emitterIndex].emitReserve;
_emitter[emitterIndex].emitReserve -= _emitter[emitterIndex].numParticlesEmittedThisTime;
for (int p = 0; p < _emitter[emitterIndex].numParticlesEmittedThisTime; p++) {
float timeFraction = (float)p / (float)_emitter[emitterIndex].numParticlesEmittedThisTime;
createParticle(emitterIndex, timeFraction);
}
}
void ParticleSystem::createParticle(int e, float timeFraction) {
float maxConnectDistSqr = _emitter[e].maxParticleConnectDistance * _emitter[e].maxParticleConnectDistance;
for (unsigned int p = 0; p < MAX_PARTICLES; p++) {
if (!_particle[p].alive) {
_particle[p].emitterIndex = e;
_particle[p].alive = true;
_particle[p].age = 0.0f;
_particle[p].velocity = _emitter[e].direction * _emitter[e].thrust;
_particle[p].position = _emitter[e].previousPosition + timeFraction * (_emitter[e].position - _emitter[e].previousPosition);
_particle[p].radius = _emitter[e].particleAttributes[PARTICLE_LIFESTAGE_0].radius;
_particle[p].color = _emitter[e].particleAttributes[PARTICLE_LIFESTAGE_0].color;
_particle[p].previousParticle = NULL_PARTICLE;
Particle& prev = _particle[_emitter[e].currentParticle];
if (prev.alive) {
if (prev.emitterIndex == e) {
glm::vec3 diff = prev.position - _particle[p].position;
float sqrDist = glm::dot(diff, diff);
if (sqrDist < maxConnectDistSqr) {
_particle[p].previousParticle = _emitter[e].currentParticle;
}
}
}
_emitter[e].currentParticle = p;
break;
}
}
}
void ParticleSystem::killParticle(int p) {
assert(p >= 0);
assert(p < MAX_PARTICLES);
_particle[p].alive = false;
_particle[p].previousParticle = NULL_PARTICLE;
_particle[p].position = _emitter[_particle[p].emitterIndex].position;
_particle[p].velocity = glm::vec3(0.0f, 0.0f, 0.0f);
_particle[p].age = 0.0f;
_particle[p].emitterIndex = NULL_PARTICLE;
_particle[p].color = glm::vec4(0.0f, 0.0f, 0.0f, 0.0f);
_particle[p].radius = 0.0f;
}
void ParticleSystem::setEmitterPosition(int emitterIndex, glm::vec3 position) {
_emitter[emitterIndex].previousPosition = _emitter[emitterIndex].position;
_emitter[emitterIndex].position = position;
}
void ParticleSystem::setParticleAttributes(int emitterIndex, ParticleAttributes attributes) {
for (int lifeStage = 0; lifeStage < NUM_PARTICLE_LIFE_STAGES; lifeStage ++) {
setParticleAttributes(emitterIndex, (ParticleLifeStage)lifeStage, attributes);
}
}
void ParticleSystem::setParticleAttributesToDefault(ParticleAttributes * a) {
a->radius = DEFAULT_PARTICLE_RADIUS;
a->color = glm::vec4(0.0f, 0.0f, 0.0f, 0.0f);
a->bounce = DEFAULT_PARTICLE_BOUNCE;
a->airFriction = DEFAULT_PARTICLE_AIR_FRICTION;
a->gravity = 0.0f;
a->jitter = 0.0f;
a->emitterAttraction = 0.0f;
a->tornadoForce = 0.0f;
a->neighborAttraction = 0.0f;
a->neighborRepulsion = 0.0f;
a->collisionSphereRadius = 0.0f;
a->collisionSpherePosition = glm::vec3(0.0f, 0.0f, 0.0f);
a->usingCollisionSphere = false;
a->collisionPlaneNormal = _upDirection;
a->collisionPlanePosition = glm::vec3(0.0f, 0.0f, 0.0f);
a->usingCollisionPlane = false;
a->modulationAmplitude = 0.0f;
a->modulationRate = 0.0;
a->modulationStyle = COLOR_MODULATION_STYLE_NULL;
}
void ParticleSystem::setParticleAttributes(int emitterIndex, ParticleLifeStage lifeStage, ParticleAttributes attributes) {
assert(lifeStage >= 0);
assert(lifeStage < NUM_PARTICLE_LIFE_STAGES);
ParticleAttributes * a = &_emitter[emitterIndex].particleAttributes[lifeStage];
a->radius = attributes.radius;
a->color = attributes.color;
a->bounce = attributes.bounce;
a->gravity = attributes.gravity;
a->airFriction = attributes.airFriction;
a->jitter = attributes.jitter;
a->emitterAttraction = attributes.emitterAttraction;
a->tornadoForce = attributes.tornadoForce;
a->neighborAttraction = attributes.neighborAttraction;
a->neighborRepulsion = attributes.neighborRepulsion;
a->usingCollisionSphere = attributes.usingCollisionSphere;
a->collisionSpherePosition = attributes.collisionSpherePosition;
a->collisionSphereRadius = attributes.collisionSphereRadius;
a->usingCollisionPlane = attributes.usingCollisionPlane;
a->collisionPlanePosition = attributes.collisionPlanePosition;
a->collisionPlaneNormal = attributes.collisionPlaneNormal;
a->modulationAmplitude = attributes.modulationAmplitude;
a->modulationRate = attributes.modulationRate;
a->modulationStyle = attributes.modulationStyle;
}
void ParticleSystem::updateParticle(int p, float deltaTime) {
