mirror of
https://github.com/overte-org/overte.git
synced 2025-04-20 03:44:02 +02:00
tweak to dynamic workload regions regulation
This commit is contained in:
parent
ec352a55af
commit
85beca6b67
2 changed files with 225 additions and 0 deletions
|
@ -15,6 +15,109 @@
|
|||
|
||||
#include "PhysicsBoundary.h"
|
||||
|
||||
const glm::vec2 DEFAULT_R1_BACK_FRONT = { 50.0f, 100.0f };
|
||||
const glm::vec2 DEFAULT_R2_BACK_FRONT = { 75.0f, 150.0f };
|
||||
const glm::vec2 DEFAULT_R3_BACK_FRONT = { 100.0f, 250.0f };
|
||||
|
||||
ControlViews::ControlViews() {
|
||||
regionBackFronts[0] = DEFAULT_R1_BACK_FRONT;
|
||||
regionBackFronts[1] = DEFAULT_R2_BACK_FRONT;
|
||||
regionBackFronts[2] = DEFAULT_R3_BACK_FRONT;
|
||||
|
||||
const int32_t TIME_BUDGET_MSEC = 2;
|
||||
const float MIN_BACK_FRONT_SCALE_FACTOR = 0.05f;
|
||||
const float MAX_BACK_FRONT_SCALE_FACTOR = 2.0f;
|
||||
const float MIN_NUM_STEPS_DOWN = 250.0f;
|
||||
const float MIN_NUM_STEPS_UP = 375.0f;
|
||||
|
||||
for (int32_t i = 0; i < workload::Region::NUM_VIEW_REGIONS; ++i) {
|
||||
glm::vec2 minBackFront = MIN_BACK_FRONT_SCALE_FACTOR * regionBackFronts[i];
|
||||
glm::vec2 maxBackFront = MAX_BACK_FRONT_SCALE_FACTOR * regionBackFronts[i];
|
||||
glm::vec2 stepDown = (maxBackFront - minBackFront) / MIN_NUM_STEPS_DOWN;
|
||||
glm::vec2 stepUp = (maxBackFront - minBackFront) / MIN_NUM_STEPS_UP;
|
||||
regionRegulators[i] = Regulator(std::chrono::milliseconds(TIME_BUDGET_MSEC), minBackFront, maxBackFront, stepDown, stepUp);
|
||||
}
|
||||
}
|
||||
|
||||
void ControlViews::configure(const Config& config) {
|
||||
_data = config.data;
|
||||
}
|
||||
|
||||
void ControlViews::run(const workload::WorkloadContextPointer& runContext, const Input& inputs, Output& outputs) {
|
||||
const auto& inViews = inputs.get0();
|
||||
const auto& inTimings = inputs.get1();
|
||||
auto& outViews = outputs;
|
||||
outViews.clear();
|
||||
outViews = inViews;
|
||||
|
||||
if (_data.regulateViewRanges && inTimings.size()) {
|
||||
regulateViews(outViews, inTimings);
|
||||
|
||||
auto config = std::static_pointer_cast<Config>(runContext->jobConfig);
|
||||
config->dataExport = _dataExport;
|
||||
config->emitDirty();
|
||||
}
|
||||
}
|
||||
|
||||
glm::vec2 Regulator::run(const Timing_ns& regulationDuration, const Timing_ns& measured, const glm::vec2& current) {
|
||||
// Regulate next value based on current moving toward the goal budget
|
||||
float error_ms = std::chrono::duration<float, std::milli>(_budget - measured).count();
|
||||
float coef = error_ms / std::chrono::duration<float, std::milli>(regulationDuration).count();
|
||||
return current + coef * (error_ms < 0.0f ? _stepDown : _stepUp);
|
||||
}
|
||||
|
||||
glm::vec2 Regulator::clamp(const glm::vec2& backFront) const {
|
||||
return glm::clamp(backFront, _minRange, _maxRange);
|
||||
}
|
||||
|
||||
void ControlViews::regulateViews(workload::Views& outViews, const workload::Timings& timings) {
|
||||
|
||||
for (auto& outView : outViews) {
|
||||
