Merge branch 'master' of https://github.com/highfidelity/hifi into minimum-edit-entity-filter

This commit is contained in:
howard-stearns 2017-01-16 10:07:06 -08:00
commit 831d01c23a
10 changed files with 486 additions and 230 deletions

View file

@ -1828,7 +1828,7 @@ void Application::initializeGL() {
assert(items.canCast<RenderFetchCullSortTask::Output>());
static const QString RENDER_FORWARD = "HIFI_RENDER_FORWARD";
if (QProcessEnvironment::systemEnvironment().contains(RENDER_FORWARD)) {
_renderEngine->addJob<RenderForwardTask>("RenderForwardTask", items.get<RenderFetchCullSortTask::Output>());
_renderEngine->addJob<RenderForwardTask>("Forward", items.get<RenderFetchCullSortTask::Output>());
} else {
_renderEngine->addJob<RenderDeferredTask>("RenderDeferredTask", items.get<RenderFetchCullSortTask::Output>());
}

View file

@ -424,35 +424,25 @@ bool adjustedFormatForAudioDevice(const QAudioDeviceInfo& audioDevice,
adjustedAudioFormat = desiredAudioFormat;
//
// Attempt the device sample rate in decreasing order of preference.
// Attempt the device sample rate and channel count in decreasing order of preference.
//
if (audioDevice.supportedSampleRates().contains(48000)) {
adjustedAudioFormat.setSampleRate(48000);
} else if (audioDevice.supportedSampleRates().contains(44100)) {
adjustedAudioFormat.setSampleRate(44100);
} else if (audioDevice.supportedSampleRates().contains(32000)) {
adjustedAudioFormat.setSampleRate(32000);
} else if (audioDevice.supportedSampleRates().contains(24000)) {
adjustedAudioFormat.setSampleRate(24000);
} else if (audioDevice.supportedSampleRates().contains(16000)) {
adjustedAudioFormat.setSampleRate(16000);
} else if (audioDevice.supportedSampleRates().contains(96000)) {
adjustedAudioFormat.setSampleRate(96000);
} else if (audioDevice.supportedSampleRates().contains(192000)) {
adjustedAudioFormat.setSampleRate(192000);
} else if (audioDevice.supportedSampleRates().contains(88200)) {
adjustedAudioFormat.setSampleRate(88200);
} else if (audioDevice.supportedSampleRates().contains(176400)) {
adjustedAudioFormat.setSampleRate(176400);
const int sampleRates[] = { 48000, 44100, 32000, 24000, 16000, 96000, 192000, 88200, 176400 };
const int inputChannels[] = { 1, 2, 4, 6, 8 }; // prefer mono
const int outputChannels[] = { 2, 4, 6, 8, 1 }; // prefer stereo, downmix as last resort
for (int channelCount : (desiredAudioFormat.channelCount() == 1 ? inputChannels : outputChannels)) {
for (int sampleRate : sampleRates) {
adjustedAudioFormat.setChannelCount(channelCount);
adjustedAudioFormat.setSampleRate(sampleRate);
if (audioDevice.isFormatSupported(adjustedAudioFormat)) {
return true;
}
}
}
if (adjustedAudioFormat != desiredAudioFormat) {
// return the nearest in case it needs 2 channels
adjustedAudioFormat = audioDevice.nearestFormat(adjustedAudioFormat);
return true;
} else {
return false;
}
return false; // a supported format could not be found
}
bool sampleChannelConversion(const int16_t* sourceSamples, int16_t* destinationSamples, unsigned int numSourceSamples,

