Merge branch 'master' of https://github.com/highfidelity/hifi into replace_qnetworkaccessmanager

This commit is contained in:
Atlante45 2014-07-03 10:30:39 -07:00
commit 6b88724578
20 changed files with 1120 additions and 76 deletions

View file

@ -10,6 +10,7 @@ add_definitions(-DGLM_FORCE_RADIANS)
if (WIN32)
add_definitions(-DNOMINMAX -D_CRT_SECURE_NO_WARNINGS)
set(CMAKE_PREFIX_PATH ${CMAKE_PREFIX_PATH} "C:\\Program Files\\Microsoft SDKs\\Windows\\v7.1 ")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /MP")
elseif (CMAKE_COMPILER_IS_GNUCC OR CMAKE_COMPILER_IS_GNUCXX)
#SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -Wno-long-long -pedantic")
#SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -Wno-unknown-pragmas")

View file

@ -10,4 +10,7 @@ You can download the Oculus SDK from https://developer.oculusvr.com/ (account cr
You may optionally choose to copy the SDK folders to a location outside the repository (so you can re-use with different checkouts and different projects).
If so our CMake find module expects you to set the ENV variable 'HIFI_LIB_DIR' to a directory containing a subfolder 'oculus' that contains the three folders mentioned above.
2. Clear your build directory, run cmake and build, and you should be all set.
NOTE: For Windows users, you should copy libovr.lib and libovrd.lib from the \oculus\Lib\Win32\VS2010 directory to the \oculus\Lib\Win32\ directory.
2. Clear your build directory, run cmake and build, and you should be all set.

View file

@ -11,18 +11,114 @@
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
// the texture containing our permutations and normals
uniform sampler2D permutationNormalTexture;
// implementation based on Ken Perlin's Improved Noise reference implementation (orig. in Java) at
// http://mrl.nyu.edu/~perlin/noise/
uniform sampler2D permutationTexture;
// the noise frequency
const float frequency = 65536.0; // looks better with current TREE_SCALE, was 1024 when TREE_SCALE was either 512 or 128
const float frequency = 256.0;
//const float frequency = 65536.0; // looks better with current TREE_SCALE, was 1024 when TREE_SCALE was either 512 or 128
// the noise amplitude
const float amplitude = 0.1;
const float amplitude = 0.5;
// the position in model space
varying vec3 position;
// gradient based on gradients from cube edge centers rather than random from texture lookup
float randomEdgeGrad(int hash, vec3 position){
int h = int(mod(hash, 16));
float u = h < 8 ? position.x : position.y;
float v = h < 4 ? position.y : h == 12 || h == 14 ? position.x : position.z;
bool even = mod(hash, 2) == 0;
bool four = mod(hash, 4) == 0;
return (even ? u : -u) + (four ? v : -v);
}
// still have the option to lookup based on texture
float randomTextureGrad(int hash, vec3 position){
float u = float(hash) / 256.0;
vec3 g = -1 + 2 * texture2D(permutationTexture, vec2(u, 0.75)).rgb;
return dot(position, g);
}
float improvedGrad(int hash, vec3 position){
// Untested whether texture lookup is faster than math, uncomment one line or the other to try out
// cube edge gradients versus random spherical gradients sent in texture.
// return randomTextureGrad(hash, position);
return randomEdgeGrad(hash, position);
}
// 5th order fade function to remove 2nd order discontinuties
vec3 fade3(vec3 t){
return t * t * t * (t * (t * 6 - 15) + 10);
}
int permutation(int index){
float u = float(index) / 256.0;
float t = texture2D(permutationTexture, vec2(u, 0.25)).r;
return int(t * 256);
}
float improvedNoise(vec3 position){
int X = int(mod(floor(position.x), 256));
int Y = int(mod(floor(position.y), 256));
int Z = int(mod(floor(position.z), 256));
vec3 fracs = fract(position);
vec3 fades = fade3(fracs);
int A = permutation(X + 0) + Y;
int AA = permutation(A + 0) + Z;
int AB = permutation(A + 1) + Z;
int B = permutation(X + 1) + Y;
int BA = permutation(B + 0) + Z;
int BB = permutation(B + 1) + Z;
float gradAA0 = improvedGrad(permutation(AA + 0), vec3(fracs.x , fracs.y , fracs.z ));
float gradBA0 = improvedGrad(permutation(BA + 0), vec3(fracs.x - 1, fracs.y , fracs.z ));
float gradAB0 = improvedGrad(permutation(AB + 0), vec3(fracs.x , fracs.y - 1, fracs.z ));
float gradBB0 = improvedGrad(permutation(BB + 0), vec3(fracs.x - 1, fracs.y - 1, fracs.z ));
float gradAA1 = improvedGrad(permutation(AA + 1), vec3(fracs.x , fracs.y , fracs.z - 1));
float gradBA1 = improvedGrad(permutation(BA + 1), vec3(fracs.x - 1, fracs.y , fracs.z - 1));
float gradAB1 = improvedGrad(permutation(AB + 1), vec3(fracs.x , fracs.y - 1, fracs.z - 1));
float gradBB1 = improvedGrad(permutation(BB + 1), vec3(fracs.x - 1, fracs.y - 1, fracs.z - 1));
return mix(mix(mix(gradAA0, gradBA0, fades.x), mix(gradAB0, gradBB0, fades.x), fades.y), mix(mix(gradAA1, gradBA1, fades.x), mix(gradAB1, gradBB1, fades.x), fades.y), fades.z);
}
float turbulence(vec3 position, float power){
return (1.0f / power) * improvedNoise(power * position);
}
float turb(vec3 position){
return turbulence(position, 1)
+ turbulence(position, 2),
+ turbulence(position, 4)
+ turbulence(position, 8)
+ turbulence(position, 16)
+ turbulence(position, 32)
+ turbulence(position, 64)
+ turbulence(position, 128)
;
}
void main(void) {
// get noise in range 0 .. 1
float noise = clamp(0.5f + amplitude * turb(position * frequency), 0, 1);
// apply vertex lighting
vec3 color = gl_Color.rgb * vec3(noise, noise, noise);
gl_FragColor = vec4(color, 1);
}
/* old implementation
// returns the gradient at a single corner of our sampling cube
vec3 grad(vec3 location) {
float p1 = texture2D(permutationNormalTexture, vec2(location.x / 256.0, 0.25)).r;
@ -60,7 +156,4 @@ float perlin(vec3 location) {
mix(mix(ffcv, cfcv, params.x), mix(fccv, cccv, params.x), params.y),
params.z);
}
void main(void) {
gl_FragColor = vec4(gl_Color.rgb * (1.0 + amplitude*(perlin(position * frequency) - 1.0)), 1.0);
}
*/

