Various editing bits.

This commit is contained in:
Andrzej Kapolka 2014-12-17 17:56:52 -08:00
parent eb3b66ef93
commit 70a0bd07ab
2 changed files with 191 additions and 461 deletions

View file

@ -119,10 +119,6 @@ Spanner* Spanner::paintHeight(const glm::vec3& position, float radius, float hei
return this;
}
Spanner* Spanner::clearAndFetchHeight(const Box& bounds, SharedObjectPointer& heightfield) {
return this;
}
Spanner* Spanner::setMaterial(const SharedObjectPointer& spanner, const SharedObjectPointer& material,
const QColor& color) {
return this;
@ -1128,7 +1124,8 @@ static QByteArray encodeHeightfieldStack(int offsetX, int offsetY, int width, in
*header++ = width;
*header++ = height;
foreach (const QByteArray& stack, contents) {
quint16 entries = stack.size() / HeightfieldStack::ENTRY_BYTES;
quint16 entries = stack.isEmpty() ? 0 : (stack.size() - HeightfieldStack::POSITION_BYTES) /
HeightfieldStack::ENTRY_BYTES;
inflated.append((const char*)&entries, sizeof(quint16));
inflated.append(stack);
}
@ -1146,14 +1143,19 @@ static QVector<QByteArray> decodeHeightfieldStack(const QByteArray& encoded,
const char* src = inflated.constData() + HEIGHTFIELD_DATA_HEADER_SIZE;
QVector<QByteArray> contents(width * height);
for (QByteArray* dest = contents.data(), *end = dest + contents.size(); dest != end; dest++) {
int bytes = *(const quint16*)src * HeightfieldStack::ENTRY_BYTES;
int entries = *(const quint16*)src;
src += sizeof(quint16);
*dest = QByteArray(src, bytes);
src += bytes;
if (entries > 0) {
int bytes = HeightfieldStack::POSITION_BYTES + entries * HeightfieldStack::ENTRY_BYTES;
*dest = QByteArray(src, bytes);
src += bytes;
}
}
return contents;
}
const int HeightfieldStack::POSITION_BYTES = sizeof(quint16);
// RGBA color, material, Hermite values for X, Y, and Z
const int HeightfieldStack::ENTRY_BYTES = 4 + 1 + 4 * 3;
@ -1824,59 +1826,58 @@ HeightfieldNode* HeightfieldNode::paintMaterial(const glm::vec3& position, const
return newNode;
}
void HeightfieldNode::getRangeAfterHeightPaint(const glm::vec3& position, const glm::vec3& radius,
float height, int& minimum, int& maximum) const {
if (position.x + radius.x < 0.0f || position.z + radius.z < 0.0f ||
position.x - radius.x > 1.0f || position.z - radius.z > 1.0f) {
return;
}
if (!isLeaf()) {
for (int i = 0; i < CHILD_COUNT; i++) {
_children[i]->getRangeAfterHeightPaint(position * glm::vec3(2.0f, 1.0f, 2.0f) -
glm::vec3(i & X_MAXIMUM_FLAG ? 1.0f : 0.0f, 0.0f, i & Y_MAXIMUM_FLAG ? 1.0f : 0.0f),
radius * glm::vec3(2.0f, 1.0f, 2.0f), height, minimum, maximum);
}
return;
}
void HeightfieldNode::getRangeAfterHeightPaint(const glm::vec3& translation, const glm::quat& rotation, const glm::vec3& scale,
const glm::vec3& position, float radius, float height, float& minimum, float& maximum) const {
if (!_height) {
return;
}
int heightWidth = _height->getWidth();
int heightHeight = _height->getContents().size() / heightWidth;
QVector<quint16> contents = _height->getContents();
int innerWidth = heightWidth - HeightfieldHeight::HEIGHT_EXTENSION;
int innerHeight = heightHeight - HeightfieldHeight::HEIGHT_EXTENSION;
int highestX = heightWidth - 1;
int highestZ = heightHeight - 1;
int innerHeightWidth = heightWidth - HeightfieldHeight::HEIGHT_EXTENSION;
int innerHeightHeight = heightHeight - HeightfieldHeight::HEIGHT_EXTENSION;
int highestHeightX = heightWidth - 1;
int highestHeightZ = heightHeight - 1;
glm::vec3 scale((float)innerWidth, 1.0f, (float)innerHeight);
glm::vec3 center = position * scale;
center.x += 1.0f;
center.z += 1.0f;
glm::vec3 inverseScale(innerHeightWidth / scale.x, numeric_limits<quint16>::max() / scale.y, innerHeightHeight / scale.z);
glm::vec3 center = glm::inverse(rotation) * (position - translation) * inverseScale + glm::vec3(1.0f, 0.0f, 1.0f);
glm::vec3 extents = radius * inverseScale;
glm::vec3 extents = radius * scale;
glm::vec3 start = glm::floor(center - extents);
glm::vec3 end = glm::ceil(center + extents);
if (center.x + extents.x < 0.0f || center.z + extents.z < 0.0f ||
center.x - extents.x > highestHeightX || center.z - extents.z > highestHeightZ) {
return;
}
if (!isLeaf()) {
for (int i = 0; i < CHILD_COUNT; i++) {
glm::vec3 nextScale = scale * glm::vec3(0.5f, 1.0f, 0.5f);
_children[i]->getRangeAfterHeightPaint(translation +
rotation * glm::vec3(i & X_MAXIMUM_FLAG ? nextScale.x : 0.0f, 0.0f,
i & Y_MAXIMUM_FLAG ? nextScale.z : 0.0f), rotation,
nextScale, position, radius, height, minimum, maximum);
}
return;
}
glm::vec3 start = glm::clamp(glm::floor(center - extents), glm::vec3(),
glm::vec3((float)highestHeightX, 0.0f, (float)highestHeightZ));
glm::vec3 end = glm::clamp(glm::ceil(center + extents), glm::vec3(),
glm::vec3((float)highestHeightX, 0.0f, (float)highestHeightZ));
// first see if we're going to exceed the range limits
float z = qMax(start.z, 0.0f);
float startX = qMax(start.x, 0.0f), endX = qMin(end.x, (float)highestX);
quint16* lineDest = contents.data() + (int)z * heightWidth + (int)startX;
const quint16* lineDest = _height->getContents().constData() + (int)start.z * heightWidth + (int)start.x;
