fix voxel system to send new bistream format, add helpers to VoxelNode class

This commit is contained in:
Stephen Birarda 2013-03-19 15:52:51 -07:00
parent 92fc1ed1a6
commit 76f7f68526
5 changed files with 306 additions and 103 deletions

View file

@ -6,7 +6,9 @@
//
//
#include "SharedUtil.h"
#include "VoxelNode.h"
#include "OctalCode.h"
VoxelNode::VoxelNode() {
@ -17,4 +19,62 @@ VoxelNode::VoxelNode() {
for (int i = 0; i < 8; i++) {
children[i] = NULL;
}
}
VoxelNode::~VoxelNode() {
delete[] octalCode;
// delete all of this node's children
for (int i = 0; i < 8; i++) {
delete children[i];
}
}
void VoxelNode::addChildAtIndex(int8_t childIndex) {
children[childIndex] = new VoxelNode();
// give this child its octal code
children[childIndex]->octalCode = childOctalCode(octalCode, childIndex);
}
void VoxelNode::setColorFromAverageOfChildren(int * colorArray) {
if (colorArray == NULL) {
colorArray = new int[4];
memset(colorArray, 0, 4);
for (int i = 0; i < 8; i++) {
if (children[i] != NULL && children[i]->color[3] == 1) {
for (int j = 0; j < 3; j++) {
colorArray[j] += children[i]->color[j];
}
colorArray[3]++;
}
}
}
if (colorArray[3] > 4) {
// we need at least 4 colored children to have an average color value
// or if we have none we generate random values
for (int c = 0; c < 3; c++) {
// set the average color value
color[c] = colorArray[c] / colorArray[3];
}
// set the alpha to 1 to indicate that this isn't transparent
color[3] = 1;
} else {
// some children, but not enough
// set this node's alpha to 0
color[3] = 0;
}
}
void VoxelNode::setRandomColor(int minimumBrightness) {
for (int c = 0; c < 3; c++) {
color[c] = randomColorValue(minimumBrightness);
}
color[3] = 1;
}

View file

@ -14,6 +14,11 @@
class VoxelNode {
public:
VoxelNode();
~VoxelNode();
void addChildAtIndex(int8_t childIndex);
void setColorFromAverageOfChildren(int * colorArray = NULL);
void setRandomColor(int minimumBrightness);
unsigned char *octalCode;
unsigned char color[4];