Emitter myEmitter = _emitter[_particle[p].emitterIndex];
assert(_particle[p].age <= myEmitter.particleLifespan);
float ageFraction = 0.0f;
int lifeStage = 0;
float lifeStageFraction = 0.0f;
if (_emitter[_particle[p].emitterIndex].particleLifespan > 0.0) {
ageFraction = _particle[p].age / myEmitter.particleLifespan;
lifeStage = (int)(ageFraction * (NUM_PARTICLE_LIFE_STAGES - 1));
lifeStageFraction = ageFraction * (NUM_PARTICLE_LIFE_STAGES - 1) - lifeStage;
// adjust radius
_particle[p].radius
= myEmitter.particleAttributes[lifeStage ].radius * (1.0f - lifeStageFraction)
+ myEmitter.particleAttributes[lifeStage+1].radius * lifeStageFraction;
// apply random jitter
float j = myEmitter.particleAttributes[lifeStage].jitter;
_particle[p].velocity +=
glm::vec3
(
-j * ONE_HALF + j * randFloat(),
-j * ONE_HALF + j * randFloat(),
-j * ONE_HALF + j * randFloat()
) * deltaTime;
// apply attraction to home position
glm::vec3 vectorToHome = myEmitter.position - _particle[p].position;
_particle[p].velocity += vectorToHome * myEmitter.particleAttributes[lifeStage].emitterAttraction * deltaTime;
// apply neighbor attraction
int neighbor = p + 1;
if (neighbor == MAX_PARTICLES) {
neighbor = 0;
}
if (_particle[neighbor].emitterIndex == _particle[p].emitterIndex) {
glm::vec3 vectorToNeighbor = _particle[p].position - _particle[neighbor].position;
_particle[p].velocity -= vectorToNeighbor * myEmitter.particleAttributes[lifeStage].neighborAttraction * deltaTime;
float distanceToNeighbor = glm::length(vectorToNeighbor);
if (distanceToNeighbor > 0.0f) {
_particle[neighbor].velocity += (vectorToNeighbor / (1.0f + distanceToNeighbor * distanceToNeighbor)) * myEmitter.particleAttributes[lifeStage].neighborRepulsion * deltaTime;
}
}
// apply tornado force
glm::vec3 tornadoDirection = glm::cross(vectorToHome, myEmitter.direction);
_particle[p].velocity += tornadoDirection * myEmitter.particleAttributes[lifeStage].tornadoForce * deltaTime;
// apply air friction
float drag = 1.0 - myEmitter.particleAttributes[lifeStage].airFriction * deltaTime;
if (drag < 0.0f) {
_particle[p].velocity = glm::vec3(0.0f, 0.0f, 0.0f);
} else {
_particle[p].velocity *= drag;
}
// apply gravity
_particle[p].velocity -= _upDirection * myEmitter.particleAttributes[lifeStage].gravity * deltaTime;
// update position by velocity
_particle[p].position += _particle[p].velocity;
// collision with the plane surface
if (myEmitter.particleAttributes[lifeStage].usingCollisionPlane) {
glm::vec3 vectorFromParticleToPlanePosition = _particle[p].position - myEmitter.particleAttributes[lifeStage].collisionPlanePosition;
glm::vec3 normal = myEmitter.particleAttributes[lifeStage].collisionPlaneNormal;
float dot = glm::dot(vectorFromParticleToPlanePosition, normal);
if (dot < _particle[p].radius) {
_particle[p].position += normal * (_particle[p].radius - dot);
float planeNormalComponentOfVelocity = glm::dot(_particle[p].velocity, normal);
_particle[p].velocity -= normal * planeNormalComponentOfVelocity * (1.0f + myEmitter.particleAttributes[lifeStage].bounce);
}
}
// collision with sphere
if (myEmitter.particleAttributes[lifeStage].usingCollisionSphere) {
glm::vec3 vectorToSphereCenter = myEmitter.particleAttributes[lifeStage].collisionSpherePosition - _particle[p].position;
float distanceToSphereCenter = glm::length(vectorToSphereCenter);
float combinedRadius = myEmitter.particleAttributes[lifeStage].collisionSphereRadius + _particle[p].radius;
if (distanceToSphereCenter < combinedRadius) {
if (distanceToSphereCenter > 0.0f){
glm::vec3 directionToSphereCenter = vectorToSphereCenter / distanceToSphereCenter;
_particle[p].position = myEmitter.particleAttributes[lifeStage].collisionSpherePosition - directionToSphereCenter * combinedRadius;
}
}
}
}
// adjust color
_particle[p].color
= myEmitter.particleAttributes[lifeStage ].color * (1.0f - lifeStageFraction)
+ myEmitter.particleAttributes[lifeStage+1].color * lifeStageFraction;
// apply color modulation
if (myEmitter.particleAttributes[lifeStage ].modulationAmplitude > 0.0f) {
float redModulation = 0.0f;
float greenModulation = 0.0f;
float bueModulation = 0.0f;
float radian = _timer * myEmitter.particleAttributes[lifeStage ].modulationRate * PI_TIMES_TWO;
if (myEmitter.particleAttributes[lifeStage ].modulationStyle == COLOR_MODULATION_STYLE_LIGHNTESS_PULSE) {