float squaredRadius = extents.x * extents.x;
float squaredRadiusReciprocal = 1.0f / squaredRadius;
float multiplierZ = extents.x / extents.z;
for (float endZ = qMin(end.z, (float)highestZ); z <= endZ; z += 1.0f) {
quint16* dest = lineDest;
for (float x = startX; x <= endX; x += 1.0f, dest++) {
float relativeHeight = height * numeric_limits<quint16>::max() / scale.y;
for (float z = start.z; z <= end.z; z += 1.0f) {
const quint16* dest = lineDest;
for (float x = start.x; x <= end.x; x += 1.0f, dest++) {
float dx = x - center.x, dz = (z - center.z) * multiplierZ;
float distanceSquared = dx * dx + dz * dz;
if (distanceSquared <= squaredRadius) {
// height falls off towards edges
int value = *dest;
if (value != 0) {
value += height * (squaredRadius - distanceSquared) * squaredRadiusReciprocal;
minimum = qMin(minimum, value);
maximum = qMax(maximum, value);
value += relativeHeight * (squaredRadius - distanceSquared) * squaredRadiusReciprocal;
minimum = qMin(minimum, (float)value);
maximum = qMax(maximum, (float)value);
}
}
}
@ -1884,18 +1885,35 @@ void HeightfieldNode::getRangeAfterHeightPaint(const glm::vec3& position, const
}
}
HeightfieldNode* HeightfieldNode::paintHeight(const glm::vec3& position, const glm::vec3& radius,
float height, float normalizeScale, float normalizeOffset) {
if ((position.x + radius.x < 0.0f || position.z + radius.z < 0.0f || position.x - radius.x > 1.0f ||
position.z - radius.z > 1.0f) && normalizeScale == 1.0f && normalizeOffset == 0.0f) {
HeightfieldNode* HeightfieldNode::paintHeight(const glm::vec3& translation, const glm::quat& rotation, const glm::vec3& scale,
const glm::vec3& position, float radius, float height, float normalizeScale, float normalizeOffset) {
if (!_height) {
return this;
}
int heightWidth = _height->getWidth();
int heightHeight = _height->getContents().size() / heightWidth;
int innerHeightWidth = heightWidth - HeightfieldHeight::HEIGHT_EXTENSION;
int innerHeightHeight = heightHeight - HeightfieldHeight::HEIGHT_EXTENSION;
int highestHeightX = heightWidth - 1;
int highestHeightZ = heightHeight - 1;
glm::vec3 inverseScale(innerHeightWidth / scale.x, numeric_limits<quint16>::max() / scale.y, innerHeightHeight / scale.z);
glm::vec3 center = glm::inverse(rotation) * (position - translation) * inverseScale + glm::vec3(1.0f, 0.0f, 1.0f);
glm::vec3 extents = radius * inverseScale;
bool intersects = (center.x + extents.x >= 0.0f && center.z + extents.z >= 0.0f &&
center.x - extents.x <= highestHeightX && center.z - extents.z <= highestHeightZ);
if (!intersects && normalizeScale == 1.0f && normalizeOffset == 0.0f) {
return this;
}
if (!isLeaf()) {
HeightfieldNode* newNode = this;
for (int i = 0; i < CHILD_COUNT; i++) {
HeightfieldNode* newChild = _children[i]->paintHeight(position * glm::vec3(2.0f, 1.0f, 2.0f) -
glm::vec3(i & X_MAXIMUM_FLAG ? 1.0f : 0.0f, 0.0f, i & Y_MAXIMUM_FLAG ? 1.0f : 0.0f),
radius * glm::vec3(2.0f, 1.0f, 2.0f), height, normalizeScale, normalizeOffset);
glm::vec3 nextScale = scale * glm::vec3(0.5f, 1.0f, 0.5f);
HeightfieldNode* newChild = _children[i]->paintHeight(translation +
rotation * glm::vec3(i & X_MAXIMUM_FLAG ? nextScale.x : 0.0f, 0.0f,
i & Y_MAXIMUM_FLAG ? nextScale.z : 0.0f), rotation,
nextScale, position, radius, height, normalizeScale, normalizeOffset);
if (_children[i] != newChild) {
if (newNode == this) {
newNode = new HeightfieldNode(*this);
@ -1908,355 +1926,69 @@ HeightfieldNode* HeightfieldNode::paintHeight(const glm::vec3& position, const g
}
return newNode;
}
if (!_height) {
return this;
QVector<quint16> newHeightContents = _height->getContents();
int stackWidth = innerHeightWidth + HeightfieldData::SHARED_EDGE;
QVector<QByteArray> newStackContents;
QVector<SharedObjectPointer> newStackMaterials;
if (_stack) {
stackWidth = _stack->getWidth();
newStackContents = _stack->getContents();
newStackMaterials = _stack->getMaterials();
}
int heightWidth = _height->getWidth();
int heightHeight = _height->getContents().size() / heightWidth;
QVector<quint16> contents = _height->getContents();
int innerWidth = heightWidth - HeightfieldHeight::HEIGHT_EXTENSION;
int innerHeight = heightHeight - HeightfieldHeight::HEIGHT_EXTENSION;
int highestX = heightWidth - 1;
int highestZ = heightHeight - 1;
glm::vec3 scale((float)innerWidth, 1.0f, (float)innerHeight);
glm::vec3 center = position * scale;
center.x += 1.0f;
center.z += 1.0f;
glm::vec3 extents = radius * scale;
glm::vec3 start = glm::floor(center - extents);
glm::vec3 end = glm::ceil(center + extents);
int innerStackWidth = stackWidth - HeightfieldData::SHARED_EDGE;
// renormalize if necessary
bool changed = false;
if (normalizeScale != 1.0f || normalizeOffset != 0.0f) {
changed = true;
for (quint16* dest = contents.data(), *end = contents.data() + contents.size(); dest != end; dest++) {
int value = *dest;
if (value != 0) {
*dest = (value + normalizeOffset) * normalizeScale;
}
}
maybeRenormalize(scale, normalizeScale, normalizeOffset, innerStackWidth, newHeightContents, newStackContents);
if (!intersects) {