View file

@ -6,6 +6,7 @@
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
//
#include "SharedUtil.h"
#include "OctalCode.h"
#include "VoxelTree.h"
@ -17,69 +18,180 @@ VoxelTree::VoxelTree() {
*rootNode->octalCode = (char)0;
}
unsigned char * VoxelTree::loadBitstreamBuffer(char *& bitstreamBuffer,
VoxelTree::~VoxelTree() {
// delete the children of the root node
// this recursively deletes the tree
for (int i = 0; i < 8; i++) {
delete rootNode->children[i];
}
}
VoxelNode * VoxelTree::nodeForOctalCode(VoxelNode *ancestorNode, unsigned char * needleCode) {
// find the appropriate branch index based on this ancestorNode
if (*needleCode == 0) {
return ancestorNode;
} else if (ancestorNode->childMask != 0) {
int8_t branchForNeedle = branchIndexWithDescendant(ancestorNode->octalCode, needleCode);
VoxelNode *childNode = ancestorNode->children[branchForNeedle];
if (childNode != NULL) {
if (*childNode->octalCode == *needleCode) {
// the fact that the number of sections is equivalent does not always guarantee
// that this is the same node, however due to the recursive traversal
// we know that this is our node
return childNode;
} else {
// we need to go deeper
return nodeForOctalCode(childNode, needleCode);
}
}
}
// we've been given a code we don't have a node for
// return this node as the last created parent
return ancestorNode;
}
VoxelNode * VoxelTree::createMissingNode(VoxelNode *lastParentNode, unsigned char *codeToReach) {
uint8_t indexOfNewChild = branchIndexWithDescendant(lastParentNode->octalCode, codeToReach);
lastParentNode->addChildAtIndex(indexOfNewChild);
if (*lastParentNode->children[indexOfNewChild]->octalCode == *codeToReach) {
return lastParentNode;
} else {
return createMissingNode(lastParentNode->children[indexOfNewChild], codeToReach);
}
}
int VoxelTree::readNodeData(VoxelNode *destinationNode, unsigned char * nodeData, int bytesLeftToRead) {
// instantiate variable for bytes already read
int bytesRead = 1;
int colorArray[4] = {};
for (int i = 0; i < 8; i++) {
// check the colors mask to see if we have a child to color in
if (oneAtBit(*nodeData, i)) {
printf("Adding child with color at index %d\n", i);
// create the child if it doesn't exist
if (destinationNode->children[i] == NULL) {
destinationNode->addChildAtIndex(i);
}
// pull the color for this child
memcpy(destinationNode->children[i]->color, nodeData + bytesRead, 3);
destinationNode->children[i]->color[3] = 1;
for (int j = 0; j < 3; j++) {
colorArray[j] += destinationNode->children[i]->color[j];
}
bytesRead += 3;
colorArray[3]++;
}
}
// average node's color based on color of children
destinationNode->setColorFromAverageOfChildren(colorArray);
// give this destination node the child mask from the packet
printf("The child mask is\n");
outputBits(*(nodeData + bytesRead));
printf("\n");
destinationNode->childMask = *(nodeData + bytesRead);
int childIndex = 0;
bytesRead++;
while (bytesLeftToRead - bytesRead > 0 && childIndex < 8) {
// check the exists mask to see if we have a child to traverse into
if (oneAtBit(destinationNode->childMask, childIndex)) {
if (destinationNode->children[childIndex] == NULL) {
// add a child at that index, if it doesn't exist
destinationNode->addChildAtIndex(childIndex);
}
// tell the child to read the subsequent data
bytesRead += readNodeData(destinationNode->children[childIndex], nodeData + bytesRead, bytesLeftToRead - bytesRead);
}
childIndex++;
}
return bytesRead;
}
void VoxelTree::readBitstreamToTree(unsigned char * bitstream, int bufferSizeBytes) {
VoxelNode *bitstreamRootNode = nodeForOctalCode(rootNode, (unsigned char *)bitstream);
if (*bitstream != *bitstreamRootNode->octalCode) {
// if the octal code returned is not on the same level as
// the code being searched for, we have VoxelNodes to create
bitstreamRootNode = createMissingNode(bitstreamRootNode, (unsigned char *)bitstream);
}
int octalCodeBytes = bytesRequiredForCodeLength(*bitstream);
readNodeData(bitstreamRootNode, bitstream + octalCodeBytes, bufferSizeBytes - octalCodeBytes);
}
unsigned char * VoxelTree::loadBitstreamBuffer(unsigned char *& bitstreamBuffer,
unsigned char * stopOctalCode,
VoxelNode *currentVoxelNode)
{
static char *initialBitstreamPos = bitstreamBuffer;
static unsigned char *initialBitstreamPos = bitstreamBuffer;
char firstIndexToCheck = 0;
uint8_t firstIndexToCheck = 0;
// we'll only be writing data if we're lower than
// or at the same level as the stopOctalCode
if (*currentVoxelNode->octalCode >= *stopOctalCode) {
if (currentVoxelNode->childMask != 0) {