View file

@ -555,8 +555,9 @@ FBXGeometry* FBXReader::extractFBXGeometry(const QVariantHash& mapping, const QS
}
} else if (subobject.name == "Properties70") {
foreach (const FBXNode& subsubobject, subobject.children) {
static const QVariant APPLICATION_NAME = QVariant(QByteArray("Original|ApplicationName"));
if (subsubobject.name == "P" && subsubobject.properties.size() >= 5 &&
subsubobject.properties.at(0) == "Original|ApplicationName") {
subsubobject.properties.at(0) == APPLICATION_NAME) {
geometry.applicationName = subsubobject.properties.at(4).toString();
}
}
@ -571,10 +572,12 @@ FBXGeometry* FBXReader::extractFBXGeometry(const QVariantHash& mapping, const QS
int index = 4;
foreach (const FBXNode& subobject, object.children) {
if (subobject.name == propertyName) {
QString subpropName = subobject.properties.at(0).toString();
if (subpropName == "UnitScaleFactor") {
static const QVariant UNIT_SCALE_FACTOR = QByteArray("UnitScaleFactor");
static const QVariant AMBIENT_COLOR = QByteArray("AmbientColor");
const auto& subpropName = subobject.properties.at(0);
if (subpropName == UNIT_SCALE_FACTOR) {
unitScaleFactor = subobject.properties.at(index).toFloat();
} else if (subpropName == "AmbientColor") {
} else if (subpropName == AMBIENT_COLOR) {
ambientColor = getVec3(subobject.properties, index);
}
}
@ -672,66 +675,87 @@ FBXGeometry* FBXReader::extractFBXGeometry(const QVariantHash& mapping, const QS
index = 4;
}
if (properties) {
foreach (const FBXNode& property, subobject.children) {
static const QVariant GEOMETRIC_TRANSLATION = QByteArray("GeometricTranslation");
static const QVariant GEOMETRIC_ROTATION = QByteArray("GeometricRotation");
static const QVariant GEOMETRIC_SCALING = QByteArray("GeometricScaling");
static const QVariant LCL_TRANSLATION = QByteArray("Lcl Translation");
static const QVariant LCL_ROTATION = QByteArray("Lcl Rotation");
static const QVariant LCL_SCALING = QByteArray("Lcl Scaling");
static const QVariant ROTATION_MAX = QByteArray("RotationMax");
static const QVariant ROTATION_MAX_X = QByteArray("RotationMaxX");
static const QVariant ROTATION_MAX_Y = QByteArray("RotationMaxY");
static const QVariant ROTATION_MAX_Z = QByteArray("RotationMaxZ");
static const QVariant ROTATION_MIN = QByteArray("RotationMin");
static const QVariant ROTATION_MIN_X = QByteArray("RotationMinX");
static const QVariant ROTATION_MIN_Y = QByteArray("RotationMinY");
static const QVariant ROTATION_MIN_Z = QByteArray("RotationMinZ");
static const QVariant ROTATION_OFFSET = QByteArray("RotationOffset");
static const QVariant ROTATION_PIVOT = QByteArray("RotationPivot");
static const QVariant SCALING_OFFSET = QByteArray("ScalingOffset");
static const QVariant SCALING_PIVOT = QByteArray("ScalingPivot");
static const QVariant PRE_ROTATION = QByteArray("PreRotation");
static const QVariant POST_ROTATION = QByteArray("PostRotation");
foreach(const FBXNode& property, subobject.children) {
const auto& childProperty = property.properties.at(0);
if (property.name == propertyName) {
if (property.properties.at(0) == "Lcl Translation") {
if (childProperty == LCL_TRANSLATION) {
translation = getVec3(property.properties, index);
} else if (property.properties.at(0) == "RotationOffset") {
} else if (childProperty == ROTATION_OFFSET) {
rotationOffset = getVec3(property.properties, index);
} else if (property.properties.at(0) == "RotationPivot") {
} else if (childProperty == ROTATION_PIVOT) {
rotationPivot = getVec3(property.properties, index);
} else if (property.properties.at(0) == "PreRotation") {
} else if (childProperty == PRE_ROTATION) {
preRotation = getVec3(property.properties, index);
} else if (property.properties.at(0) == "Lcl Rotation") {
} else if (childProperty == LCL_ROTATION) {
rotation = getVec3(property.properties, index);
} else if (property.properties.at(0) == "PostRotation") {
} else if (childProperty == POST_ROTATION) {
postRotation = getVec3(property.properties, index);
} else if (property.properties.at(0) == "ScalingPivot") {
} else if (childProperty == SCALING_PIVOT) {
scalePivot = getVec3(property.properties, index);
} else if (property.properties.at(0) == "Lcl Scaling") {
} else if (childProperty == LCL_SCALING) {
scale = getVec3(property.properties, index);
} else if (property.properties.at(0) == "ScalingOffset") {
} else if (childProperty == SCALING_OFFSET) {
scaleOffset = getVec3(property.properties, index);
// NOTE: these rotation limits are stored in degrees (NOT radians)
} else if (property.properties.at(0) == "RotationMin") {
} else if (childProperty == ROTATION_MIN) {
rotationMin = getVec3(property.properties, index);
} else if (property.properties.at(0) == "RotationMax") {
} else if (childProperty == ROTATION_MAX) {
rotationMax = getVec3(property.properties, index);
} else if (property.properties.at(0) == "RotationMinX") {
} else if (childProperty == ROTATION_MIN_X) {
rotationMinX = property.properties.at(index).toBool();
} else if (property.properties.at(0) == "RotationMinY") {
} else if (childProperty == ROTATION_MIN_Y) {
rotationMinY = property.properties.at(index).toBool();
} else if (property.properties.at(0) == "RotationMinZ") {
} else if (childProperty == ROTATION_MIN_Z) {
rotationMinZ = property.properties.at(index).toBool();
} else if (property.properties.at(0) == "RotationMaxX") {
} else if (childProperty == ROTATION_MAX_X) {
rotationMaxX = property.properties.at(index).toBool();
} else if (property.properties.at(0) == "RotationMaxY") {
} else if (childProperty == ROTATION_MAX_Y) {
rotationMaxY = property.properties.at(index).toBool();
} else if (property.properties.at(0) == "RotationMaxZ") {
} else if (childProperty == ROTATION_MAX_Z) {
rotationMaxZ = property.properties.at(index).toBool();
} else if (property.properties.at(0) == "GeometricTranslation") {
} else if (childProperty == GEOMETRIC_TRANSLATION) {
geometricTranslation = getVec3(property.properties, index);
hasGeometricOffset = true;
} else if (property.properties.at(0) == "GeometricRotation") {
} else if (childProperty == GEOMETRIC_ROTATION) {
geometricRotation = getVec3(property.properties, index);
hasGeometricOffset = true;
} else if (property.properties.at(0) == "GeometricScaling") {
} else if (childProperty == GEOMETRIC_SCALING) {
geometricScaling = getVec3(property.properties, index);
hasGeometricOffset = true;
}
@ -842,20 +866,26 @@ FBXGeometry* FBXReader::extractFBXGeometry(const QVariantHash& mapping, const QS
propertyName = "P";
index = 4;
foreach (const FBXNode& property, subobject.children) {
static const QVariant UV_SET = QByteArray("UVSet");
static const QVariant CURRENT_TEXTURE_BLEND_MODE = QByteArray("CurrentTextureBlendMode");
static const QVariant USE_MATERIAL = QByteArray("UseMaterial");
static const QVariant TRANSLATION = QByteArray("Translation");
static const QVariant ROTATION = QByteArray("Rotation");
static const QVariant SCALING = QByteArray("Scaling");
if (property.name == propertyName) {
QString v = property.properties.at(0).toString();
if (property.properties.at(0) == "UVSet") {
if (property.properties.at(0) == UV_SET) {
std::string uvName = property.properties.at(index).toString().toStdString();
tex.assign(tex.UVSet, property.properties.at(index).toString());
} else if (property.properties.at(0) == "CurrentTextureBlendMode") {
} else if (property.properties.at(0) == CURRENT_TEXTURE_BLEND_MODE) {
tex.assign<uint8_t>(tex.currentTextureBlendMode, property.properties.at(index).value<int>());
} else if (property.properties.at(0) == "UseMaterial") {
} else if (property.properties.at(0) == USE_MATERIAL) {
tex.assign<bool>(tex.useMaterial, property.properties.at(index).value<int>());
} else if (property.properties.at(0) == "Translation") {
} else if (property.properties.at(0) == TRANSLATION) {
tex.assign(tex.translation, getVec3(property.properties, index));
} else if (property.properties.at(0) == "Rotation") {
} else if (property.properties.at(0) == ROTATION) {
tex.assign(tex.rotation, getVec3(property.properties, index));
} else if (property.properties.at(0) == "Scaling") {