View file

@ -399,18 +399,19 @@ Application::Application(int& argc, char** argv, QElapsedTimer &startup_time) :
}
Application::~Application() {
qInstallMessageHandler(NULL);
saveSettings();
storeSizeAndPosition();
saveScripts();
int DELAY_TIME = 1000;
UserActivityLogger::getInstance().close(DELAY_TIME);
qInstallMessageHandler(NULL);
// make sure we don't call the idle timer any more
delete idleTimer;
_sharedVoxelSystem.changeTree(new VoxelTree);
saveSettings();
delete _voxelImporter;
// let the avatar mixer know we're out
@ -433,8 +434,6 @@ Application::~Application() {
_particleEditSender.terminate();
_modelEditSender.terminate();
storeSizeAndPosition();
saveScripts();
VoxelTreeElement::removeDeleteHook(&_voxels); // we don't need to do this processing on shutdown
Menu::getInstance()->deleteLater();
@ -589,13 +588,17 @@ void Application::paintGL() {
//Note, the camera distance is set in Camera::setMode() so we dont have to do it here.
_myCamera.setTightness(0.0f); // Camera is directly connected to head without smoothing
_myCamera.setTargetPosition(_myAvatar->getUprightHeadPosition());
_myCamera.setTargetRotation(_myAvatar->getWorldAlignedOrientation());
if (OculusManager::isConnected()) {
_myCamera.setTargetRotation(_myAvatar->getWorldAlignedOrientation());
} else {
_myCamera.setTargetRotation(_myAvatar->getHead()->getOrientation());
}
} else if (_myCamera.getMode() == CAMERA_MODE_MIRROR) {
_myCamera.setTightness(0.0f);
_myCamera.setDistance(MIRROR_FULLSCREEN_DISTANCE * _scaleMirror);
_myCamera.setTargetRotation(_myAvatar->getWorldAlignedOrientation() * glm::quat(glm::vec3(0.0f, PI + _rotateMirror, 0.0f)));
_myCamera.setTargetPosition(_myAvatar->getHead()->calculateAverageEyePosition());
_myCamera.setTargetPosition(_myAvatar->getHead()->calculateAverageEyePosition() + glm::vec3(0, _raiseMirror * _myAvatar->getScale(), 0));
}
// Update camera position
@ -633,6 +636,10 @@ void Application::paintGL() {
//If we aren't using the glow shader, we have to clear the color and depth buffer
if (!glowEnabled) {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
} else if (OculusManager::isConnected()) {
//Clear the color buffer to ensure that there isnt any residual color
//Left over from when OR was not connected.
glClear(GL_COLOR_BUFFER_BIT);
}
if (OculusManager::isConnected()) {
@ -644,13 +651,8 @@ void Application::paintGL() {
}
} else if (TV3DManager::isConnected()) {
if (glowEnabled) {
_glowEffect.prepare();
}
TV3DManager::display(whichCamera);
if (glowEnabled) {
_glowEffect.render();
}
} else {
if (glowEnabled) {
@ -1138,7 +1140,7 @@ void Application::mouseMoveEvent(QMouseEvent* event) {
_lastMouseMove = usecTimestampNow();
if (_mouseHidden && showMouse && !OculusManager::isConnected()) {
if (_mouseHidden && showMouse && !OculusManager::isConnected() && !TV3DManager::isConnected()) {
getGLWidget()->setCursor(Qt::ArrowCursor);
_mouseHidden = false;
_seenMouseMove = true;