if ((bitstreamBuffer - initialBitstreamPos) + MAX_TREE_SLICE_BYTES > MAX_VOXEL_PACKET_SIZE) {
// we can't send this packet, not enough room
// return our octal code as the stop
return currentVoxelNode->octalCode;
}
if (strcmp((char *)stopOctalCode, (char *)currentVoxelNode->octalCode) == 0) {
// this is is the root node for this packet
// add the leading V
*(bitstreamBuffer++) = 'V';
// add its octal code to the packet
int octalCodeBytes = bytesRequiredForCodeLength(*currentVoxelNode->octalCode);
memcpy(bitstreamBuffer, currentVoxelNode->octalCode, octalCodeBytes);
bitstreamBuffer += octalCodeBytes;
}
// default color mask is 0, increment pointer for colors
*bitstreamBuffer = 0;
// keep a colorPointer so we can check how many colors were added
char *colorPointer = bitstreamBuffer + 1;
for (int i = 0; i < 8; i++) {
// check if the child exists and is not transparent
if (currentVoxelNode->children[i] != NULL
&& currentVoxelNode->children[i]->color[3] != 0) {
// copy in the childs color to bitstreamBuffer
memcpy(colorPointer, currentVoxelNode->children[i]->color, 3);
colorPointer += 3;
// set the colorMask by bitshifting the value of childExists
*bitstreamBuffer += (1 << (7 - i));
}
}
// push the bitstreamBuffer forwards for the number of added colors
bitstreamBuffer += (colorPointer - bitstreamBuffer);
// copy the childMask to the current position of the bitstreamBuffer
// and push the buffer pointer forwards
*(bitstreamBuffer++) = currentVoxelNode->childMask;
} else {
// if this node is a leaf, return a NULL stop code
// it has been visited
return NULL;
if ((bitstreamBuffer - initialBitstreamPos) + MAX_TREE_SLICE_BYTES > MAX_VOXEL_PACKET_SIZE) {
// we can't send this packet, not enough room
// return our octal code as the stop
return currentVoxelNode->octalCode;
}
if (strcmp((char *)stopOctalCode, (char *)currentVoxelNode->octalCode) == 0) {
// this is is the root node for this packet
// add the leading V
*(bitstreamBuffer++) = 'V';
// add its octal code to the packet
int octalCodeBytes = bytesRequiredForCodeLength(*currentVoxelNode->octalCode);
memcpy(bitstreamBuffer, currentVoxelNode->octalCode, octalCodeBytes);
bitstreamBuffer += octalCodeBytes;
}
// default color mask is 0, increment pointer for colors
*bitstreamBuffer = 0;
// keep a colorPointer so we can check how many colors were added
unsigned char *colorPointer = bitstreamBuffer + 1;
for (int i = 0; i < 8; i++) {
// check if the child exists and is not transparent
if (currentVoxelNode->children[i] != NULL
&& currentVoxelNode->children[i]->color[3] != 0) {
// copy in the childs color to bitstreamBuffer
memcpy(colorPointer, currentVoxelNode->children[i]->color, 3);
colorPointer += 3;
// set the colorMask by bitshifting the value of childExists
*bitstreamBuffer += (1 << (7 - i));
}
}
// push the bitstreamBuffer forwards for the number of added colors
bitstreamBuffer += (colorPointer - bitstreamBuffer);
// copy the childMask to the current position of the bitstreamBuffer
// and push the buffer pointer forwards
*(bitstreamBuffer++) = currentVoxelNode->childMask;
} else {
firstIndexToCheck = *stopOctalCode > 0
? branchIndexWithDescendant(currentVoxelNode->octalCode, stopOctalCode)
@ -98,7 +210,11 @@ unsigned char * VoxelTree::loadBitstreamBuffer(char *& bitstreamBuffer,
&& childStopOctalCode == NULL) {
return currentVoxelNode->children[i]->octalCode;
} else {
childStopOctalCode = loadBitstreamBuffer(bitstreamBuffer, stopOctalCode, currentVoxelNode->children[i]);
if (oneAtBit(currentVoxelNode->childMask, i)) {
childStopOctalCode = loadBitstreamBuffer(bitstreamBuffer, stopOctalCode, currentVoxelNode->children[i]);
} else {
childStopOctalCode = NULL;
}
}
}
@ -107,5 +223,37 @@ unsigned char * VoxelTree::loadBitstreamBuffer(char *& bitstreamBuffer,
}
}
return childStopOctalCode;
return childStopOctalCode;
}
void VoxelTree::printTreeForDebugging(VoxelNode *startNode) {
uint8_t colorMask = 0;
// create the color mask
for (int i = 0; i < 8; i++) {
if (startNode->children[i] != NULL && startNode->children[i]->color[3] != 0) {
colorMask += (1 << (7 - i));
}
}
outputBits(colorMask);
// output the colors we have
for (int j = 0; j < 8; j++) {
if (startNode->children[j] != NULL && startNode->children[j]->color[3] != 0) {
for (int c = 0; c < 3; c++) {
outputBits(startNode->children[j]->color[c]);
}
}
}
outputBits(startNode->childMask);
// ask children to recursively output their trees
// if they aren't a leaf
for (int k = 0; k < 8; k++) {
if (startNode->children[k] != NULL && oneAtBit(startNode->childMask, k)) {
printTreeForDebugging(startNode->children[k]);
}
}
}