if (sinf(radian) > 0.0f) {
redModulation = myEmitter.particleAttributes[lifeStage].modulationAmplitude;
greenModulation = myEmitter.particleAttributes[lifeStage].modulationAmplitude;
bueModulation = myEmitter.particleAttributes[lifeStage].modulationAmplitude;
}
} else if (myEmitter.particleAttributes[lifeStage].modulationStyle == COLOR_MODULATION_STYLE_LIGHTNESS_WAVE) {
float amp = myEmitter.particleAttributes[lifeStage].modulationAmplitude;
float brightness = amp * ONE_HALF + sinf(radian) * amp * ONE_HALF;
redModulation = brightness;
greenModulation = brightness;
bueModulation = brightness;
} else if (myEmitter.particleAttributes[lifeStage].modulationStyle == COLOR_MODULATION_STYLE_RAINBOW_CYCLE) {
float amp = myEmitter.particleAttributes[lifeStage].modulationAmplitude * ONE_HALF;
redModulation = sinf(radian * RAINBOW_CYCLE_RED_RATE ) * amp;
greenModulation = sinf(radian * RAINBOW_CYCLE_GREEN_RATE) * amp;
bueModulation = sinf(radian * RAINBOW_CYCLE_BLUE_RATE ) * amp;
}
_particle[p].color.r += redModulation;
_particle[p].color.g += greenModulation;
_particle[p].color.b += bueModulation;
_particle[p].color.a = 1.0f;
if (_particle[p].color.r > 1.0f) {_particle[p].color.r = 1.0f;}
if (_particle[p].color.g > 1.0f) {_particle[p].color.g = 1.0f;}
if (_particle[p].color.b > 1.0f) {_particle[p].color.b = 1.0f;}
if (_particle[p].color.a > 1.0f) {_particle[p].color.a = 1.0f;}
if (_particle[p].color.r < 0.0f) {_particle[p].color.r = 0.0f;}
if (_particle[p].color.g < 0.0f) {_particle[p].color.g = 0.0f;}
if (_particle[p].color.b < 0.0f) {_particle[p].color.b = 0.0f;}
if (_particle[p].color.a < 0.0f) {_particle[p].color.a = 0.0f;}
}
// do this at the end...
_particle[p].age += deltaTime;
}
void ParticleSystem::killAllParticles() {
for (int e = 0; e < _numEmitters; e++) {
_emitter[e].currentParticle = NULL_PARTICLE;
_emitter[e].emitReserve = 0.0f;
_emitter[e].previousPosition = _emitter[e].position;
_emitter[e].rate = 0.0f;
_emitter[e].currentParticle = 0;
_emitter[e].numParticlesEmittedThisTime = 0;
}
for (int p = 0; p < MAX_PARTICLES; p++) {
killParticle(p);
}
}
void ParticleSystem::render() {
// render the emitters
for (int e = 0; e < MAX_EMITTERS; e++) {
if (_emitter[e].active) {
if (_emitter[e].showingBaseParticle) {
glColor4f(_particle[0].color.r, _particle[0].color.g, _particle[0].color.b, _particle[0].color.a);
glPushMatrix();
glTranslatef(_emitter[e].position.x, _emitter[e].position.y, _emitter[e].position.z);
glutSolidSphere(_particle[0].radius, _emitter[e].particleResolution, _emitter[e].particleResolution);
glPopMatrix();
}
}
if (_emitter[e].visible) {
renderEmitter(e, DEFAULT_EMITTER_RENDER_LENGTH);
}
};
// render the particles
for (int p = 0; p < MAX_PARTICLES; p++) {
if (_particle[p].alive) {
if (_emitter[_particle[p].emitterIndex].particleLifespan > 0.0) {
renderParticle(p);
}
}
}
}
void ParticleSystem::renderParticle(int p) {
glColor4f(_particle[p].color.r, _particle[p].color.g, _particle[p].color.b, _particle[p].color.a);
if (_emitter[_particle[p].emitterIndex].particleRenderStyle == PARTICLE_RENDER_STYLE_BILLBOARD) {
glm::vec3 cameraPosition = Application::getInstance()->getCamera()->getPosition();
glm::vec3 viewVector = _particle[p].position - cameraPosition;
float distance = glm::length(viewVector);
if (distance >= 0.0f) {
viewVector /= distance;
glm::vec3 up = glm::vec3(viewVector.y, viewVector.z, viewVector.x);
glm::vec3 right = glm::vec3(viewVector.z, viewVector.x, viewVector.y);
glm::vec3 p0 = _particle[p].position - right * _particle[p].radius - up * _particle[p].radius;
glm::vec3 p1 = _particle[p].position + right * _particle[p].radius - up * _particle[p].radius;
glm::vec3 p2 = _particle[p].position + right * _particle[p].radius + up * _particle[p].radius;
glm::vec3 p3 = _particle[p].position - right * _particle[p].radius + up * _particle[p].radius;
glBegin(GL_TRIANGLES);
glVertex3f(p0.x, p0.y, p0.z);
glVertex3f(p1.x, p1.y, p1.z);
glVertex3f(p2.x, p2.y, p2.z);
glEnd();
glBegin(GL_TRIANGLES);
glVertex3f(p0.x, p0.y, p0.z);
glVertex3f(p2.x, p2.y, p2.z);
glVertex3f(p3.x, p3.y, p3.z);
glEnd();
}
} else if (_emitter[_particle[p].emitterIndex].particleRenderStyle == PARTICLE_RENDER_STYLE_SPHERE) {
glPushMatrix();
glTranslatef(_particle[p].position.x, _particle[p].position.y, _particle[p].position.z);