return new HeightfieldNode(HeightfieldHeightPointer(new HeightfieldHeight(heightWidth, newHeightContents)),
_color, _material, HeightfieldStackPointer(new HeightfieldStack(stackWidth, newStackContents, newStackMaterials)));
}
// now apply the actual change
float z = qMax(start.z, 0.0f);
float startX = qMax(start.x, 0.0f), endX = qMin(end.x, (float)highestX);
quint16* lineDest = contents.data() + (int)z * heightWidth + (int)startX;
glm::vec3 start = glm::clamp(glm::floor(center - extents), glm::vec3(),
glm::vec3((float)highestHeightX, 0.0f, (float)highestHeightZ));
glm::vec3 end = glm::clamp(glm::ceil(center + extents), glm::vec3(),
glm::vec3((float)highestHeightX, 0.0f, (float)highestHeightZ));
quint16* lineDest = newHeightContents.data() + (int)start.z * heightWidth + (int)start.x;
float squaredRadius = extents.x * extents.x;
float squaredRadiusReciprocal = 1.0f / squaredRadius;
float multiplierZ = extents.x / extents.z;
for (float endZ = qMin(end.z, (float)highestZ); z <= endZ; z += 1.0f) {
float relativeHeight = height * numeric_limits<quint16>::max() / scale.y;
for (float z = start.z; z <= end.z; z += 1.0f) {
quint16* dest = lineDest;
for (float x = startX; x <= endX; x += 1.0f, dest++) {
for (float x = start.x; x <= end.x; x += 1.0f, dest++) {
float dx = x - center.x, dz = (z - center.z) * multiplierZ;
float distanceSquared = dx * dx + dz * dz;
if (distanceSquared <= squaredRadius) {
// height falls off towards edges
int value = *dest;
if (value != 0) {
*dest = value + height * (squaredRadius - distanceSquared) * squaredRadiusReciprocal;
changed = true;
*dest = value + relativeHeight * (squaredRadius - distanceSquared) * squaredRadiusReciprocal;
}
}
}
lineDest += heightWidth;
}
if (!changed) {
return this;
}
HeightfieldNode* newNode = new HeightfieldNode(*this);
newNode->setHeight(HeightfieldHeightPointer(new HeightfieldHeight(heightWidth, contents)));
return newNode;
return new HeightfieldNode(HeightfieldHeightPointer(new HeightfieldHeight(heightWidth, newHeightContents)),
_color, _material, HeightfieldStackPointer(new HeightfieldStack(stackWidth, newStackContents, newStackMaterials)));
}
HeightfieldNode* HeightfieldNode::clearAndFetchHeight(const glm::vec3& translation, const glm::quat& rotation,
const glm::vec3& scale, const Box& bounds, SharedObjectPointer& heightfield) {
Box nodeBounds = glm::translate(translation) * glm::mat4_cast(rotation) * Box(glm::vec3(), scale);
if (!nodeBounds.intersects(bounds)) {
return this;
}
if (!isLeaf()) {
HeightfieldNode* newNode = this;
for (int i = 0; i < CHILD_COUNT; i++) {
glm::vec3 nextScale = scale * glm::vec3(0.5f, 1.0f, 0.5f);
HeightfieldNode* newChild = _children[i]->clearAndFetchHeight(translation +
rotation * glm::vec3(i & X_MAXIMUM_FLAG ? nextScale.x : 0.0f, 0.0f,
i & Y_MAXIMUM_FLAG ? nextScale.z : 0.0f), rotation,
nextScale, bounds, heightfield);
if (_children[i] != newChild) {
if (newNode == this) {
newNode = new HeightfieldNode(*this);
}
newNode->setChild(i, HeightfieldNodePointer(newChild));
}
}
if (newNode != this) {
newNode->mergeChildren();
}
return newNode;
}
if (!_height) {
return this;
}
int heightWidth = _height->getWidth();
int heightHeight = _height->getContents().size() / heightWidth;
int innerHeightWidth = heightWidth - HeightfieldHeight::HEIGHT_EXTENSION;
int innerHeightHeight = heightHeight - HeightfieldHeight::HEIGHT_EXTENSION;
float heightIncrementX = scale.x / innerHeightWidth;
float heightIncrementZ = scale.z / innerHeightHeight;
int colorWidth = heightWidth;
int colorHeight = heightHeight;
if (_color) {
colorWidth = _color->getWidth();
colorHeight = _color->getContents().size() / (colorWidth * DataBlock::COLOR_BYTES);
}
int innerColorWidth = colorWidth - HeightfieldData::SHARED_EDGE;
int innerColorHeight = colorHeight - HeightfieldData::SHARED_EDGE;
float colorIncrementX = scale.x / innerColorWidth;
float colorIncrementZ = scale.z / innerColorHeight;
int materialWidth = colorWidth;
int materialHeight = colorHeight;
if (_material) {
materialWidth = _material->getWidth();
materialHeight = _material->getContents().size() / materialWidth;
}
int innerMaterialWidth = materialWidth - HeightfieldData::SHARED_EDGE;
int innerMaterialHeight = materialHeight - HeightfieldData::SHARED_EDGE;
float materialIncrementX = scale.x / innerMaterialWidth;
float materialIncrementZ = scale.z / innerMaterialHeight;
float largestIncrementX = qMax(heightIncrementX, qMax(colorIncrementX, materialIncrementX));
float largestIncrementZ = qMax(heightIncrementZ, qMax(colorIncrementZ, materialIncrementZ));
glm::vec3 minimum(glm::floor(bounds.minimum.x / largestIncrementX) * largestIncrementX, nodeBounds.minimum.y,
glm::floor(bounds.minimum.z / largestIncrementZ) * largestIncrementZ);
glm::vec3 maximum(glm::ceil(bounds.maximum.x / largestIncrementX) * largestIncrementX, nodeBounds.maximum.y,
glm::ceil(bounds.maximum.z / largestIncrementZ) * largestIncrementZ);
Box largestBounds(minimum, maximum);
// enlarge the area to fetch
minimum.x -= largestIncrementX;
maximum.x += largestIncrementX;