} else if (property.properties.at(0) == SCALING) {
tex.assign(tex.scaling, getVec3(property.properties, index));
if (tex.scaling.x == 0.0f) {
tex.scaling.x = 1.0f;
@ -931,87 +961,114 @@ FBXGeometry* FBXReader::extractFBXGeometry(const QVariantHash& mapping, const QS
if (properties) {
std::vector<std::string> unknowns;
static const QVariant DIFFUSE_COLOR = QByteArray("DiffuseColor");
static const QVariant DIFFUSE_FACTOR = QByteArray("DiffuseFactor");
static const QVariant DIFFUSE = QByteArray("Diffuse");
static const QVariant SPECULAR_COLOR = QByteArray("SpecularColor");
static const QVariant SPECULAR_FACTOR = QByteArray("SpecularFactor");
static const QVariant SPECULAR = QByteArray("Specular");
static const QVariant EMISSIVE_COLOR = QByteArray("EmissiveColor");
static const QVariant EMISSIVE_FACTOR = QByteArray("EmissiveFactor");
static const QVariant EMISSIVE = QByteArray("Emissive");
static const QVariant AMBIENT_FACTOR = QByteArray("AmbientFactor");
static const QVariant SHININESS = QByteArray("Shininess");
static const QVariant OPACITY = QByteArray("Shininess");
static const QVariant MAYA_USE_NORMAL_MAP = QByteArray("Maya|use_normal_map");
static const QVariant MAYA_BASE_COLOR = QByteArray("Maya|base_color");
static const QVariant MAYA_USE_COLOR_MAP = QByteArray("Maya|use_color_map");
static const QVariant MAYA_ROUGHNESS = QByteArray("Maya|roughness");
static const QVariant MAYA_USE_ROUGHNESS_MAP = QByteArray("Maya|use_roughness_map");
static const QVariant MAYA_METALLIC = QByteArray("Maya|metallic");
static const QVariant MAYA_USE_METALLIC_MAP = QByteArray("Maya|use_metallic_map");
static const QVariant MAYA_EMISSIVE = QByteArray("Maya|emissive");
static const QVariant MAYA_EMISSIVE_INTENSITY = QByteArray("Maya|emissive_intensity");
static const QVariant MAYA_USE_EMISSIVE_MAP = QByteArray("Maya|use_emissive_map");
static const QVariant MAYA_USE_AO_MAP = QByteArray("Maya|use_ao_map");
foreach(const FBXNode& property, subobject.children) {
if (property.name == propertyName) {
if (property.properties.at(0) == "DiffuseColor") {
if (property.properties.at(0) == DIFFUSE_COLOR) {
material.diffuseColor = getVec3(property.properties, index);
} else if (property.properties.at(0) == "DiffuseFactor") {
} else if (property.properties.at(0) == DIFFUSE_FACTOR) {
material.diffuseFactor = property.properties.at(index).value<double>();
} else if (property.properties.at(0) == "Diffuse") {
} else if (property.properties.at(0) == DIFFUSE) {
// NOTE: this is uneeded but keep it for now for debug
// material.diffuseColor = getVec3(property.properties, index);
// material.diffuseFactor = 1.0;
} else if (property.properties.at(0) == "SpecularColor") {
} else if (property.properties.at(0) == SPECULAR_COLOR) {
material.specularColor = getVec3(property.properties, index);
} else if (property.properties.at(0) == "SpecularFactor") {
} else if (property.properties.at(0) == SPECULAR_FACTOR) {
material.specularFactor = property.properties.at(index).value<double>();
} else if (property.properties.at(0) == "Specular") {
} else if (property.properties.at(0) == SPECULAR) {
// NOTE: this is uneeded but keep it for now for debug
// material.specularColor = getVec3(property.properties, index);
// material.specularFactor = 1.0;
} else if (property.properties.at(0) == "EmissiveColor") {
} else if (property.properties.at(0) == EMISSIVE_COLOR) {
material.emissiveColor = getVec3(property.properties, index);
} else if (property.properties.at(0) == "EmissiveFactor") {
} else if (property.properties.at(0) == EMISSIVE_FACTOR) {
material.emissiveFactor = property.properties.at(index).value<double>();
} else if (property.properties.at(0) == "Emissive") {
} else if (property.properties.at(0) == EMISSIVE) {
// NOTE: this is uneeded but keep it for now for debug
// material.emissiveColor = getVec3(property.properties, index);
// material.emissiveFactor = 1.0;
} else if (property.properties.at(0) == "AmbientFactor") {
} else if (property.properties.at(0) == AMBIENT_FACTOR) {
material.ambientFactor = property.properties.at(index).value<double>();
// Detected just for BLender AO vs lightmap
} else if (property.properties.at(0) == "Shininess") {
} else if (property.properties.at(0) == SHININESS) {
material.shininess = property.properties.at(index).value<double>();
} else if (property.properties.at(0) == "Opacity") {
} else if (property.properties.at(0) == OPACITY) {
material.opacity = property.properties.at(index).value<double>();
}
// Sting Ray Material Properties!!!!
else if (property.properties.at(0) == "Maya|use_normal_map") {
else if (property.properties.at(0) == MAYA_USE_NORMAL_MAP) {
material.isPBSMaterial = true;
material.useNormalMap = (bool)property.properties.at(index).value<double>();
} else if (property.properties.at(0) == "Maya|base_color") {
} else if (property.properties.at(0) == MAYA_BASE_COLOR) {
material.isPBSMaterial = true;
material.diffuseColor = getVec3(property.properties, index);
} else if (property.properties.at(0) == "Maya|use_color_map") {
} else if (property.properties.at(0) == MAYA_USE_COLOR_MAP) {
material.isPBSMaterial = true;
material.useAlbedoMap = (bool) property.properties.at(index).value<double>();
} else if (property.properties.at(0) == "Maya|roughness") {
} else if (property.properties.at(0) == MAYA_ROUGHNESS) {
material.isPBSMaterial = true;
material.roughness = property.properties.at(index).value<double>();
} else if (property.properties.at(0) == "Maya|use_roughness_map") {
} else if (property.properties.at(0) == MAYA_USE_ROUGHNESS_MAP) {
material.isPBSMaterial = true;
material.useRoughnessMap = (bool)property.properties.at(index).value<double>();
} else if (property.properties.at(0) == "Maya|metallic") {
} else if (property.properties.at(0) == MAYA_METALLIC) {
material.isPBSMaterial = true;
material.metallic = property.properties.at(index).value<double>();
} else if (property.properties.at(0) == "Maya|use_metallic_map") {
} else if (property.properties.at(0) == MAYA_USE_METALLIC_MAP) {
material.isPBSMaterial = true;
material.useMetallicMap = (bool)property.properties.at(index).value<double>();
} else if (property.properties.at(0) == "Maya|emissive") {
} else if (property.properties.at(0) == MAYA_EMISSIVE) {
material.isPBSMaterial = true;
material.emissiveColor = getVec3(property.properties, index);
} else if (property.properties.at(0) == "Maya|emissive_intensity") {
} else if (property.properties.at(0) == MAYA_EMISSIVE_INTENSITY) {
material.isPBSMaterial = true;
material.emissiveIntensity = property.properties.at(index).value<double>();
} else if (property.properties.at(0) == "Maya|use_emissive_map") {
} else if (property.properties.at(0) == MAYA_USE_EMISSIVE_MAP) {
material.isPBSMaterial = true;
material.useEmissiveMap = (bool)property.properties.at(index).value<double>();
} else if (property.properties.at(0) == "Maya|use_ao_map") {
} else if (property.properties.at(0) == MAYA_USE_AO_MAP) {
material.isPBSMaterial = true;
material.useOcclusionMap = (bool)property.properties.at(index).value<double>();
@ -1116,9 +1173,11 @@ FBXGeometry* FBXReader::extractFBXGeometry(const QVariantHash& mapping, const QS
#endif
}
} else if (child.name == "Connections") {
static const QVariant OO = QByteArray("OO");
static const QVariant OP = QByteArray("OP");
foreach (const FBXNode& connection, child.children) {
if (connection.name == "C" || connection.name == "Connect") {
if (connection.properties.at(0) == "OO") {
if (connection.properties.at(0) == OO) {
QString childID = getID(connection.properties, 1);
QString parentID = getID(connection.properties, 2);
ooChildToParent.insert(childID, parentID);
@ -1132,8 +1191,7 @@ FBXGeometry* FBXReader::extractFBXGeometry(const QVariantHash& mapping, const QS
_lightmapOffset = glm::clamp((*lightIt).second.color.x, 0.f, 1.f);
}
}
}
if (connection.properties.at(0) == "OP") {
} else if (connection.properties.at(0) == OP) {
int counter = 0;
QByteArray type = connection.properties.at(3).toByteArray().toLower();
if (type.contains("DiffuseFactor")) {