glutSolidSphere(_particle[p].radius, _emitter[_particle[p].emitterIndex].particleResolution, _emitter[_particle[p].emitterIndex].particleResolution);
glPopMatrix();
} else if (_emitter[_particle[p].emitterIndex].particleRenderStyle == PARTICLE_RENDER_STYLE_RIBBON) {
if (_particle[p].previousParticle != NULL_PARTICLE) {
if ((_particle[p].alive)
&& (_particle[_particle[p].previousParticle].alive)
&& (_particle[_particle[p].previousParticle].emitterIndex == _particle[p].emitterIndex)) {
glm::vec3 vectorFromPreviousParticle = _particle[p].position - _particle[_particle[p].previousParticle].position;
float distance = glm::length(vectorFromPreviousParticle);
if (distance > 0.0f) {
vectorFromPreviousParticle /= distance;
glm::vec3 up = glm::normalize(glm::cross(vectorFromPreviousParticle, _upDirection)) * _particle[p].radius;
glm::vec3 right = glm::normalize(glm::cross(up, vectorFromPreviousParticle )) * _particle[p].radius;
glm::vec3 p0Left = _particle[p ].position - right;
glm::vec3 p0Right = _particle[p ].position + right;
glm::vec3 p0Down = _particle[p ].position - up;
glm::vec3 p0Up = _particle[p ].position + up;
glm::vec3 ppLeft = _particle[_particle[p].previousParticle].position - right;
glm::vec3 ppRight = _particle[_particle[p].previousParticle].position + right;
glm::vec3 ppDown = _particle[_particle[p].previousParticle].position - up;
glm::vec3 ppUp = _particle[_particle[p].previousParticle].position + up;
glBegin(GL_TRIANGLES);
glVertex3f(p0Left.x, p0Left.y, p0Left.z );
glVertex3f(p0Right.x, p0Right.y, p0Right.z);
glVertex3f(ppLeft.x, ppLeft.y, ppLeft.z );
glVertex3f(p0Right.x, p0Right.y, p0Right.z);
glVertex3f(ppLeft.x, ppLeft.y, ppLeft.z );
glVertex3f(ppRight.x, ppRight.y, ppRight.z);
glVertex3f(p0Up.x, p0Up.y, p0Up.z );
glVertex3f(p0Down.x, p0Down.y, p0Down.z );
glVertex3f(ppDown.x, ppDown.y, ppDown.z );
glVertex3f(p0Up.x, p0Up.y, p0Up.z );
glVertex3f(ppUp.x, ppUp.y, ppUp.z );
glVertex3f(ppDown.x, ppDown.y, ppDown.z );
glVertex3f(p0Up.x, p0Up.y, p0Left.z );
glVertex3f(p0Right.x, p0Right.y, p0Right.z);
glVertex3f(p0Down.x, p0Down.y, p0Down.z );
glVertex3f(p0Up.x, p0Up.y, p0Left.z );
glVertex3f(p0Left.x, p0Left.y, p0Left.z );
glVertex3f(p0Down.x, p0Down.y, p0Down.z );
glVertex3f(ppUp.x, ppUp.y, ppLeft.z );
glVertex3f(ppRight.x, ppRight.y, ppRight.z);
glVertex3f(ppDown.x, ppDown.y, ppDown.z );
glVertex3f(ppUp.x, ppUp.y, ppLeft.z );
glVertex3f(ppLeft.x, ppLeft.y, ppLeft.z );
glVertex3f(ppDown.x, ppDown.y, ppDown.z );
glEnd();
}
}
}
}
}
void ParticleSystem::renderEmitter(int e, float size) {
glm::vec3 v = _emitter[e].direction * size;
glColor3f(0.4f, 0.4, 0.8);
glBegin(GL_LINES);
glVertex3f(_emitter[e].position.x, _emitter[e].position.y, _emitter[e].position.z);
glVertex3f(_emitter[e].position.x + v.x, _emitter[e].position.y + v.y, _emitter[e].position.z + v.z);
glEnd();
}

View file

@ -1,143 +0,0 @@
//
// ParticleSystem.h
// hifi
//
// Created by Jeffrey on July 10, 2013
//
#ifndef hifi_ParticleSystem_h
#define hifi_ParticleSystem_h
#include <glm/gtc/quaternion.hpp>
const int NULL_EMITTER = -1;
const int NULL_PARTICLE = -1;
const int MAX_EMITTERS = 100;
const int MAX_PARTICLES = 5000;
const float RAINBOW_CYCLE_RED_RATE = 0.5f;
const float RAINBOW_CYCLE_GREEN_RATE = 0.7f;
const float RAINBOW_CYCLE_BLUE_RATE = 1.0f;
enum ParticleRenderStyle
{
PARTICLE_RENDER_STYLE_SPHERE = 0,
PARTICLE_RENDER_STYLE_BILLBOARD,
PARTICLE_RENDER_STYLE_RIBBON,
NUM_PARTICLE_RENDER_STYLES
};
enum ColorModulationStyle
{
COLOR_MODULATION_STYLE_NULL = -1,
COLOR_MODULATION_STYLE_LIGHNTESS_PULSE,
COLOR_MODULATION_STYLE_LIGHTNESS_WAVE,
COLOR_MODULATION_STYLE_RAINBOW_CYCLE,
NUM_COLOR_MODULATION_STYLES
};
enum ParticleLifeStage
{
PARTICLE_LIFESTAGE_0 = 0,
PARTICLE_LIFESTAGE_1,
PARTICLE_LIFESTAGE_2,
PARTICLE_LIFESTAGE_3,
NUM_PARTICLE_LIFE_STAGES
};
class ParticleSystem {
public:
struct ParticleAttributes {
float radius; // radius of the particle
glm::vec4 color; // color (rgba) of the particle
float bounce; // how much reflection when the particle collides with floor/ground
float gravity; // force opposite of up direction
float airFriction; // continual dampening of velocity
float jitter; // random forces on velocity
float emitterAttraction; // an attraction to the emitter position
float tornadoForce; // force perpendicular to direction axis