minimum.z -= largestIncrementZ;
maximum.z += largestIncrementX;
glm::mat4 baseTransform = glm::mat4_cast(glm::inverse(rotation)) * glm::translate(-translation);
glm::vec3 inverseScale(innerHeightWidth / scale.x, 1.0f, innerHeightHeight / scale.z);
glm::mat4 transform = glm::scale(inverseScale) * baseTransform;
Box transformedBounds = transform * largestBounds;
// make sure there are values to clear
int startX = glm::clamp((int)glm::ceil(transformedBounds.minimum.x) + HeightfieldHeight::HEIGHT_BORDER,
0, heightWidth - 1);
int startZ = glm::clamp((int)glm::ceil(transformedBounds.minimum.z) + HeightfieldHeight::HEIGHT_BORDER,
0, heightHeight - 1);
int endX = glm::clamp((int)glm::floor(transformedBounds.maximum.x) + HeightfieldHeight::HEIGHT_BORDER, 0, heightWidth - 1);
int endZ = glm::clamp((int)glm::floor(transformedBounds.maximum.z) + HeightfieldHeight::HEIGHT_BORDER,
0, heightHeight - 1);
const quint16* src = _height->getContents().constData() + startZ * heightWidth + startX;
for (int z = startZ; z <= endZ; z++, src += heightWidth) {
const quint16* lineSrc = src;
for (int x = startX; x <= endX; x++) {
if (*lineSrc++ != 0) {
goto clearableBreak;
}
}
}
return this;
clearableBreak:
int spannerHeightWidth = (int)((maximum.x - minimum.x) / heightIncrementX) + HeightfieldHeight::HEIGHT_EXTENSION;
int spannerHeightHeight = (int)((maximum.z - minimum.z) / heightIncrementZ) + HeightfieldHeight::HEIGHT_EXTENSION;
int spannerColorWidth = (int)((maximum.x - minimum.x) / colorIncrementX) + HeightfieldData::SHARED_EDGE;
int spannerColorHeight = (int)((maximum.z - minimum.z) / colorIncrementZ) + HeightfieldData::SHARED_EDGE;
int spannerMaterialWidth = (int)((maximum.x - minimum.x) / materialIncrementX) + HeightfieldData::SHARED_EDGE;
int spannerMaterialHeight = (int)((maximum.z - minimum.z) / materialIncrementZ) + HeightfieldData::SHARED_EDGE;
// create heightfield if necessary
Heightfield* spanner = static_cast<Heightfield*>(heightfield.data());
if (!spanner) {
heightfield = spanner = new Heightfield();
spanner->setTranslation(minimum);
spanner->setScale(maximum.x - minimum.x);
spanner->setAspectY((maximum.y - minimum.y) / spanner->getScale());
spanner->setAspectZ((maximum.z - minimum.z) / spanner->getScale());
spanner->setHeight(HeightfieldHeightPointer(new HeightfieldHeight(spannerHeightWidth,
QVector<quint16>(spannerHeightWidth * spannerHeightHeight))));
spanner->setColor(HeightfieldColorPointer(new HeightfieldColor(spannerColorWidth,
QByteArray(spannerColorWidth * spannerColorHeight * DataBlock::COLOR_BYTES, 0xFF))));
spanner->setMaterial(HeightfieldMaterialPointer(new HeightfieldMaterial(spannerMaterialWidth,
QByteArray(spannerMaterialWidth * spannerMaterialHeight, 0), QVector<SharedObjectPointer>())));
}
// fetch the height
glm::vec3 spannerInverseScale((spannerHeightWidth - HeightfieldHeight::HEIGHT_EXTENSION) / spanner->getScale(), 1.0f,
(spannerHeightHeight - HeightfieldHeight::HEIGHT_EXTENSION) / (spanner->getScale() * spanner->getAspectZ()));
glm::mat4 spannerBaseTransform = glm::translate(-spanner->getTranslation());
glm::mat4 spannerTransform = glm::scale(spannerInverseScale) * spannerBaseTransform;
Box spannerTransformedBounds = spannerTransform * nodeBounds;
int spannerStartX = glm::clamp((int)glm::floor(spannerTransformedBounds.minimum.x) + HeightfieldHeight::HEIGHT_BORDER,
0, spannerHeightWidth - 1);
int spannerStartZ = glm::clamp((int)glm::floor(spannerTransformedBounds.minimum.z) + HeightfieldHeight::HEIGHT_BORDER,
0, spannerHeightHeight - 1);
int spannerEndX = glm::clamp((int)glm::ceil(spannerTransformedBounds.maximum.x) + HeightfieldHeight::HEIGHT_BORDER,
0, spannerHeightWidth - 1);
int spannerEndZ = glm::clamp((int)glm::ceil(spannerTransformedBounds.maximum.z) + HeightfieldHeight::HEIGHT_BORDER,
0, spannerHeightHeight - 1);
quint16* dest = spanner->getHeight()->getContents().data() + spannerStartZ * spannerHeightWidth + spannerStartX;
glm::vec3 step = 1.0f / spannerInverseScale;
glm::vec3 initialPosition = glm::inverse(rotation) * (glm::vec3(spannerStartX - HeightfieldHeight::HEIGHT_BORDER, 0,
spannerStartZ - HeightfieldHeight::HEIGHT_BORDER) * step + spanner->getTranslation() - translation) / scale;
glm::vec3 position = initialPosition;
step = glm::inverse(rotation) * step / scale;
float heightScale = numeric_limits<quint16>::max();
for (int z = spannerStartZ; z <= spannerEndZ; z++, dest += spannerHeightWidth, position.z += step.z) {
quint16* lineDest = dest;
position.x = initialPosition.x;
for (int x = spannerStartX; x <= spannerEndX; x++, lineDest++, position.x += step.x) {
float height = getHeight(position) * heightScale;
if (height > *lineDest) {
*lineDest = height;
}
}
}
// and the color
if (_color) {
spannerInverseScale = glm::vec3((spannerColorWidth - HeightfieldData::SHARED_EDGE) / spanner->getScale(), 1.0f,
(spannerColorHeight - HeightfieldData::SHARED_EDGE) / (spanner->getScale() * spanner->getAspectZ()));
spannerTransform = glm::scale(spannerInverseScale) * spannerBaseTransform;
spannerTransformedBounds = spannerTransform * nodeBounds;