View file

@ -31,8 +31,6 @@ static const QString IS_TRUNCATED_NAME = "IsTruncated";
static const QString CONTAINER_NAME = "Contents";
static const QString KEY_NAME = "Key";
static const int SCRIPT_PATH = Qt::UserRole;
ScriptItem::ScriptItem(const QString& filename, const QString& fullPath) :
_filename(filename),
_fullPath(fullPath) {

View file

@ -266,7 +266,7 @@ void OculusManager::display(const glm::quat &bodyOrientation, const glm::vec3 &p
ApplicationOverlay& applicationOverlay = Application::getInstance()->getApplicationOverlay();
// We only need to render the overlays to a texture once, then we just render the texture as a quad
// We only need to render the overlays to a texture once, then we just render the texture on the hemisphere
// PrioVR will only work if renderOverlay is called, calibration is connected to Application::renderingOverlay()
applicationOverlay.renderOverlay(true);
const bool displayOverlays = Menu::getInstance()->isOptionChecked(MenuOption::DisplayOculusOverlays);

View file

@ -93,6 +93,18 @@ void TV3DManager::display(Camera& whichCamera) {
int portalW = Application::getInstance()->getGLWidget()->width() / 2;
int portalH = Application::getInstance()->getGLWidget()->height();
const bool glowEnabled = Menu::getInstance()->isOptionChecked(MenuOption::EnableGlowEffect);
ApplicationOverlay& applicationOverlay = Application::getInstance()->getApplicationOverlay();
// We only need to render the overlays to a texture once, then we just render the texture as a quad
// PrioVR will only work if renderOverlay is called, calibration is connected to Application::renderingOverlay()
applicationOverlay.renderOverlay(true);
if (glowEnabled) {
Application::getInstance()->getGlowEffect()->prepare();
}
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glEnable(GL_SCISSOR_TEST);
@ -102,13 +114,21 @@ void TV3DManager::display(Camera& whichCamera) {
glPushMatrix();
{
glMatrixMode(GL_PROJECTION);
glLoadIdentity(); // reset projection matrix
glFrustum(_leftEye.left, _leftEye.right, _leftEye.bottom, _leftEye.top, nearZ, farZ); // set left view frustum
GLfloat p[4][4];
glGetFloatv(GL_PROJECTION_MATRIX, &(p[0][0]));
GLfloat cotangent = p[1][1];
GLfloat fov = atan(1.0f / cotangent);
glTranslatef(_leftEye.modelTranslation, 0.0, 0.0); // translate to cancel parallax
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
Application::getInstance()->displaySide(whichCamera);
applicationOverlay.displayOverlayTexture3DTV(whichCamera, _aspect, fov);
}
glPopMatrix();
glDisable(GL_SCISSOR_TEST);
@ -124,14 +144,25 @@ void TV3DManager::display(Camera& whichCamera) {
glMatrixMode(GL_PROJECTION);
glLoadIdentity(); // reset projection matrix
glFrustum(_rightEye.left, _rightEye.right, _rightEye.bottom, _rightEye.top, nearZ, farZ); // set left view frustum
GLfloat p[4][4];
glGetFloatv(GL_PROJECTION_MATRIX, &(p[0][0]));
GLfloat cotangent = p[1][1];
GLfloat fov = atan(1.0f / cotangent);
glTranslatef(_rightEye.modelTranslation, 0.0, 0.0); // translate to cancel parallax
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
Application::getInstance()->displaySide(whichCamera);
applicationOverlay.displayOverlayTexture3DTV(whichCamera, _aspect, fov);
}
glPopMatrix();
glDisable(GL_SCISSOR_TEST);
// reset the viewport to how we started
glViewport(0, 0, Application::getInstance()->getGLWidget()->width(), Application::getInstance()->getGLWidget()->height());
if (glowEnabled) {
Application::getInstance()->getGlowEffect()->render();
}
}