float neighborAttraction; // causes particle to be pulled towards next particle in list
float neighborRepulsion; // causes particle to be repelled by previous particle in list
bool usingCollisionSphere; // set to true to allow collision with a sphere
glm::vec3 collisionSpherePosition; // position of the collision sphere
float collisionSphereRadius; // radius of the collision sphere
bool usingCollisionPlane; // set to true to allow collision with a plane
glm::vec3 collisionPlanePosition; // reference position of the collision plane
glm::vec3 collisionPlaneNormal; // the surface normal of the collision plane
float modulationAmplitude; // sets the degree (from 0 to 1) of the modulating effect
float modulationRate; // the period of modulation, in seconds
ColorModulationStyle modulationStyle; // to choose between color modulation styles
};
// public methods...
ParticleSystem();
int addEmitter(); // add (create new) emitter and get its unique id
void simulate(float deltaTime);
void killAllParticles();
void render();
void setUpDirection(glm::vec3 upDirection) {_upDirection = upDirection;} // tell particle system which direction is up
void setParticleAttributesToDefault(ParticleAttributes * attributes); // set these attributes to their default values
void setParticleAttributes (int emitterIndex, ParticleAttributes attributes); // set attributes for whole life of particles
void setParticleAttributes (int emitterIndex, ParticleLifeStage lifeStage, ParticleAttributes attributes); // set attributes for this life stage
void setEmitterPosition (int emitterIndex, glm::vec3 position );
void setEmitterActive (int emitterIndex, bool active ) {_emitter[emitterIndex].active = active; }
void setEmitterParticleResolution (int emitterIndex, int resolution ) {_emitter[emitterIndex].particleResolution = resolution; }
void setEmitterDirection (int emitterIndex, glm::vec3 direction ) {_emitter[emitterIndex].direction = direction; }
void setShowingEmitter (int emitterIndex, bool showing ) {_emitter[emitterIndex].visible = showing; }
void setEmitterParticleLifespan (int emitterIndex, float lifespan ) {_emitter[emitterIndex].particleLifespan = lifespan; }
void setParticleRenderStyle (int emitterIndex, ParticleRenderStyle renderStyle ) {_emitter[emitterIndex].particleRenderStyle = renderStyle; }
void setEmitterThrust (int emitterIndex, float thrust ) {_emitter[emitterIndex].thrust = thrust; }
void setEmitterRate (int emitterIndex, float rate ) {_emitter[emitterIndex].rate = rate; }
void setShowingEmitterBaseParticle(int emitterIndex, bool showing ) {_emitter[emitterIndex].showingBaseParticle = showing; }
private:
struct Particle {
bool alive; // is the particle active?
glm::vec3 position; // position
glm::vec3 velocity; // velocity
glm::vec4 color; // color (rgba)
float age; // age in seconds
float radius; // radius
int emitterIndex; // which emitter created this particle?
int previousParticle; // the last particle that this particle's emitter emitted;
};
struct Emitter {
bool active; // if false, the emitter is disabled - allows for easy switching on and off
glm::vec3 position; // the position of the emitter in world coordinates
glm::vec3 previousPosition; // the position of the emitter in the previous time step
glm::vec3 direction; // a normalized vector used as an axis for particle emission and other effects
bool visible; // whether or not a line is shown indicating the emitter (indicating its direction)
float particleLifespan; // how long the particle shall live, in seconds
int particleResolution; // for sphere-based particles
float emitReserve; // baed on 'rate', this is the number of particles that need to be emitted at a given time step
int numParticlesEmittedThisTime; //the integer number of particles to emit at the preent time step
float thrust; // the initial velocity upon emitting along the emitter direction
float rate; // currently, how many particles emitted during a simulation time step
bool showingBaseParticle; // if true, a copy of particle 0 is shown on the emitter position
int currentParticle; // the index of the most recently-emitted particle
ParticleAttributes particleAttributes[NUM_PARTICLE_LIFE_STAGES]; // the attributes of particles emitted from this emitter
ParticleRenderStyle particleRenderStyle;
float maxParticleConnectDistance; // past this, don't connect the particles.