spannerStartX = glm::clamp((int)glm::floor(spannerTransformedBounds.minimum.x), 0, spannerColorWidth - 1);
spannerStartZ = glm::clamp((int)glm::floor(spannerTransformedBounds.minimum.z), 0, spannerColorHeight - 1);
spannerEndX = glm::clamp((int)glm::ceil(spannerTransformedBounds.maximum.x), 0, spannerColorWidth - 1);
spannerEndZ = glm::clamp((int)glm::ceil(spannerTransformedBounds.maximum.z), 0, spannerColorHeight - 1);
char* dest = spanner->getColor()->getContents().data() +
(spannerStartZ * spannerColorWidth + spannerStartX) * DataBlock::COLOR_BYTES;
step = 1.0f / spannerInverseScale;
initialPosition = glm::inverse(rotation) * (glm::vec3(spannerStartX, 0, spannerStartZ) * step +
spanner->getTranslation() - translation) / scale;
position = initialPosition;
step = glm::inverse(rotation) * step / scale;
for (int z = spannerStartZ; z <= spannerEndZ; z++, dest += spannerColorWidth * DataBlock::COLOR_BYTES,
position.z += step.z) {
char* lineDest = dest;
position.x = initialPosition.x;
for (int x = spannerStartX; x <= spannerEndX; x++, lineDest += DataBlock::COLOR_BYTES, position.x += step.x) {
QRgb color = getColorAt(position);
if (color != 0) {
lineDest[0] = qRed(color);
lineDest[1] = qGreen(color);
lineDest[2] = qBlue(color);
}
}
}
}
// and the material
if (_material) {
spannerInverseScale = glm::vec3((spannerMaterialWidth - HeightfieldData::SHARED_EDGE) / spanner->getScale(), 1.0f,
(spannerMaterialHeight - HeightfieldData::SHARED_EDGE) / (spanner->getScale() * spanner->getAspectZ()));
spannerTransform = glm::scale(spannerInverseScale) * spannerBaseTransform;
spannerTransformedBounds = spannerTransform * nodeBounds;
spannerStartX = glm::clamp((int)glm::floor(spannerTransformedBounds.minimum.x), 0, spannerMaterialWidth - 1);
spannerStartZ = glm::clamp((int)glm::floor(spannerTransformedBounds.minimum.z), 0, spannerMaterialHeight - 1);
spannerEndX = glm::clamp((int)glm::ceil(spannerTransformedBounds.maximum.x), 0, spannerMaterialWidth - 1);
spannerEndZ = glm::clamp((int)glm::ceil(spannerTransformedBounds.maximum.z), 0, spannerMaterialHeight - 1);
char* dest = spanner->getMaterial()->getContents().data() + spannerStartZ * spannerMaterialWidth + spannerStartX;
step = 1.0f / spannerInverseScale;
initialPosition = glm::inverse(rotation) * (glm::vec3(spannerStartX, 0, spannerStartZ) * step +
spanner->getTranslation() - translation) / scale;
position = initialPosition;
step = glm::inverse(rotation) * step / scale;
QHash<int, int> materialMap;
for (int z = spannerStartZ; z <= spannerEndZ; z++, dest += spannerMaterialWidth, position.z += step.z) {
char* lineDest = dest;
position.x = initialPosition.x;
for (int x = spannerStartX; x <= spannerEndX; x++, lineDest++, position.x += step.x) {
int material = getMaterialAt(position);
if (material != -1) {
if (material != 0) {
int& mapping = materialMap[material];
if (mapping == 0) {
material = mapping = getMaterialIndex(_material->getMaterials().at(material - 1),
spanner->getMaterial()->getMaterials(), spanner->getMaterial()->getContents());
}
}
*lineDest = material;
}
}
}
}
// clear the height
QVector<quint16> newHeightContents = _height->getContents();
dest = newHeightContents.data() + startZ * heightWidth + startX;
for (int z = startZ; z <= endZ; z++, dest += heightWidth) {
memset(dest, 0, (endX - startX + 1) * sizeof(quint16));
}
HeightfieldNode* newNode = new HeightfieldNode();
newNode->setHeight(HeightfieldHeightPointer(new HeightfieldHeight(heightWidth, newHeightContents)));
// and the color
if (_color) {
inverseScale = glm::vec3(innerColorWidth / scale.x, 1.0f, innerColorHeight / scale.z);
transform = glm::scale(inverseScale) * baseTransform;
transformedBounds = transform * largestBounds;
startX = glm::clamp((int)glm::ceil(transformedBounds.minimum.x), 0, colorWidth - 1);
startZ = glm::clamp((int)glm::ceil(transformedBounds.minimum.z), 0, colorHeight - 1);
endX = glm::clamp((int)glm::floor(transformedBounds.maximum.x), 0, colorWidth - 1);
endZ = glm::clamp((int)glm::floor(transformedBounds.maximum.z), 0, colorHeight - 1);
QByteArray newColorContents = _color->getContents();
char* dest = newColorContents.data() + (startZ * colorWidth + startX) * DataBlock::COLOR_BYTES;
for (int z = startZ; z <= endZ; z++, dest += colorWidth * DataBlock::COLOR_BYTES) {
memset(dest, 0, (endX - startX + 1) * DataBlock::COLOR_BYTES);
}
newNode->setColor(HeightfieldColorPointer(new HeightfieldColor(colorWidth, newColorContents)));
}
// and the material
if (_material) {
inverseScale = glm::vec3(innerMaterialWidth / scale.x, 1.0f, innerMaterialHeight / scale.z);
transform = glm::scale(inverseScale) * baseTransform;
transformedBounds = transform * largestBounds;
startX = glm::clamp((int)glm::ceil(transformedBounds.minimum.x), 0, materialWidth - 1);
startZ = glm::clamp((int)glm::ceil(transformedBounds.minimum.z), 0, materialHeight - 1);
endX = glm::clamp((int)glm::floor(transformedBounds.maximum.x), 0, materialWidth - 1);
endZ = glm::clamp((int)glm::floor(transformedBounds.maximum.z), 0, materialHeight - 1);