View file

@ -171,7 +171,8 @@ ExtractedMesh FBXReader::extractMesh(const FBXNode& object, unsigned int& meshIn
QVector<int> materials;
QVector<int> textures;
bool isMaterialPerPolygon = false;
static const QVariant BY_VERTICE = QByteArray("ByVertice");
static const QVariant INDEX_TO_DIRECT = QByteArray("IndexToDirect");
foreach (const FBXNode& child, object.children) {
if (child.name == "Vertices") {
data.vertices = createVec3Vector(getDoubleVector(child));
@ -189,10 +190,10 @@ ExtractedMesh FBXReader::extractMesh(const FBXNode& object, unsigned int& meshIn
} else if (subdata.name == "NormalsIndex") {
data.normalIndices = getIntVector(subdata);
} else if (subdata.name == "MappingInformationType" && subdata.properties.at(0) == "ByVertice") {
} else if (subdata.name == "MappingInformationType" && subdata.properties.at(0) == BY_VERTICE) {
data.normalsByVertex = true;
} else if (subdata.name == "ReferenceInformationType" && subdata.properties.at(0) == "IndexToDirect") {
} else if (subdata.name == "ReferenceInformationType" && subdata.properties.at(0) == INDEX_TO_DIRECT) {
indexToDirect = true;
}
}
@ -209,10 +210,10 @@ ExtractedMesh FBXReader::extractMesh(const FBXNode& object, unsigned int& meshIn
} else if (subdata.name == "ColorsIndex") {
data.colorIndices = getIntVector(subdata);
} else if (subdata.name == "MappingInformationType" && subdata.properties.at(0) == "ByVertice") {
} else if (subdata.name == "MappingInformationType" && subdata.properties.at(0) == BY_VERTICE) {
data.colorsByVertex = true;
} else if (subdata.name == "ReferenceInformationType" && subdata.properties.at(0) == "IndexToDirect") {
} else if (subdata.name == "ReferenceInformationType" && subdata.properties.at(0) == INDEX_TO_DIRECT) {
indexToDirect = true;
}
}
@ -298,11 +299,12 @@ ExtractedMesh FBXReader::extractMesh(const FBXNode& object, unsigned int& meshIn
}
}
} else if (child.name == "LayerElementMaterial") {
static const QVariant BY_POLYGON = QByteArray("ByPolygon");
foreach (const FBXNode& subdata, child.children) {
if (subdata.name == "Materials") {
materials = getIntVector(subdata);
} else if (subdata.name == "MappingInformationType") {
if (subdata.properties.at(0) == "ByPolygon")
if (subdata.properties.at(0) == BY_POLYGON)
isMaterialPerPolygon = true;
} else {
isMaterialPerPolygon = false;