};
glm::vec3 _upDirection;
Emitter _emitter[MAX_EMITTERS];
Particle _particle[MAX_PARTICLES];
int _numEmitters;
float _timer;
// private methods
void updateEmitter(int emitterIndex, float deltaTime);
void updateParticle(int index, float deltaTime);
void createParticle(int e, float timeFraction);
void killParticle(int p);
void renderEmitter(int emitterIndex, float size);
void renderParticle(int p);
};
#endif

View file

@ -19,6 +19,7 @@
using namespace std;
const float FINGERTIP_COLLISION_RADIUS = 0.01;
const float FINGERTIP_VOXEL_SIZE = 0.05;
const int TOY_BALL_HAND = 1;
const float TOY_BALL_RADIUS = 0.05f;
@ -40,6 +41,7 @@ const xColor TOY_BALL_ON_SERVER_COLOR[] =
{ 255, 0, 255 },
};
Hand::Hand(Avatar* owningAvatar) :
HandData((AvatarData*)owningAvatar),
@ -86,10 +88,8 @@ void Hand::simulateToyBall(PalmData& palm, const glm::vec3& fingerTipPosition, f
const int NEW_BALL_BUTTON = BUTTON_3;
float trigger = palm.getTrigger();
bool grabButtonPressed = ((palm.getControllerButtons() & BUTTON_FWD) ||
(palm.getControllerButtons() & BUTTON_3) ||
(trigger > 0.f));
(palm.getControllerButtons() & BUTTON_3));
bool ballAlreadyInHand = _toyBallInHand[handID];
@ -256,6 +256,10 @@ void Hand::simulate(float deltaTime, bool isMine) {
_collisionAge += deltaTime;
}
if (isMine) {
_buckyBalls.simulate(deltaTime);
}
const glm::vec3 leapHandsOffsetFromFace(0.0, -0.2, -0.3); // place the hand in front of the face where we can see it
Head& head = _owningAvatar->getHead();
@ -280,6 +284,8 @@ void Hand::simulate(float deltaTime, bool isMine) {
simulateToyBall(palm, fingerTipPosition, deltaTime);
_buckyBalls.grab(palm, fingerTipPosition, _owningAvatar->getOrientation(), deltaTime);
if (palm.getControllerButtons() & BUTTON_4) {
_grabDelta += palm.getRawVelocity() * deltaTime;
_grabCurrentRotation = palm.getRawRotation();
@ -453,7 +459,7 @@ void Hand::calculateGeometry() {
for (size_t f = 0; f < palm.getNumFingers(); ++f) {
FingerData& finger = palm.getFingers()[f];
if (finger.isActive()) {
const float standardBallRadius = 0.010f;
const float standardBallRadius = FINGERTIP_COLLISION_RADIUS;
_leapFingerTipBalls.resize(_leapFingerTipBalls.size() + 1);
HandBall& ball = _leapFingerTipBalls.back();
ball.rotation = _baseOrientation;
@ -493,6 +499,11 @@ void Hand::calculateGeometry() {
void Hand::render(bool isMine) {
_renderAlpha = 1.0;
if (isMine) {
_buckyBalls.render();
}
if (Menu::getInstance()->isOptionChecked(MenuOption::CollisionProxies)) {
for (int i = 0; i < getNumPalms(); i++) {
PalmData& palm = getPalms()[i];

View file

@ -21,8 +21,8 @@
#include <HandData.h>
#include <ParticleEditHandle.h>
#include "BuckyBalls.h"
#include "InterfaceConfig.h"
#include "ParticleSystem.h"
#include "world.h"
#include "devices/SerialInterface.h"
#include "VoxelSystem.h"
@ -31,7 +31,6 @@
class Avatar;
class ProgramObject;
class Hand : public HandData {
public:
Hand(Avatar* owningAvatar);
@ -86,6 +85,8 @@ private:
float _collisionAge;
float _collisionDuration;
BuckyBalls _buckyBalls;
// private methods
void setLeapHands(const std::vector<glm::vec3>& handPositions,
const std::vector<glm::vec3>& handNormals);
@ -99,7 +100,6 @@ private:
void handleVoxelCollision(PalmData* palm, const glm::vec3& fingerTipPosition, VoxelTreeElement* voxel, float deltaTime);
void simulateToyBall(PalmData& palm, const glm::vec3& fingerTipPosition, float deltaTime);
#define MAX_HANDS 2
bool _toyBallInHand[MAX_HANDS];
@ -116,6 +116,7 @@ private:
Sound _throwSound;
Sound _catchSound;
};
#endif

View file

@ -17,7 +17,6 @@
using namespace std;
const bool USING_PHYSICAL_MOHAWK = true;
const float EYE_RIGHT_OFFSET = 0.27f;
const float EYE_UP_OFFSET = 0.36f;
const float EYE_FRONT_OFFSET = 0.8f;
@ -73,7 +72,6 @@ Head::Head(Avatar* owningAvatar) :
_bodyRotation(0.0f, 0.0f, 0.0f),
_angularVelocity(0,0,0),
_renderLookatVectors(false),