View file

@ -11,6 +11,8 @@
#include <glm/gtx/norm.hpp>
#include <AngularConstraint.h>
//#include <GeometryUtil.h>
#include <SharedUtil.h>
#include "JointState.h"
@ -18,7 +20,48 @@
JointState::JointState() :
_animationPriority(0.0f),
_fbxJoint(NULL),
_isConstrained(false) {
_constraint(NULL) {
}
JointState::JointState(const JointState& other) : _constraint(NULL) {
_transform = other._transform;
_rotation = other._rotation;
_rotationInParentFrame = other._rotationInParentFrame;
_animationPriority = other._animationPriority;
_fbxJoint = other._fbxJoint;
// DO NOT copy _constraint
}
JointState::~JointState() {
delete _constraint;
_constraint = NULL;
if (_constraint) {
delete _constraint;
_constraint = NULL;
}
}
void JointState::setFBXJoint(const FBXJoint* joint) {
assert(joint != NULL);
_rotationInParentFrame = joint->rotation;
// NOTE: JointState does not own the FBXJoint to which it points.
_fbxJoint = joint;
if (_constraint) {
delete _constraint;
_constraint = NULL;
}
}
void JointState::updateConstraint() {
if (_constraint) {
delete _constraint;
_constraint = NULL;
}
if (glm::distance2(glm::vec3(-PI), _fbxJoint->rotationMin) > EPSILON ||
glm::distance2(glm::vec3(PI), _fbxJoint->rotationMax) > EPSILON ) {
// this joint has rotation constraints
_constraint = AngularConstraint::newAngularConstraint(_fbxJoint->rotationMin, _fbxJoint->rotationMax);
}
}
void JointState::copyState(const JointState& state) {
@ -30,18 +73,7 @@ void JointState::copyState(const JointState& state) {
_visibleTransform = state._visibleTransform;
_visibleRotation = extractRotation(_visibleTransform);
_visibleRotationInParentFrame = state._visibleRotationInParentFrame;
// DO NOT copy _fbxJoint
}
void JointState::setFBXJoint(const FBXJoint* joint) {
assert(joint != NULL);
_rotationInParentFrame = joint->rotation;
// NOTE: JointState does not own the FBXJoint to which it points.
_fbxJoint = joint;
// precompute whether there are any constraints or not
float distanceMin = glm::distance(_fbxJoint->rotationMin, glm::vec3(-PI));
float distanceMax = glm::distance(_fbxJoint->rotationMax, glm::vec3(PI));
_isConstrained = distanceMin > EPSILON || distanceMax > EPSILON;
// DO NOT copy _fbxJoint or _constraint
}
void JointState::computeTransform(const glm::mat4& parentTransform) {
@ -70,11 +102,15 @@ void JointState::restoreRotation(float fraction, float priority) {
}
}
void JointState::setRotationFromBindFrame(const glm::quat& rotation, float priority) {
void JointState::setRotationFromBindFrame(const glm::quat& rotation, float priority, bool constrain) {
// rotation is from bind- to model-frame
assert(_fbxJoint != NULL);
if (priority >= _animationPriority) {
setRotationInParentFrame(_rotationInParentFrame * glm::inverse(_rotation) * rotation * glm::inverse(_fbxJoint->inverseBindRotation));
glm::quat targetRotation = _rotationInParentFrame * glm::inverse(_rotation) * rotation * glm::inverse(_fbxJoint->inverseBindRotation);
if (constrain && _constraint) {
_constraint->softClamp(targetRotation, _rotationInParentFrame, 0.5f);
}
setRotationInParentFrame(targetRotation);
_animationPriority = priority;
}
}
@ -99,7 +135,7 @@ void JointState::applyRotationDelta(const glm::quat& delta, bool constrain, floa
return;
}
_animationPriority = priority;
if (!constrain || !_isConstrained) {
if (!constrain || _constraint == NULL) {
// no constraints
_rotationInParentFrame = _rotationInParentFrame * glm::inverse(_rotation) * delta * _rotation;
_rotation = delta * _rotation;
@ -122,10 +158,12 @@ void JointState::mixRotationDelta(const glm::quat& delta, float mixFactor, float
if (mixFactor > 0.0f && mixFactor <= 1.0f) {
targetRotation = safeMix(targetRotation, _fbxJoint->rotation, mixFactor);
}
if (_constraint) {
_constraint->softClamp(targetRotation, _rotationInParentFrame, 0.5f);
}
setRotationInParentFrame(targetRotation);
}
glm::quat JointState::computeParentRotation() const {
// R = Rp * Rpre * r * Rpost
// Rp = R * (Rpre * r * Rpost)^