View file

@ -43,31 +43,54 @@ template<class T> QVariant readBinaryArray(QDataStream& in, int& position) {
position += sizeof(quint32) * 3;
QVector<T> values;
const unsigned int DEFLATE_ENCODING = 1;
if (encoding == DEFLATE_ENCODING) {
// preface encoded data with uncompressed length
QByteArray compressed(sizeof(quint32) + compressedLength, 0);
*((quint32*)compressed.data()) = qToBigEndian<quint32>(arrayLength * sizeof(T));
in.readRawData(compressed.data() + sizeof(quint32), compressedLength);
position += compressedLength;
QByteArray uncompressed = qUncompress(compressed);
if (uncompressed.isEmpty()) { // answers empty byte array if corrupt
throw QString("corrupt fbx file");
}
QDataStream uncompressedIn(uncompressed);
uncompressedIn.setByteOrder(QDataStream::LittleEndian);
uncompressedIn.setVersion(QDataStream::Qt_4_5); // for single/double precision switch
for (quint32 i = 0; i < arrayLength; i++) {
T value;
uncompressedIn >> value;
values.append(value);
if ((int)QSysInfo::ByteOrder == (int)in.byteOrder()) {
values.resize(arrayLength);
const unsigned int DEFLATE_ENCODING = 1;
QByteArray arrayData;
if (encoding == DEFLATE_ENCODING) {
// preface encoded data with uncompressed length
QByteArray compressed(sizeof(quint32) + compressedLength, 0);
*((quint32*)compressed.data()) = qToBigEndian<quint32>(arrayLength * sizeof(T));
in.readRawData(compressed.data() + sizeof(quint32), compressedLength);
position += compressedLength;
arrayData = qUncompress(compressed);
if (arrayData.isEmpty() || arrayData.size() != (sizeof(T) * arrayLength)) { // answers empty byte array if corrupt
throw QString("corrupt fbx file");
}
} else {
arrayData.resize(sizeof(T) * arrayLength);
position += sizeof(T) * arrayLength;
in.readRawData(arrayData.data(), arrayData.size());
}
memcpy(&values[0], arrayData.constData(), arrayData.size());
} else {
for (quint32 i = 0; i < arrayLength; i++) {
T value;
in >> value;
position += streamSize<T>();
values.append(value);
values.reserve(arrayLength);
const unsigned int DEFLATE_ENCODING = 1;
if (encoding == DEFLATE_ENCODING) {
// preface encoded data with uncompressed length
QByteArray compressed(sizeof(quint32) + compressedLength, 0);
*((quint32*)compressed.data()) = qToBigEndian<quint32>(arrayLength * sizeof(T));
in.readRawData(compressed.data() + sizeof(quint32), compressedLength);
position += compressedLength;
QByteArray uncompressed = qUncompress(compressed);
if (uncompressed.isEmpty()) { // answers empty byte array if corrupt
throw QString("corrupt fbx file");
}
QDataStream uncompressedIn(uncompressed);
uncompressedIn.setByteOrder(QDataStream::LittleEndian);
uncompressedIn.setVersion(QDataStream::Qt_4_5); // for single/double precision switch
for (quint32 i = 0; i < arrayLength; i++) {
T value;
uncompressedIn >> value;
values.append(value);
}
} else {
for (quint32 i = 0; i < arrayLength; i++) {
T value;
in >> value;
position += streamSize<T>();
values.append(value);
}
}
}
return QVariant::fromValue(values);