View file

@ -15,14 +15,20 @@
const int MAX_VOXEL_PACKET_SIZE = 1492;
class VoxelTree {
VoxelNode * nodeForOctalCode(VoxelNode *ancestorNode, unsigned char * needleCode);
VoxelNode * createMissingNode(VoxelNode *lastParentNode, unsigned char *deepestCodeToCreate);
int readNodeData(VoxelNode *destinationNode, unsigned char * nodeData, int bufferSizeBytes);
public:
VoxelTree();
~VoxelTree();
VoxelNode *rootNode;
unsigned char * loadBitstreamBuffer(char *& bitstreamBuffer,
void readBitstreamToTree(unsigned char * bitstream, int bufferSizeBytes);
unsigned char * loadBitstreamBuffer(unsigned char *& bitstreamBuffer,
unsigned char * octalCode,
VoxelNode *currentVoxelNode);
void printTreeForDebugging(VoxelNode *startNode);
};

View file

@ -23,7 +23,7 @@
#include <sys/time.h>
#include <arpa/inet.h>
#include <ifaddrs.h>
#endif _WIN32
#endif
const int VOXEL_LISTEN_PORT = 40106;
@ -46,19 +46,11 @@ char DOMAIN_HOSTNAME[] = "highfidelity.below92.com";
char DOMAIN_IP[100] = ""; // IP Address will be re-set by lookup on startup
const int DOMAINSERVER_PORT = 40102;
const int MAX_VOXEL_TREE_DEPTH_LEVELS = 5;
const int MAX_VOXEL_TREE_DEPTH_LEVELS = 2;
AgentList agentList(VOXEL_LISTEN_PORT);
in_addr_t localAddress;
unsigned char randomColorValue() {
return MIN_BRIGHTNESS + (rand() % (255 - MIN_BRIGHTNESS));
}
bool randomBoolean() {
return rand() % 2;
}
void *reportAliveToDS(void *args) {
timeval lastSend;
@ -82,14 +74,14 @@ void *reportAliveToDS(void *args) {
}
}
void randomlyFillVoxelTree(int levelsToGo, VoxelNode *currentRootNode) {
int randomlyFillVoxelTree(int levelsToGo, VoxelNode *currentRootNode) {
// randomly generate children for this node
// the first level of the tree (where levelsToGo = MAX_VOXEL_TREE_DEPTH_LEVELS) has all 8
if (levelsToGo > 0) {
int coloredChildren = 0;
int grandChildrenFromNode = 0;
bool createdChildren = false;
unsigned char sumColor[3] = {};
int colorArray[4] = {};
createdChildren = false;
@ -102,51 +94,39 @@ void randomlyFillVoxelTree(int levelsToGo, VoxelNode *currentRootNode) {
currentRootNode->children[i]->octalCode = childOctalCode(currentRootNode->octalCode, i);
// fill out the lower levels of the tree using that node as the root node
randomlyFillVoxelTree(levelsToGo - 1, currentRootNode->children[i]);
grandChildrenFromNode = randomlyFillVoxelTree(levelsToGo - 1, currentRootNode->children[i]);
if (currentRootNode->children[i]) {
if (currentRootNode->children[i]->color[3] == 1) {
for (int c = 0; c < 3; c++) {
sumColor[c] += currentRootNode->children[i]->color[c];
colorArray[c] += currentRootNode->children[i]->color[c];
}
coloredChildren++;
colorArray[3]++;
}
if (grandChildrenFromNode > 0) {
currentRootNode->childMask += (1 << (7 - i));
}
currentRootNode->childMask += (1 << (7 - i));
createdChildren = true;
}
}
// figure out the color value for this node
if (coloredChildren > 4 || !createdChildren) {
// we need at least 4 colored children to have an average color value
// or if we have none we generate random values
for (int c = 0; c < 3; c++) {
if (coloredChildren > 4) {
// set the average color value
currentRootNode->color[c] = sumColor[c] / coloredChildren;
} else {
// we have no children, we're a leaf
// generate a random color value
currentRootNode->color[c] = randomColorValue();
}
}
// set the alpha to 1 to indicate that this isn't transparent
currentRootNode->color[3] = 1;
if (!createdChildren) {
// we didn't create any children for this node, making it a leaf
// give it a random color
currentRootNode->setRandomColor(MIN_BRIGHTNESS);
} else {
// some children, but not enough
// set this node's alpha to 0
currentRootNode->color[3] = 0;
// set the color value for this node
currentRootNode->setColorFromAverageOfChildren(colorArray);
}
return createdChildren;
} else {
// this is a leaf node, just give it a color
currentRootNode->color[0] = randomColorValue();
currentRootNode->color[1] = randomColorValue();
currentRootNode->color[2] = randomColorValue();
currentRootNode->color[3] = 1;
currentRootNode->setRandomColor(MIN_BRIGHTNESS);
return 0;
}
}
@ -196,8 +176,8 @@ int main(int argc, const char * argv[])
// octal codes to the tree nodes that it is creating
randomlyFillVoxelTree(MAX_VOXEL_TREE_DEPTH_LEVELS, randomTree.rootNode);
char *voxelPacket = new char[MAX_VOXEL_PACKET_SIZE];
char *voxelPacketEnd;
unsigned char *voxelPacket = new unsigned char[MAX_VOXEL_PACKET_SIZE];
unsigned char *voxelPacketEnd;
unsigned char *stopOctal;
int packetCount;
@ -218,6 +198,10 @@ int main(int argc, const char * argv[])
voxelPacketEnd = voxelPacket;
stopOctal = randomTree.loadBitstreamBuffer(voxelPacketEnd, stopOctal, randomTree.rootNode);
agentList.getAgentSocket().send((sockaddr *)&agentPublicAddress,
voxelPacket,
voxelPacketEnd - voxelPacket);
printf("Packet %d sent to agent at address %s is %ld bytes\n",
++packetCount,
inet_ntoa(agentPublicAddress.sin_addr),