_mohawkInitialized(false),
_saccade(0.0f, 0.0f, 0.0f),
_saccadeTarget(0.0f, 0.0f, 0.0f),
_leftEyeBlinkVelocity(0.0f),
@ -86,9 +84,7 @@ Head::Head(Avatar* owningAvatar) :
_videoFace(this),
_faceModel(this)
{
if (USING_PHYSICAL_MOHAWK) {
resetHairPhysics();
}
}
void Head::init() {
@ -111,29 +107,10 @@ void Head::reset() {
_yaw = _pitch = _roll = 0.0f;
_mousePitch = 0.0f;
_leanForward = _leanSideways = 0.0f;
if (USING_PHYSICAL_MOHAWK) {
resetHairPhysics();
}
_faceModel.reset();
}
void Head::resetHairPhysics() {
for (int t = 0; t < NUM_HAIR_TUFTS; t ++) {
for (int t = 0; t < NUM_HAIR_TUFTS; t ++) {
_hairTuft[t].setSpringForce (HAIR_SPRING_FORCE);
_hairTuft[t].setTorqueForce (HAIR_TORQUE_FORCE);
_hairTuft[t].setGravityForce (HAIR_GRAVITY_FORCE * _gravity);
_hairTuft[t].setDrag (HAIR_DRAG);
_hairTuft[t].setLength (_scale * HAIR_LENGTH );
_hairTuft[t].setThickness (_scale * HAIR_THICKNESS);
_hairTuft[t].setBaseDirection(getUpDirection());
_hairTuft[t].reset();
}
}
}
void Head::simulate(float deltaTime, bool isMine) {
@ -240,11 +217,6 @@ void Head::simulate(float deltaTime, bool isMine) {
glm::clamp(sqrt(_averageLoudness * JAW_OPEN_SCALE) - JAW_OPEN_DEAD_ZONE, 0.0f, 1.0f), _blendshapeCoefficients);
}
// based on the nature of the lookat position, determine if the eyes can look / are looking at it.
if (USING_PHYSICAL_MOHAWK) {
updateHairPhysics(deltaTime);
}
_faceModel.simulate(deltaTime);
calculateGeometry();
@ -304,7 +276,6 @@ void Head::render(float alpha, bool renderAvatarBalls) {
glEnable(GL_DEPTH_TEST);
glEnable(GL_RESCALE_NORMAL);
renderMohawk();
renderHeadSphere();
renderEyeBalls();
renderEars();
@ -326,16 +297,6 @@ void Head::setScale (float scale) {
return;
}
_scale = scale;
createMohawk();
if (USING_PHYSICAL_MOHAWK) {
for (int t = 0; t < NUM_HAIR_TUFTS; t ++) {
_hairTuft[t].setLength (_scale * HAIR_LENGTH );
_hairTuft[t].setThickness(_scale * HAIR_THICKNESS);
}
}
}
void Head::setMousePitch(float mousePitch) {
@ -343,79 +304,7 @@ void Head::setMousePitch(float mousePitch) {
_mousePitch = glm::clamp(mousePitch, -MAX_PITCH, MAX_PITCH);
}
void Head::createMohawk() {
srand(time(NULL));
float height = _scale * (0.08f + randFloat() * 0.05f);
float variance = 0.03 + randFloat() * 0.03f;
const float RAD_PER_TRIANGLE = (2.3f + randFloat() * 0.2f) / (float)MOHAWK_TRIANGLES;
_mohawkTriangleFan[0] = glm::vec3(0, 0, 0);
glm::vec3 basicColor(randFloat(), randFloat(), randFloat());
_mohawkColors[0] = basicColor;
for (int i = 1; i < MOHAWK_TRIANGLES; i++) {
_mohawkTriangleFan[i] = glm::vec3((randFloat() - 0.5f) * variance,
height * cosf(i * RAD_PER_TRIANGLE - PIf / 2.f)
+ (randFloat() - 0.5f) * variance,
height * sinf(i * RAD_PER_TRIANGLE - PIf / 2.f)
+ (randFloat() - 0.5f) * variance);
_mohawkColors[i] = randFloat() * basicColor;
}
}
void Head::renderMohawk() {
if (!_mohawkInitialized) {
createMohawk();
_mohawkInitialized = true;
}
if (USING_PHYSICAL_MOHAWK) {
for (int t = 0; t < NUM_HAIR_TUFTS; t ++) {
glm::vec3 baseAxis = _hairTuft[t].getMidPosition() - _hairTuft[t].getBasePosition();
glm::vec3 midAxis = _hairTuft[t].getEndPosition() - _hairTuft[t].getMidPosition();
glm::vec3 viewVector = _hairTuft[t].getBasePosition() - Application::getInstance()->getCamera()->getPosition();
glm::vec3 basePerpendicular = glm::normalize(glm::cross(baseAxis, viewVector));
glm::vec3 midPerpendicular = glm::normalize(glm::cross(midAxis, viewVector));
glm::vec3 base1 = _hairTuft[t].getBasePosition() - basePerpendicular * _hairTuft[t].getThickness() * ONE_HALF;
glm::vec3 base2 = _hairTuft[t].getBasePosition() + basePerpendicular * _hairTuft[t].getThickness() * ONE_HALF;
glm::vec3 mid1 = _hairTuft[t].getMidPosition() - midPerpendicular * _hairTuft[t].getThickness() * ONE_HALF * ONE_HALF;
glm::vec3 mid2 = _hairTuft[t].getMidPosition() + midPerpendicular * _hairTuft[t].getThickness() * ONE_HALF * ONE_HALF;