for (int32_t r = 0; r < workload::Region::NUM_VIEW_REGIONS; r++) {
|
||||
outView.regionBackFronts[r] = regionBackFronts[r];
|
||||
}
|
||||
}
|
||||
|
||||
auto loopDuration = std::chrono::nanoseconds{ std::chrono::milliseconds(16) };
|
||||
regionBackFronts[workload::Region::R1] = regionRegulators[workload::Region::R1].run(loopDuration, timings[0], regionBackFronts[workload::Region::R1]);
|
||||
regionBackFronts[workload::Region::R2] = regionRegulators[workload::Region::R2].run(loopDuration, timings[0], regionBackFronts[workload::Region::R2]);
|
||||
regionBackFronts[workload::Region::R3] = regionRegulators[workload::Region::R3].run(loopDuration, timings[1], regionBackFronts[workload::Region::R3]);
|
||||
|
||||
enforceRegionContainment();
|
||||
|
||||
_dataExport.ranges[workload::Region::R1] = regionBackFronts[workload::Region::R1];
|
||||
_dataExport.ranges[workload::Region::R2] = regionBackFronts[workload::Region::R2];
|
||||
_dataExport.ranges[workload::Region::R3] = regionBackFronts[workload::Region::R3];
|
||||
|
||||
_dataExport.timings[workload::Region::R1] = std::chrono::duration<float, std::milli>(timings[0]).count();
|
||||
_dataExport.timings[workload::Region::R2] = _dataExport.timings[workload::Region::R1];
|
||||
_dataExport.timings[workload::Region::R3] = std::chrono::duration<float, std::milli>(timings[1]).count();
|
||||
|
||||
for (auto& outView : outViews) {
|
||||
outView.regionBackFronts[workload::Region::R1] = regionBackFronts[workload::Region::R1];
|
||||
outView.regionBackFronts[workload::Region::R2] = regionBackFronts[workload::Region::R2];
|
||||
outView.regionBackFronts[workload::Region::R3] = regionBackFronts[workload::Region::R3];
|
||||
|
||||
workload::View::updateRegionsFromBackFronts(outView);
|
||||
}
|
||||
}
|
||||
|
||||
void ControlViews::enforceRegionContainment() {
|
||||
// inner regions should never overreach outer
|
||||
// and each region should never exceed its min/max limits
|
||||
const glm::vec2 MIN_REGION_GAP = { 1.0f, 2.0f };
|
||||
// enforce outside --> in
|
||||
for (int32_t i = workload::Region::NUM_VIEW_REGIONS - 2; i >= 0; --i) {
|
||||
int32_t j = i + 1;
|
||||
regionBackFronts[i] = regionRegulators[i].clamp(glm::min(regionBackFronts[i], regionBackFronts[j] - MIN_REGION_GAP));
|
||||
}
|
||||
// enforce inside --> out
|
||||
for (int32_t i = 1; i < workload::Region::NUM_VIEW_REGIONS; ++i) {
|
||||
int32_t j = i - 1;
|
||||
regionBackFronts[i] = regionRegulators[i].clamp(glm::max(regionBackFronts[i], regionBackFronts[j] + MIN_REGION_GAP));
|
||||
}
|
||||
}
|
||||
|
||||
class WorkloadEngineBuilder {
|
||||
public:
|
||||
public:
|
||||
|
|
|
@ -43,4 +43,126 @@ public:
|
|||
workload::EnginePointer _engine;
|
||||
};
|
||||
|
||||
class ControlViewsConfig : public workload::Job::Config {
|
||||
Q_OBJECT
|
||||
Q_PROPERTY(bool regulateViewRanges READ regulateViewRanges WRITE setRegulateViewRanges NOTIFY dirty)
|
||||
|
||||
Q_PROPERTY(float r1Timing READ r1Timing NOTIFY dirty)
|
||||
Q_PROPERTY(float r2Timing READ r2Timing NOTIFY dirty)