View file

@ -26,10 +26,16 @@
#include <render/drawItemBounds_vert.h>
#include <render/drawItemBounds_frag.h>
#include "nop_frag.h"
using namespace render;
extern void initForwardPipelines(ShapePlumber& plumber);
RenderForwardTask::RenderForwardTask(RenderFetchCullSortTask::Output items) {
// Prepare the ShapePipelines
ShapePlumberPointer shapePlumber = std::make_shared<ShapePlumber>();
initForwardPipelines(*shapePlumber);
// Extract opaques / transparents / lights / overlays
const auto opaques = items[0];
const auto transparents = items[1];
@ -40,16 +46,19 @@ RenderForwardTask::RenderForwardTask(RenderFetchCullSortTask::Output items) {
const auto framebuffer = addJob<PrepareFramebuffer>("PrepareFramebuffer");
addJob<Draw>("DrawOpaques", opaques, shapePlumber);
addJob<Stencil>("Stencil");
addJob<DrawBackground>("DrawBackground", background);
// bounds do not draw on stencil buffer, so they must come last
// Bounds do not draw on stencil buffer, so they must come last
addJob<DrawBounds>("DrawBounds", opaques);
// Blit!
addJob<Blit>("Blit", framebuffer);
}
void PrepareFramebuffer::run(const SceneContextPointer& sceneContext, const RenderContextPointer& renderContext, gpu::FramebufferPointer& framebuffer) {
void PrepareFramebuffer::run(const SceneContextPointer& sceneContext, const RenderContextPointer& renderContext,
gpu::FramebufferPointer& framebuffer) {
auto framebufferCache = DependencyManager::get<FramebufferCache>();
auto framebufferSize = framebufferCache->getFrameBufferSize();
glm::uvec2 frameSize(framebufferSize.width(), framebufferSize.height());
@ -89,6 +98,88 @@ void PrepareFramebuffer::run(const SceneContextPointer& sceneContext, const Rend
framebuffer = _framebuffer;
}
void Draw::run(const SceneContextPointer& sceneContext, const RenderContextPointer& renderContext,
const Inputs& items) {
RenderArgs* args = renderContext->args;
gpu::doInBatch(args->_context, [&](gpu::Batch& batch) {
args->_batch = &batch;
// Setup projection
glm::mat4 projMat;
Transform viewMat;
args->getViewFrustum().evalProjectionMatrix(projMat);
args->getViewFrustum().evalViewTransform(viewMat);
batch.setProjectionTransform(projMat);
batch.setViewTransform(viewMat);
batch.setModelTransform(Transform());
// Render items
renderStateSortShapes(sceneContext, renderContext, _shapePlumber, items, -1);
});
args->_batch = nullptr;
}
const gpu::PipelinePointer Stencil::getPipeline() {
if (!_stencilPipeline) {
auto vs = gpu::StandardShaderLib::getDrawUnitQuadTexcoordVS();
auto ps = gpu::Shader::createPixel(std::string(nop_frag));
gpu::ShaderPointer program = gpu::Shader::createProgram(vs, ps);
gpu::Shader::makeProgram(*program);
auto state = std::make_shared<gpu::State>();
state->setDepthTest(true, false, gpu::LESS_EQUAL);
const gpu::int8 STENCIL_OPAQUE = 1;
state->setStencilTest(true, 0xFF, gpu::State::StencilTest(STENCIL_OPAQUE, 0xFF, gpu::ALWAYS,
gpu::State::STENCIL_OP_REPLACE,
gpu::State::STENCIL_OP_REPLACE,
gpu::State::STENCIL_OP_KEEP));
_stencilPipeline = gpu::Pipeline::create(program, state);
}
return _stencilPipeline;
}
void Stencil::run(const SceneContextPointer& sceneContext, const RenderContextPointer& renderContext) {
RenderArgs* args = renderContext->args;
gpu::doInBatch(args->_context, [&](gpu::Batch& batch) {
args->_batch = &batch;
batch.enableStereo(false);
batch.setViewportTransform(args->_viewport);
batch.setStateScissorRect(args->_viewport);
batch.setPipeline(getPipeline());
batch.draw(gpu::TRIANGLE_STRIP, 4);
});
args->_batch = nullptr;
}
void DrawBackground::run(const SceneContextPointer& sceneContext, const RenderContextPointer& renderContext,
const Inputs& background) {
RenderArgs* args = renderContext->args;
gpu::doInBatch(args->_context, [&](gpu::Batch& batch) {
args->_batch = &batch;
batch.enableSkybox(true);
batch.setViewportTransform(args->_viewport);
batch.setStateScissorRect(args->_viewport);
// Setup projection
glm::mat4 projMat;
Transform viewMat;
args->getViewFrustum().evalProjectionMatrix(projMat);
args->getViewFrustum().evalViewTransform(viewMat);
batch.setProjectionTransform(projMat);
batch.setViewTransform(viewMat);
renderItems(sceneContext, renderContext, background);
});
args->_batch = nullptr;
}
const gpu::PipelinePointer DrawBounds::getPipeline() {
if (!_boundsPipeline) {
auto vs = gpu::Shader::createVertex(std::string(drawItemBounds_vert));
@ -112,7 +203,8 @@ const gpu::PipelinePointer DrawBounds::getPipeline() {
return _boundsPipeline;
}
void DrawBounds::run(const SceneContextPointer& sceneContext, const RenderContextPointer& renderContext, const Inputs& items) {
void DrawBounds::run(const SceneContextPointer& sceneContext, const RenderContextPointer& renderContext,
const Inputs& items) {
RenderArgs* args = renderContext->args;
gpu::doInBatch(args->_context, [&](gpu::Batch& batch) {
@ -142,26 +234,3 @@ void DrawBounds::run(const SceneContextPointer& sceneContext, const RenderContex
}
});
}
void DrawBackground::run(const SceneContextPointer& sceneContext, const RenderContextPointer& renderContext, const Inputs& items) {
RenderArgs* args = renderContext->args;
gpu::doInBatch(args->_context, [&](gpu::Batch& batch) {
args->_batch = &batch;
batch.enableSkybox(true);
batch.setViewportTransform(args->_viewport);
batch.setStateScissorRect(args->_viewport);
// Setup projection
glm::mat4 projMat;
Transform viewMat;
args->getViewFrustum().evalProjectionMatrix(projMat);
args->getViewFrustum().evalViewTransform(viewMat);
batch.setProjectionTransform(projMat);
batch.setViewTransform(viewMat);
renderItems(sceneContext, renderContext, items);
});
args->_batch = nullptr;
}

View file

@ -25,20 +25,62 @@ public:
class PrepareFramebuffer {
public:
using JobModel = render::Job::ModelO<PrepareFramebuffer, gpu::FramebufferPointer>;
using Inputs = gpu::FramebufferPointer;
using JobModel = render::Job::ModelO<PrepareFramebuffer, Inputs>;
void run(const render::SceneContextPointer& sceneContext, const render::RenderContextPointer& renderContext, gpu::FramebufferPointer& framebuffer);
void run(const render::SceneContextPointer& sceneContext, const render::RenderContextPointer& renderContext,
gpu::FramebufferPointer& framebuffer);
private:
gpu::FramebufferPointer _framebuffer;
};
class DrawBounds {
class Draw {
public:
using Inputs = render::ItemBounds;
using JobModel = render::Job::ModelI<DrawBounds, Inputs>;
using JobModel = render::Job::ModelI<Draw, Inputs>;
void run(const render::SceneContextPointer& sceneContext, const render::RenderContextPointer& renderContext, const Inputs& items);
Draw(const render::ShapePlumberPointer& shapePlumber) : _shapePlumber(shapePlumber) {}
void run(const render::SceneContextPointer& sceneContext, const render::RenderContextPointer& renderContext,
const Inputs& items);
private:
render::ShapePlumberPointer _shapePlumber;
};
class Stencil {
public:
using JobModel = render::Job::Model<Stencil>;
void run(const render::SceneContextPointer& sceneContext, const render::RenderContextPointer& renderContext);
private:
const gpu::PipelinePointer getPipeline();
gpu::PipelinePointer _stencilPipeline;
};
class DrawBackground {
public:
using Inputs = render::ItemBounds;
using JobModel = render::Job::ModelI<DrawBackground, Inputs>;
void run(const render::SceneContextPointer& sceneContext, const render::RenderContextPointer& renderContext,
const Inputs& background);
};
class DrawBounds {
public:
class Config : public render::JobConfig {
public:
Config() : JobConfig(false) {}
};
using Inputs = render::ItemBounds;
using JobModel = render::Job::ModelI<DrawBounds, Inputs, Config>;
void configure(const Config& configuration) {}
void run(const render::SceneContextPointer& sceneContext, const render::RenderContextPointer& renderContext,
const Inputs& items);
private:
const gpu::PipelinePointer getPipeline();
@ -47,12 +89,4 @@ private:
int _scaleLocation { -1 };
};
class DrawBackground {
public:
using Inputs = render::ItemBounds;
using JobModel = render::Job::ModelI<DrawBackground, Inputs>;
void run(const render::SceneContextPointer& sceneContext, const render::RenderContextPointer& renderContext, const Inputs& background);
};
#endif // hifi_RenderForwardTask_h