View file

@ -18,15 +18,19 @@
#include <FBXReader.h>
class AngularConstraint;
class JointState {
public:
JointState();
void copyState(const JointState& state);
JointState(const JointState& other);
~JointState();
void setFBXJoint(const FBXJoint* joint);
const FBXJoint& getFBXJoint() const { return *_fbxJoint; }
void updateConstraint();
void copyState(const JointState& state);
void computeTransform(const glm::mat4& parentTransform);
@ -64,7 +68,7 @@ public:
/// \param rotation is from bind- to model-frame
/// computes and sets new _rotationInParentFrame
/// NOTE: the JointState's model-frame transform/rotation are NOT updated!
void setRotationFromBindFrame(const glm::quat& rotation, float priority);
void setRotationFromBindFrame(const glm::quat& rotation, float priority, bool constrain = false);
void setRotationInParentFrame(const glm::quat& targetRotation);
const glm::quat& getRotationInParentFrame() const { return _rotationInParentFrame; }
@ -95,7 +99,7 @@ private:
glm::quat _visibleRotationInParentFrame;
const FBXJoint* _fbxJoint; // JointState does NOT own its FBXJoint
bool _isConstrained;
AngularConstraint* _constraint; // JointState owns its AngularConstraint
};
#endif // hifi_JointState_h

View file

@ -561,8 +561,6 @@ bool Model::updateGeometry() {
void Model::setJointStates(QVector<JointState> states) {
_jointStates = states;
// compute an approximate bounding radius for broadphase collision queries
// against PhysicsSimulation boundaries
int numJoints = _jointStates.size();
float radius = 0.0f;
for (int i = 0; i < numJoints; ++i) {
@ -570,6 +568,7 @@ void Model::setJointStates(QVector<JointState> states) {
if (distance > radius) {
radius = distance;
}
_jointStates[i].updateConstraint();
}
for (int i = 0; i < _jointStates.size(); i++) {
_jointStates[i].slaveVisibleTransform();
@ -1159,14 +1158,9 @@ void Model::inverseKinematics(int endIndex, glm::vec3 targetPosition, const glm:
}
glm::quat deltaRotation = rotationBetween(leverArm, targetPosition - pivot);
/* DON'T REMOVE! This code provides the gravitational effect on the IK solution.
* It is commented out for the moment because we're blending the IK solution with
* the default pose which provides similar stability, but we might want to use
* gravity again later.
// We want to mix the shortest rotation with one that will pull the system down with gravity.
// So we compute a simplified center of mass, where each joint has a mass of 1.0 and we don't
// bother averaging it because we only need direction.
// We want to mix the shortest rotation with one that will pull the system down with gravity
// so that limbs don't float unrealistically. To do this we compute a simplified center of mass
// where each joint has unit mass and we don't bother averaging it because we only need direction.
if (j > 1) {
glm::vec3 centerOfMass(0.0f);
@ -1188,11 +1182,9 @@ void Model::inverseKinematics(int endIndex, glm::vec3 targetPosition, const glm:
}
deltaRotation = safeMix(deltaRotation, gravityDelta, mixFactor);
}
*/
// Apply the rotation, but use mixRotationDelta() which blends a bit of the default pose
// at in the process. This provides stability to the IK solution and removes the necessity
// for the gravity effect.
// at in the process. This provides stability to the IK solution for most models.
glm::quat oldNextRotation = nextState.getRotation();
float mixFactor = 0.03f;
nextState.mixRotationDelta(deltaRotation, mixFactor, priority);
@ -1217,7 +1209,7 @@ void Model::inverseKinematics(int endIndex, glm::vec3 targetPosition, const glm:
} while (numIterations < MAX_ITERATION_COUNT && distanceToGo < ACCEPTABLE_IK_ERROR);
// set final rotation of the end joint
endState.setRotationFromBindFrame(targetRotation, priority);
endState.setRotationFromBindFrame(targetRotation, priority, true);
_shapesAreDirty = !_shapes.isEmpty();
}