|
||||
Q_PROPERTY(float r3Timing READ r3Timing NOTIFY dirty)
|
||||
|
||||
Q_PROPERTY(float r1RangeBack READ r1RangeBack NOTIFY dirty)
|
||||
Q_PROPERTY(float r2RangeBack READ r2RangeBack NOTIFY dirty)
|
||||
Q_PROPERTY(float r3RangeBack READ r3RangeBack NOTIFY dirty)
|
||||
|
||||
Q_PROPERTY(float r1RangeFront READ r1RangeFront NOTIFY dirty)
|
||||
Q_PROPERTY(float r2RangeFront READ r2RangeFront NOTIFY dirty)
|
||||
Q_PROPERTY(float r3RangeFront READ r3RangeFront NOTIFY dirty)
|
||||
/*
|
||||
Q_PROPERTY(float r1MinRangeBack READ r1MinRangeBack WRITE setR1MinRangeBack NOTIFY dirty)
|
||||
Q_PROPERTY(float r2MinRangeBack READ r2MinRangeBack WRITE setR2MinRangeBack NOTIFY dirty)
|
||||
Q_PROPERTY(float r3MinRangeBack READ r3MinRangeBack WRITE setR3MinRangeBack NOTIFY dirty)
|
||||
|
||||
Q_PROPERTY(float r1MinRangeFront READ r1MinRangeFront WRITE setR1MinRangeFront NOTIFY dirty)
|
||||
Q_PROPERTY(float r2MinRangeFront READ r2MinRangeFront WRITE setR2MinRangeFront NOTIFY dirty)
|
||||
Q_PROPERTY(float r3MinRangeFront READ r3MinRangeFront WRITE setR3MinRangeFront NOTIFY dirty)
|
||||
|
||||
Q_PROPERTY(float r1MaxRangeBack READ r1MaxRangeBack WRITE setR1MaxRangeBack NOTIFY dirty)
|
||||
Q_PROPERTY(float r2MaxRangeBack READ r2MaxRangeBack WRITE setR2MaxRangeBack NOTIFY dirty)
|
||||
Q_PROPERTY(float r3MaxRangeBack READ r3MaxRangeBack WRITE setR3MaxRangeBack NOTIFY dirty)
|
||||
|
||||
Q_PROPERTY(float r1MaxRangeFront READ r1MaxRangeFront WRITE setR1MaxRangeFront NOTIFY dirty)
|
||||
Q_PROPERTY(float r2MaxRangeFront READ r2MaxRangeFront WRITE setR2MaxRangeFront NOTIFY dirty)
|
||||
Q_PROPERTY(float r3MaxRangeFront READ r3MaxRangeFront WRITE setR3MaxRangeFront NOTIFY dirty)
|
||||
|
||||
Q_PROPERTY(float r1SpeedDownBack READ r1SpeedDownBack WRITE setR1SpeedDownBack NOTIFY dirty)
|
||||
Q_PROPERTY(float r2SpeedDownBack READ r2SpeedDownBack WRITE setR2SpeedDownBack NOTIFY dirty)
|
||||
Q_PROPERTY(float r3SpeedDownBack READ r3SpeedDownBack WRITE setR3SpeedDownBack NOTIFY dirty)
|
||||
|
||||
Q_PROPERTY(float r1SpeedDownFront READ r1SpeedDownFront WRITE setR1SpeedDownFront NOTIFY dirty)
|
||||
Q_PROPERTY(float r2SpeedDownFront READ r2SpeedDownFront WRITE setR2SpeedDownFront NOTIFY dirty)
|
||||
Q_PROPERTY(float r3SpeedDownFront READ r3SpeedDownFront WRITE setR3SpeedDownFront NOTIFY dirty)
|
||||
|
||||
Q_PROPERTY(float r1SpeedUpBack READ r1SpeedUpBack WRITE setR1SpeedUpBack NOTIFY dirty)
|
||||
Q_PROPERTY(float r2SpeedUpBack READ r2SpeedUpBack WRITE setR2SpeedUpBack NOTIFY dirty)
|
||||
Q_PROPERTY(float r3SpeedUpBack READ r3SpeedUpBack WRITE setR3SpeedUpBack NOTIFY dirty)
|
||||
|
||||
Q_PROPERTY(float r1SpeedUpFront READ r1SpeedUpFront WRITE setR1SpeedUpFront NOTIFY dirty)
|
||||
Q_PROPERTY(float r2SpeedUpFront READ r2SpeedUpFront WRITE setR2SpeedUpFront NOTIFY dirty)
|
||||
Q_PROPERTY(float r3SpeedUpFront READ r3SpeedUpFront WRITE setR3SpeedUpFront NOTIFY dirty)*/
|
||||
|
||||
public:
|
||||
|
||||
bool regulateViewRanges() const { return data.regulateViewRanges; }
|