View file

@ -10,6 +10,8 @@
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include <functional>
#include <gpu/Context.h>
#include <gpu/StandardShaderLib.h>
@ -47,41 +49,17 @@
using namespace render;
using namespace std::placeholders;
gpu::BufferView getDefaultMaterialBuffer() {
model::Material::Schema schema;
schema._albedo = vec3(1.0f);
schema._opacity = 1.0f;
schema._metallic = 0.1f;
schema._roughness = 0.9f;
return gpu::BufferView(std::make_shared<gpu::Buffer>(sizeof(model::Material::Schema), (const gpu::Byte*) &schema));
}
void initOverlay3DPipelines(ShapePlumber& plumber);
void initDeferredPipelines(ShapePlumber& plumber);
void initForwardPipelines(ShapePlumber& plumber);
void batchSetter(const ShapePipeline& pipeline, gpu::Batch& batch) {
// Set a default albedo map
batch.setResourceTexture(render::ShapePipeline::Slot::MAP::ALBEDO,
DependencyManager::get<TextureCache>()->getWhiteTexture());
// Set a default normal map
batch.setResourceTexture(render::ShapePipeline::Slot::MAP::NORMAL_FITTING,
DependencyManager::get<TextureCache>()->getNormalFittingTexture());
void addPlumberPipeline(ShapePlumber& plumber,
const ShapeKey& key, const gpu::ShaderPointer& vertex, const gpu::ShaderPointer& pixel);
// Set a default material
if (pipeline.locations->materialBufferUnit >= 0) {
static const gpu::BufferView OPAQUE_SCHEMA_BUFFER = getDefaultMaterialBuffer();
batch.setUniformBuffer(ShapePipeline::Slot::BUFFER::MATERIAL, OPAQUE_SCHEMA_BUFFER);
}
}
void lightBatchSetter(const ShapePipeline& pipeline, gpu::Batch& batch) {
batchSetter(pipeline, batch);
// Set the light
if (pipeline.locations->lightBufferUnit >= 0) {
DependencyManager::get<DeferredLightingEffect>()->setupKeyLightBatch(batch,
pipeline.locations->lightBufferUnit,
pipeline.locations->lightAmbientBufferUnit,
pipeline.locations->lightAmbientMapUnit);
}
}
void batchSetter(const ShapePipeline& pipeline, gpu::Batch& batch);
void lightBatchSetter(const ShapePipeline& pipeline, gpu::Batch& batch);
void initOverlay3DPipelines(ShapePlumber& plumber) {
auto vertex = gpu::Shader::createVertex(std::string(overlay3D_vert));
@ -130,50 +108,6 @@ void initOverlay3DPipelines(ShapePlumber& plumber) {
}
void initDeferredPipelines(render::ShapePlumber& plumber) {
using Key = render::ShapeKey;
using ShaderPointer = gpu::ShaderPointer;
auto addPipeline = [&plumber](const Key& key, const ShaderPointer& vertexShader, const ShaderPointer& pixelShader) {
// These keyvalues' pipelines will be added by this lamdba in addition to the key passed
assert(!key.isWireFrame());
assert(!key.isDepthBiased());
assert(key.isCullFace());
ShaderPointer program = gpu::Shader::createProgram(vertexShader, pixelShader);
for (int i = 0; i < 8; i++) {
bool isCulled = (i & 1);
bool isBiased = (i & 2);
bool isWireframed = (i & 4);
ShapeKey::Builder builder(key);
auto state = std::make_shared<gpu::State>();
// Depth test depends on transparency
state->setDepthTest(true, !key.isTranslucent(), gpu::LESS_EQUAL);
state->setBlendFunction(key.isTranslucent(),
gpu::State::SRC_ALPHA, gpu::State::BLEND_OP_ADD, gpu::State::INV_SRC_ALPHA,
gpu::State::FACTOR_ALPHA, gpu::State::BLEND_OP_ADD, gpu::State::ONE);
if (!isCulled) {
builder.withoutCullFace();
}
state->setCullMode(isCulled ? gpu::State::CULL_BACK : gpu::State::CULL_NONE);
if (isWireframed) {
builder.withWireframe();
state->setFillMode(gpu::State::FILL_LINE);
}
if (isBiased) {
builder.withDepthBias();
state->setDepthBias(1.0f);
state->setDepthBiasSlopeScale(1.0f);
}
plumber.addPipeline(builder.build(), program, state,
key.isTranslucent() ? &lightBatchSetter : &batchSetter);
}
};
// Vertex shaders
auto modelVertex = gpu::Shader::createVertex(std::string(model_vert));
auto modelNormalMapVertex = gpu::Shader::createVertex(std::string(model_normal_map_vert));
@ -198,6 +132,8 @@ void initDeferredPipelines(render::ShapePlumber& plumber) {
auto modelLightmapSpecularMapPixel = gpu::Shader::createPixel(std::string(model_lightmap_specular_map_frag));
auto modelLightmapNormalSpecularMapPixel = gpu::Shader::createPixel(std::string(model_lightmap_normal_specular_map_frag));
using Key = render::ShapeKey;
auto addPipeline = std::bind(&addPlumberPipeline, std::ref(plumber), _1, _2, _3);
// TODO: Refactor this to use a filter
// Opaques
addPipeline(
@ -281,5 +217,132 @@ void initDeferredPipelines(render::ShapePlumber& plumber) {
addPipeline(
Key::Builder().withSkinned().withDepthOnly(),
skinModelShadowVertex, modelShadowPixel);
}
void initForwardPipelines(render::ShapePlumber& plumber) {
// Vertex shaders
auto modelVertex = gpu::Shader::createVertex(std::string(model_vert));
auto modelNormalMapVertex = gpu::Shader::createVertex(std::string(model_normal_map_vert));
auto skinModelVertex = gpu::Shader::createVertex(std::string(skin_model_vert));
auto skinModelNormalMapVertex = gpu::Shader::createVertex(std::string(skin_model_normal_map_vert));