glColor3f(_mohawkColors[t].x, _mohawkColors[t].y, _mohawkColors[t].z);
glBegin(GL_TRIANGLES);
glVertex3f(base1.x, base1.y, base1.z );
glVertex3f(base2.x, base2.y, base2.z );
glVertex3f(mid1.x, mid1.y, mid1.z );
glVertex3f(base2.x, base2.y, base2.z );
glVertex3f(mid1.x, mid1.y, mid1.z );
glVertex3f(mid2.x, mid2.y, mid2.z );
glVertex3f(mid1.x, mid1.y, mid1.z );
glVertex3f(mid2.x, mid2.y, mid2.z );
glVertex3f(_hairTuft[t].getEndPosition().x, _hairTuft[t].getEndPosition().y, _hairTuft[t].getEndPosition().z );
glEnd();
}
} else {
glPushMatrix();
glTranslatef(_position.x, _position.y, _position.z);
glRotatef(_bodyRotation.y + _yaw, 0, 1, 0);
glRotatef(-_roll, 0, 0, 1);
glRotatef(-_pitch - _bodyRotation.x, 1, 0, 0);
glBegin(GL_TRIANGLE_FAN);
for (int i = 0; i < MOHAWK_TRIANGLES; i++) {
glColor3f(_mohawkColors[i].x, _mohawkColors[i].y, _mohawkColors[i].z);
glVertex3fv(&_mohawkTriangleFan[i].x);
glNormal3fv(&_mohawkColors[i].x);
}
glEnd();
glPopMatrix();
}
}
glm::quat Head::getOrientation() const {
return glm::quat(glm::radians(_bodyRotation)) * glm::quat(glm::radians(glm::vec3(_pitch, _yaw, _roll)));
@ -750,19 +639,4 @@ void Head::renderLookatVectors(glm::vec3 leftEyePosition, glm::vec3 rightEyePosi
Application::getInstance()->getGlowEffect()->end();
}
void Head::updateHairPhysics(float deltaTime) {
glm::quat orientation = getOrientation();
glm::vec3 up = orientation * IDENTITY_UP;
glm::vec3 front = orientation * IDENTITY_FRONT;
for (int t = 0; t < NUM_HAIR_TUFTS; t ++) {
float fraction = (float)t / (float)(NUM_HAIR_TUFTS - 1);
float angle = -20.0f + 40.0f * fraction;
float radian = angle * PI_OVER_180;
glm::vec3 baseDirection = front * sinf(radian) + up * cosf(radian);
_hairTuft[t].setBasePosition (_position + _scale * BODY_BALL_RADIUS_HEAD_BASE * 0.9f * baseDirection);
_hairTuft[t].setBaseDirection(baseDirection);
_hairTuft[t].update(deltaTime);
}
}

View file

@ -17,7 +17,6 @@
#include <VoxelConstants.h>
#include "BendyLine.h"
#include "FaceModel.h"
#include "InterfaceConfig.h"
#include "VideoFace.h"
@ -31,9 +30,6 @@ enum eyeContactTargets {
MOUTH
};
const int MOHAWK_TRIANGLES = 50;
const int NUM_HAIR_TUFTS = 4;
class Avatar;
class ProgramObject;
@ -45,8 +41,6 @@ public:
void reset();
void simulate(float deltaTime, bool isMine);
void render(float alpha, bool renderAvatarBalls);
void renderMohawk();
void setScale(float scale);
void setPosition(glm::vec3 position) { _position = position; }
void setBodyRotation(glm::vec3 bodyRotation) { _bodyRotation = bodyRotation; }
@ -122,10 +116,7 @@ private:
glm::vec3 _bodyRotation;
glm::vec3 _angularVelocity;
bool _renderLookatVectors;
BendyLine _hairTuft[NUM_HAIR_TUFTS];
bool _mohawkInitialized;
glm::vec3 _mohawkTriangleFan[MOHAWK_TRIANGLES];
glm::vec3 _mohawkColors[MOHAWK_TRIANGLES];
//BendyLine _hairTuft[NUM_HAIR_TUFTS];
glm::vec3 _saccade;
glm::vec3 _saccadeTarget;
float _leftEyeBlinkVelocity;
@ -145,7 +136,6 @@ private:
static int _eyePositionLocation;
// private methods
void createMohawk();
void renderHeadSphere();
void renderEyeBalls();
void renderEyeBrows();
@ -154,8 +144,6 @@ private:
void renderMouth();
void renderLookatVectors(glm::vec3 leftEyePosition, glm::vec3 rightEyePosition, glm::vec3 lookatPosition);
void calculateGeometry();
void resetHairPhysics();
void updateHairPhysics(float deltaTime);
friend class FaceModel;
};

View file

@ -102,7 +102,7 @@ void SixenseManager::update(float deltaTime) {
FingerData finger(palm, &hand);
finger.setActive(true);
finger.setRawRootPosition(position);
const float FINGER_LENGTH = 300.0f; // Millimeters
const float FINGER_LENGTH = 150.0f; // Millimeters
const glm::vec3 FINGER_VECTOR(0.0f, 0.0f, FINGER_LENGTH);
const glm::vec3 newTipPosition = position + rotation * FINGER_VECTOR;
finger.setRawTipPosition(position + rotation * FINGER_VECTOR);