||||
void setRegulateViewRanges(bool use) { data.regulateViewRanges = use; emit dirty(); }
|
||||
|
||||
float r1Timing() const { return dataExport.timings[workload::Region::R1]; }
|
||||
float r2Timing() const { return dataExport.timings[workload::Region::R2]; }
|
||||
float r3Timing() const { return dataExport.timings[workload::Region::R3]; }
|
||||
|
||||
float r1RangeBack() const { return dataExport.ranges[workload::Region::R1].x; }
|
||||
float r2RangeBack() const { return dataExport.ranges[workload::Region::R2].x; }
|
||||
float r3RangeBack() const { return dataExport.ranges[workload::Region::R3].x; }
|
||||
|
||||
float r1RangeFront() const { return dataExport.ranges[workload::Region::R1].y; }
|
||||
float r2RangeFront() const { return dataExport.ranges[workload::Region::R2].y; }
|
||||
float r3RangeFront() const { return dataExport.ranges[workload::Region::R3].y; }
|
||||
|
||||
struct Data {
|
||||
bool regulateViewRanges{ true };
|
||||
} data;
|
||||
|
||||
struct DataExport {
|
||||
static const int SIZE{ workload::Region::NUM_VIEW_REGIONS };
|
||||
float timings[SIZE];
|
||||
glm::vec2 ranges[SIZE];
|
||||
} dataExport;
|
||||
|
||||
void emitDirty() { emit dirty(); }
|
||||
signals:
|
||||
void dirty();
|
||||
};
|
||||
|
||||
struct Regulator {
|
||||
using Timing_ns = std::chrono::nanoseconds;
|
||||
Timing_ns _budget{ std::chrono::milliseconds(2) };
|
||||
glm::vec2 _minRange{ 2.0f, 5.0f };
|
||||
glm::vec2 _maxRange{ 50.0f, 100.0f };
|
||||
|
||||
glm::vec2 _stepDown{ 0.2f };
|
||||
glm::vec2 _stepUp{ 0.1f };
|
||||
|
||||
|
||||
Regulator() {}
|
||||
Regulator(const Timing_ns& budget_ns, const glm::vec2& minRange, const glm::vec2& maxRange, const glm::vec2& stepDown, const glm::vec2& speedUp) :
|
||||
_budget(budget_ns), _minRange(minRange), _maxRange(maxRange), _stepDown(stepDown), _stepUp(speedUp) {}
|
||||
|
||||
glm::vec2 run(const Timing_ns& regulationDuration, const Timing_ns& measured, const glm::vec2& current);
|
||||
glm::vec2 clamp(const glm::vec2& backFront) const;
|
||||
};
|
||||
|
||||
class ControlViews {
|
||||
public:
|
||||
using Config = ControlViewsConfig;
|
||||
using Input = workload::VaryingSet2<workload::Views, workload::Timings>;
|
||||
using Output = workload::Views;
|
||||
using JobModel = workload::Job::ModelIO<ControlViews, Input, Output, Config>;
|
||||
|
||||
ControlViews();
|
||||
|
||||
void configure(const Config& config);
|
||||
void run(const workload::WorkloadContextPointer& runContext, const Input& inputs, Output& outputs);
|
||||
|
||||
std::array<glm::vec2, workload::Region::NUM_VIEW_REGIONS> regionBackFronts;
|
||||
std::array<Regulator, workload::Region::NUM_VIEW_REGIONS> regionRegulators;
|
||||
|
||||
void regulateViews(workload::Views& views, const workload::Timings& timings);
|
||||
|
||||
protected:
|
||||
void enforceRegionContainment();
|
||||
|
||||
Config::Data _data;
|
||||
Config::DataExport _dataExport;
|
||||
};
|
||||
|
||||
#endif // hifi_GameWorkload_h
|
||||
|
|
Loading…
Reference in a new issue