QByteArray newMaterialContents = _material->getContents();
QVector<SharedObjectPointer> newMaterials = _material->getMaterials();
char* dest = newMaterialContents.data() + startZ * materialWidth + startX;
for (int z = startZ; z <= endZ; z++, dest += materialWidth) {
memset(dest, 0, endX - startX + 1);
}
clearUnusedMaterials(newMaterials, newMaterialContents);
newNode->setMaterial(HeightfieldMaterialPointer(new HeightfieldMaterial(
materialWidth, newMaterialContents, newMaterials)));
}
return newNode;
}
void HeightfieldNode::getRangeAfterMaterialSet(const glm::vec3& translation, const glm::quat& rotation, const glm::vec3& scale,
const Box& spannerBounds, int& minimum, int& maximum) const {
void HeightfieldNode::getRangeAfterEdit(const glm::vec3& translation, const glm::quat& rotation, const glm::vec3& scale,
const Box& editBounds, float& minimum, float& maximum) const {
Box bounds = glm::translate(translation) * glm::mat4_cast(rotation) * Box(glm::vec3(), scale);
if (!bounds.intersects(spannerBounds)) {
if (!bounds.intersects(editBounds)) {
return;
}
if (!isLeaf()) {
for (int i = 0; i < CHILD_COUNT; i++) {
glm::vec3 nextScale = scale * glm::vec3(0.5f, 1.0f, 0.5f);
_children[i]->getRangeAfterMaterialSet(translation +
_children[i]->getRangeAfterEdit(translation +
rotation * glm::vec3(i & X_MAXIMUM_FLAG ? nextScale.x : 0.0f, 0.0f,
i & Y_MAXIMUM_FLAG ? nextScale.z : 0.0f), rotation,
nextScale, spannerBounds, minimum, maximum);
nextScale, editBounds, minimum, maximum);
}
return;
}
@ -2271,13 +2003,13 @@ void HeightfieldNode::getRangeAfterMaterialSet(const glm::vec3& translation, con
glm::mat4 baseInverseTransform = glm::mat4_cast(glm::inverse(rotation)) * glm::translate(-translation);
glm::vec3 inverseScale(innerHeightWidth / scale.x, numeric_limits<quint16>::max() / scale.y, innerHeightHeight / scale.z);
glm::mat4 inverseTransform = glm::translate(glm::vec3(1.0f, 0.0f, 1.0f)) * glm::scale(inverseScale) * baseInverseTransform;
Box transformedBounds = inverseTransform * spannerBounds;
Box transformedBounds = inverseTransform * editBounds;
glm::vec3 start = glm::floor(transformedBounds.minimum);
glm::vec3 end = glm::ceil(transformedBounds.maximum);
minimum = qMin(minimum, (int)start.y);
maximum = qMax(maximum, (int)end.y);
minimum = qMin(minimum, start.y);
maximum = qMax(maximum, end.y);
}
HeightfieldNode* HeightfieldNode::setMaterial(const glm::vec3& translation, const glm::quat& rotation, const glm::vec3& scale,
@ -2319,19 +2051,28 @@ HeightfieldNode* HeightfieldNode::setMaterial(const glm::vec3& translation, cons
int highestHeightZ = heightHeight - 1;
QVector<quint16> newHeightContents = _height->getContents();
// renormalize if necessary
if (normalizeScale != 1.0f || normalizeOffset != 0.0f) {
for (quint16* dest = newHeightContents.data(), *end = newHeightContents.data() + newHeightContents.size();
dest != end; dest++) {
int value = *dest;
if (value != 0) {
*dest = (value + normalizeOffset) * normalizeScale;
}
}
int stackWidth, stackHeight;
QVector<QByteArray> newStackContents;
QVector<SharedObjectPointer> newStackMaterials;
if (_stack) {
stackWidth = _stack->getWidth();
stackHeight = _stack->getContents().size() / stackWidth;
newStackContents = _stack->getContents();
newStackMaterials = _stack->getMaterials();
} else {
stackWidth = innerHeightWidth + HeightfieldData::SHARED_EDGE;
stackHeight = innerHeightHeight + HeightfieldData::SHARED_EDGE;
newStackContents = QVector<QByteArray>(stackWidth * stackHeight);
}
int innerStackWidth = stackWidth - HeightfieldData::SHARED_EDGE;
int innerStackHeight = stackHeight - HeightfieldData::SHARED_EDGE;
// renormalize if necessary
maybeRenormalize(scale, normalizeScale, normalizeOffset, innerStackWidth, newHeightContents, newStackContents);
if (!intersects) {
return new HeightfieldNode(HeightfieldHeightPointer(new HeightfieldHeight(heightWidth, newHeightContents)),
_color, _material, _stack);
_color, _material, HeightfieldStackPointer(new HeightfieldStack(stackWidth, newStackContents, newStackMaterials)));
}
int colorWidth, colorHeight;
@ -2366,23 +2107,6 @@ HeightfieldNode* HeightfieldNode::setMaterial(const glm::vec3& translation, cons
int innerMaterialWidth = materialWidth - HeightfieldData::SHARED_EDGE;
int innerMaterialHeight = materialHeight - HeightfieldData::SHARED_EDGE;
int stackWidth, stackHeight;
QVector<QByteArray> newStackContents;
QVector<SharedObjectPointer> newStackMaterials;
if (_stack) {
stackWidth = _stack->getWidth();
stackHeight = _stack->getContents().size() / stackWidth;
newStackContents = _stack->getContents();
newStackMaterials = _stack->getMaterials();
} else {
stackWidth = innerHeightWidth + HeightfieldData::SHARED_EDGE;
stackHeight = innerHeightHeight + HeightfieldData::SHARED_EDGE;
newStackContents = QVector<QByteArray>(stackWidth * stackHeight);
}
int innerStackWidth = stackWidth - HeightfieldData::SHARED_EDGE;
int innerStackHeight = stackHeight - HeightfieldData::SHARED_EDGE;
glm::mat4 baseInverseTransform = glm::mat4_cast(glm::inverse(rotation)) * glm::translate(-translation);