// Pixel shaders
auto modelPixel = gpu::Shader::createPixel(std::string(model_frag));
auto modelUnlitPixel = gpu::Shader::createPixel(std::string(model_unlit_frag));
auto modelNormalMapPixel = gpu::Shader::createPixel(std::string(model_normal_map_frag));
auto modelSpecularMapPixel = gpu::Shader::createPixel(std::string(model_specular_map_frag));
auto modelNormalSpecularMapPixel = gpu::Shader::createPixel(std::string(model_normal_specular_map_frag));
using Key = render::ShapeKey;
auto addPipeline = std::bind(&addPlumberPipeline, std::ref(plumber), _1, _2, _3);
// Opaques
addPipeline(
Key::Builder(),
modelVertex, modelPixel);
addPipeline(
Key::Builder().withUnlit(),
modelVertex, modelUnlitPixel);
addPipeline(
Key::Builder().withTangents(),
modelNormalMapVertex, modelNormalMapPixel);
addPipeline(
Key::Builder().withSpecular(),
modelVertex, modelSpecularMapPixel);
addPipeline(
Key::Builder().withTangents().withSpecular(),
modelNormalMapVertex, modelNormalSpecularMapPixel);
// Skinned
addPipeline(
Key::Builder().withSkinned(),
skinModelVertex, modelPixel);
addPipeline(
Key::Builder().withSkinned().withTangents(),
skinModelNormalMapVertex, modelNormalMapPixel);
addPipeline(
Key::Builder().withSkinned().withSpecular(),
skinModelVertex, modelSpecularMapPixel);
addPipeline(
Key::Builder().withSkinned().withTangents().withSpecular(),
skinModelNormalMapVertex, modelNormalSpecularMapPixel);
}
void addPlumberPipeline(ShapePlumber& plumber,
const ShapeKey& key, const gpu::ShaderPointer& vertex, const gpu::ShaderPointer& pixel) {
// These key-values' pipelines are added by this functor in addition to the key passed
assert(!key.isWireFrame());
assert(!key.isDepthBiased());
assert(key.isCullFace());
gpu::ShaderPointer program = gpu::Shader::createProgram(vertex, pixel);
for (int i = 0; i < 8; i++) {
bool isCulled = (i & 1);
bool isBiased = (i & 2);
bool isWireframed = (i & 4);
auto state = std::make_shared<gpu::State>();
// Depth test depends on transparency
state->setDepthTest(true, !key.isTranslucent(), gpu::LESS_EQUAL);
state->setBlendFunction(key.isTranslucent(),
gpu::State::SRC_ALPHA, gpu::State::BLEND_OP_ADD, gpu::State::INV_SRC_ALPHA,
gpu::State::FACTOR_ALPHA, gpu::State::BLEND_OP_ADD, gpu::State::ONE);
ShapeKey::Builder builder(key);
if (!isCulled) {
builder.withoutCullFace();
}
state->setCullMode(isCulled ? gpu::State::CULL_BACK : gpu::State::CULL_NONE);
if (isWireframed) {
builder.withWireframe();
state->setFillMode(gpu::State::FILL_LINE);
}
if (isBiased) {
builder.withDepthBias();
state->setDepthBias(1.0f);
state->setDepthBiasSlopeScale(1.0f);
}
plumber.addPipeline(builder.build(), program, state,
key.isTranslucent() ? &lightBatchSetter : &batchSetter);
}
}
void batchSetter(const ShapePipeline& pipeline, gpu::Batch& batch) {
// Set a default albedo map
batch.setResourceTexture(render::ShapePipeline::Slot::MAP::ALBEDO,
DependencyManager::get<TextureCache>()->getWhiteTexture());
// Set a default normal map
batch.setResourceTexture(render::ShapePipeline::Slot::MAP::NORMAL_FITTING,
DependencyManager::get<TextureCache>()->getNormalFittingTexture());
// Set a default material
if (pipeline.locations->materialBufferUnit >= 0) {
// Create a default schema
static bool isMaterialSet = false;
static model::Material material;
if (!isMaterialSet) {
material.setAlbedo(vec3(1.0f));
material.setOpacity(1.0f);
material.setMetallic(0.1f);
material.setRoughness(0.9f);
isMaterialSet = true;
}
// Set a default schema
batch.setUniformBuffer(ShapePipeline::Slot::BUFFER::MATERIAL, material.getSchemaBuffer());
}
}
void lightBatchSetter(const ShapePipeline& pipeline, gpu::Batch& batch) {
// Set the batch
batchSetter(pipeline, batch);
// Set the light
if (pipeline.locations->lightBufferUnit >= 0) {
DependencyManager::get<DeferredLightingEffect>()->setupKeyLightBatch(batch,
pipeline.locations->lightBufferUnit,
pipeline.locations->lightAmbientBufferUnit,
pipeline.locations->lightAmbientMapUnit);
}
}

View file

@ -0,0 +1,16 @@
<@include gpu/Config.slh@>
<$VERSION_HEADER$>
// Generated on <$_SCRIBE_DATE$>
//
// nop.frag
// fragment shader
//
// Created by Zach Pomerantz on 1/3/2017.
// Copyright 2017 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
void main(void) {
}

View file

@ -371,6 +371,7 @@ protected:
class JobConfig : public QObject {
Q_OBJECT
Q_PROPERTY(double cpuRunTime READ getCPURunTime NOTIFY newStats()) //ms
Q_PROPERTY(bool enabled READ isEnabled WRITE setEnabled)
double _msCPURunTime{ 0.0 };
public:
@ -380,7 +381,7 @@ public:
JobConfig(bool enabled) : alwaysEnabled{ false }, enabled{ enabled } {}
bool isEnabled() { return alwaysEnabled || enabled; }
void setEnabled(bool enable) { enabled = enable; }
void setEnabled(bool enable) { enabled = alwaysEnabled || enable; }
bool alwaysEnabled{ true };
bool enabled{ true };