glm::vec3 inverseScale(innerHeightWidth / scale.x, numeric_limits<quint16>::max() / scale.y, innerHeightHeight / scale.z);
glm::mat4 inverseTransform = glm::translate(glm::vec3(1.0f, 0.0f, 1.0f)) * glm::scale(inverseScale) * baseInverseTransform;
@ -3035,6 +2759,29 @@ int HeightfieldNode::getMaterialAt(const glm::vec3& location) const {
return src[(int)glm::round(relative.z) * width + (int)glm::round(relative.x)];
}
void HeightfieldNode::maybeRenormalize(const glm::vec3& scale, float normalizeScale, float normalizeOffset,
int innerStackWidth, QVector<quint16>& heightContents, QVector<QByteArray>& stackContents) {
if (normalizeScale == 1.0f && normalizeOffset == 0.0f) {
return;
}
for (quint16* dest = heightContents.data(), *end = dest + heightContents.size(); dest != end; dest++) {
int value = *dest;
if (value != 0) {
*dest = (value + normalizeOffset) * normalizeScale;
}
}
if (stackContents.isEmpty()) {
return;
}
int stackOffset = glm::round(scale.y * normalizeOffset * normalizeScale * innerStackWidth /
(numeric_limits<quint16>::max() * scale.x));
for (QByteArray* dest = stackContents.data(), *end = dest + stackContents.size(); dest != end; dest++) {
if (!dest->isEmpty()) {
*(quint16*)dest->data() += stackOffset;
}
}
}
AbstractHeightfieldNodeRenderer::~AbstractHeightfieldNodeRenderer() {
}
@ -3142,60 +2889,30 @@ Spanner* Heightfield::paintMaterial(const glm::vec3& position, float radius,
Spanner* Heightfield::paintHeight(const glm::vec3& position, float radius, float height) {
// first see if we're going to exceed the range limits
glm::vec3 inverseScale(1.0f / getScale(), 1.0f, 1.0f / (getScale() * _aspectZ));
glm::vec3 relativePosition = glm::inverse(getRotation()) * (position - getTranslation()) * inverseScale;
glm::vec3 relativeRadius = radius * inverseScale;
int minimumValue = 1, maximumValue = numeric_limits<quint16>::max();
_root->getRangeAfterHeightPaint(relativePosition, relativeRadius,
height * numeric_limits<quint16>::max() / (getScale() * _aspectY), minimumValue, maximumValue);
// renormalize if necessary
Heightfield* newHeightfield = static_cast<Heightfield*>(clone(true));
float normalizeScale = 1.0f, normalizeOffset = 0.0f;
if (minimumValue < 1 || maximumValue > numeric_limits<quint16>::max()) {
normalizeScale = (numeric_limits<quint16>::max() - 1.0f) / (maximumValue - minimumValue);
normalizeOffset = 1.0f - minimumValue;
newHeightfield->setAspectY(_aspectY / normalizeScale);
newHeightfield->setTranslation(getTranslation() - getRotation() *
glm::vec3(0.0f, normalizeOffset * _aspectY * getScale() / (numeric_limits<quint16>::max() - 1), 0.0f));
}
float minimumValue = 1.0f, maximumValue = numeric_limits<quint16>::max();
_root->getRangeAfterHeightPaint(getTranslation(), getRotation(), glm::vec3(getScale(), getScale() * _aspectY,
getScale() * _aspectZ), position, radius, height, minimumValue, maximumValue);
// now apply the actual change
newHeightfield->setRoot(HeightfieldNodePointer(_root->paintHeight(relativePosition, relativeRadius,
height * numeric_limits<quint16>::max() / (getScale() * newHeightfield->getAspectY()),
// normalize if necessary
float normalizeScale, normalizeOffset;
Heightfield* newHeightfield = prepareEdit(minimumValue, maximumValue, normalizeScale, normalizeOffset);
newHeightfield->setRoot(HeightfieldNodePointer(_root->paintHeight(newHeightfield->getTranslation(), getRotation(),
glm::vec3(getScale(), getScale() * newHeightfield->getAspectY(), getScale() * _aspectZ), position, radius, height,
normalizeScale, normalizeOffset)));
return newHeightfield;
}
Spanner* Heightfield::clearAndFetchHeight(const Box& bounds, SharedObjectPointer& heightfield) {
HeightfieldNode* newRoot = _root->clearAndFetchHeight(getTranslation(), getRotation(),
glm::vec3(getScale(), getScale() * _aspectY, getScale() * _aspectZ), bounds, heightfield);
if (_root == newRoot) {
return this;
}
Heightfield* newHeightfield = static_cast<Heightfield*>(clone(true));
newHeightfield->setRoot(HeightfieldNodePointer(newRoot));
return newHeightfield;
}
Spanner* Heightfield::setMaterial(const SharedObjectPointer& spanner, const SharedObjectPointer& material,
const QColor& color) {
// first see if we're going to exceed the range limits
Spanner* spannerData = static_cast<Spanner*>(spanner.data());
int minimumValue = 1, maximumValue = numeric_limits<quint16>::max();
_root->getRangeAfterMaterialSet(getTranslation(), getRotation(), glm::vec3(getScale(), getScale() * _aspectY,
float minimumValue = 1.0f, maximumValue = numeric_limits<quint16>::max();
_root->getRangeAfterEdit(getTranslation(), getRotation(), glm::vec3(getScale(), getScale() * _aspectY,
getScale() * _aspectZ), spannerData->getBounds(), minimumValue, maximumValue);
// renormalize if necessary
Heightfield* newHeightfield = static_cast<Heightfield*>(clone(true));
float normalizeScale = 1.0f, normalizeOffset = 0.0f;
if (minimumValue < 1 || maximumValue > numeric_limits<quint16>::max()) {
normalizeScale = (numeric_limits<quint16>::max() - 1.0f) / (maximumValue - minimumValue);
normalizeOffset = 1.0f - minimumValue;
newHeightfield->setAspectY(_aspectY / normalizeScale);
newHeightfield->setTranslation(getTranslation() - getRotation() *
glm::vec3(0.0f, normalizeOffset * _aspectY * getScale() / (numeric_limits<quint16>::max() - 1), 0.0f));
}
// normalize if necessary
float normalizeScale, normalizeOffset;
Heightfield* newHeightfield = prepareEdit(minimumValue, maximumValue, normalizeScale, normalizeOffset);
newHeightfield->setRoot(HeightfieldNodePointer(_root->setMaterial(newHeightfield->getTranslation(), getRotation(),
glm::vec3(getScale(), getScale() * newHeightfield->getAspectY(), getScale() * _aspectZ), spannerData,
material, color, normalizeScale, normalizeOffset)));
@ -3637,3 +3354,20 @@ void Heightfield::updateRoot() {
}
setRoot(root);
}
Heightfield* Heightfield::prepareEdit(float minimumValue, float maximumValue, float& normalizeScale, float& normalizeOffset) {
// renormalize if necessary
Heightfield* newHeightfield = static_cast<Heightfield*>(clone(true));
if (minimumValue < 1.0f || maximumValue > numeric_limits<quint16>::max()) {
normalizeScale = (numeric_limits<quint16>::max() - 1.0f) / (maximumValue - minimumValue);
normalizeOffset = 1.0f - minimumValue;
newHeightfield->setAspectY(_aspectY / normalizeScale);
newHeightfield->setTranslation(getTranslation() - getRotation() *
glm::vec3(0.0f, normalizeOffset * _aspectY * getScale() / (numeric_limits<quint16>::max() - 1), 0.0f));
} else {
normalizeScale = 1.0f;
normalizeOffset = 0.0f;
}
return newHeightfield;
}

View file

@ -81,11 +81,6 @@ public:
/// \return the modified spanner, or this if no modification was performed
virtual Spanner* paintHeight(const glm::vec3& position, float radius, float height);
/// Attempts to clear and fetch part of the spanner's height.
/// \param heightfield the heightfield to populate
/// \return the modified spanner, or this if no modification was performed
virtual Spanner* clearAndFetchHeight(const Box& bounds, SharedObjectPointer& heightfield);
/// Attempts to "sculpt" with the supplied spanner.
/// \return the modified spanner, or this if no modification was performed
virtual Spanner* setMaterial(const SharedObjectPointer& spanner, const SharedObjectPointer& material,
@ -478,6 +473,7 @@ typedef QExplicitlySharedDataPointer<HeightfieldStack> HeightfieldStackPointer;
class HeightfieldStack : public HeightfieldData {
public:
static const int POSITION_BYTES;
static const int ENTRY_BYTES;
HeightfieldStack(int width, const QVector<QByteArray>& contents, const QVector<SharedObjectPointer>& materials);
@ -576,18 +572,15 @@ public:
HeightfieldNode* paintMaterial(const glm::vec3& position, const glm::vec3& radius, const SharedObjectPointer& material,
const QColor& color);
void getRangeAfterHeightPaint(const glm::vec3& position, const glm::vec3& radius,
float height, int& minimum, int& maximum) const;
void getRangeAfterHeightPaint(const glm::vec3& translation, const glm::quat& rotation, const glm::vec3& scale,
const glm::vec3& position, float radius, float height, float& minimum, float& maximum) const;
HeightfieldNode* paintHeight(const glm::vec3& position, const glm::vec3& radius, float height,
float normalizeScale, float normalizeOffset);
HeightfieldNode* clearAndFetchHeight(const glm::vec3& translation, const glm::quat& rotation, const glm::vec3& scale,
const Box& bounds, SharedObjectPointer& heightfield);
HeightfieldNode* paintHeight(const glm::vec3& translation, const glm::quat& rotation, const glm::vec3& scale,
const glm::vec3& position, float radius, float height, float normalizeScale, float normalizeOffset);
void getRangeAfterMaterialSet(const glm::vec3& translation, const glm::quat& rotation, const glm::vec3& scale,
const Box& spannerBounds, int& minimum, int& maximum) const;
void getRangeAfterEdit(const glm::vec3& translation, const glm::quat& rotation, const glm::vec3& scale,
const Box& editBounds, float& minimum, float& maximum) const;
HeightfieldNode* setMaterial(const glm::vec3& translation, const glm::quat& rotation, const glm::vec3& scale,
Spanner* spanner, const SharedObjectPointer& material, const QColor& color,
float normalizeScale, float normalizeOffset);
@ -614,6 +607,9 @@ private:
QRgb getColorAt(const glm::vec3& location) const;
int getMaterialAt(const glm::vec3& location) const;
void maybeRenormalize(const glm::vec3& scale, float normalizeScale, float normalizeOffset, int innerStackWidth,
QVector<quint16>& heightContents, QVector<QByteArray>& stackContents);
HeightfieldHeightPointer _height;
HeightfieldColorPointer _color;
HeightfieldMaterialPointer _material;
@ -683,8 +679,6 @@ public:
virtual Spanner* paintHeight(const glm::vec3& position, float radius, float height);
virtual Spanner* clearAndFetchHeight(const Box& bounds, SharedObjectPointer& heightfield);
virtual Spanner* setMaterial(const SharedObjectPointer& spanner, const SharedObjectPointer& material,
const QColor& color);
@ -724,6 +718,8 @@ private slots:
private:
Heightfield* prepareEdit(float minimumValue, float maximumValue, float& normalizeScale, float& normalizeOffset);
float _aspectY;
float _aspectZ;