View file

@ -85,6 +85,33 @@ void TextureCache::setFrameBufferSize(QSize frameBufferSize) {
}
}
// use fixed table of permutations. Could also make ordered list programmatically
// and then shuffle algorithm. For testing, this ensures consistent behavior in each run.
// this list taken from Ken Perlin's Improved Noise reference implementation (orig. in Java) at
// http://mrl.nyu.edu/~perlin/noise/
const int permutation[256] =
{
151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225,
140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148,
247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32,
57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175,
74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122,
60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54,
65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169,
200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64,
52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212,
207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213,
119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9,
129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104,
218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241,
81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157,
184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93,
222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180
};
#define USE_CHRIS_NOISE 1
GLuint TextureCache::getPermutationNormalTextureID() {
if (_permutationNormalTextureID == 0) {
glGenTextures(1, &_permutationNormalTextureID);
@ -92,10 +119,17 @@ GLuint TextureCache::getPermutationNormalTextureID() {
// the first line consists of random permutation offsets
unsigned char data[256 * 2 * 3];
#if (USE_CHRIS_NOISE==1)
for (int i = 0; i < 256; i++) {
data[3*i+0] = permutation[i];
data[3*i+1] = permutation[i];
data[3*i+2] = permutation[i];
#else
for (int i = 0; i < 256 * 3; i++) {
data[i] = rand() % 256;
#endif
}
// the next, random unit normals
for (int i = 256 * 3; i < 256 * 3 * 2; i += 3) {
glm::vec3 randvec = glm::sphericalRand(1.0f);
data[i] = ((randvec.x + 1.0f) / 2.0f) * 255.0f;
@ -105,7 +139,6 @@ GLuint TextureCache::getPermutationNormalTextureID() {
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 256, 2, 0, GL_RGB, GL_UNSIGNED_BYTE, data);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glBindTexture(GL_TEXTURE_2D, 0);
}
return _permutationNormalTextureID;

View file

@ -205,7 +205,7 @@ void ApplicationOverlay::getClickLocation(int &x, int &y) const {
}
}
// Draws the FBO texture for Oculus rift. TODO: Draw a curved texture instead of plane.
// Draws the FBO texture for Oculus rift.
void ApplicationOverlay::displayOverlayTextureOculus(Camera& whichCamera) {
if (_alpha == 0.0f) {
@ -292,6 +292,107 @@ void ApplicationOverlay::displayOverlayTextureOculus(Camera& whichCamera) {
}
// Draws the FBO texture for 3DTV.
void ApplicationOverlay::displayOverlayTexture3DTV(Camera& whichCamera, float aspectRatio, float fov) {
if (_alpha == 0.0f) {
return;
}
Application* application = Application::getInstance();
MyAvatar* myAvatar = application->getAvatar();
const glm::vec3& viewMatrixTranslation = application->getViewMatrixTranslation();
glActiveTexture(GL_TEXTURE0);
glEnable(GL_BLEND);
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_CONSTANT_ALPHA, GL_ONE);
glBindTexture(GL_TEXTURE_2D, getFramebufferObject()->texture());
glEnable(GL_DEPTH_TEST);
glDisable(GL_LIGHTING);
glEnable(GL_TEXTURE_2D);
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
// Transform to world space
glm::quat rotation = whichCamera.getRotation();
glm::vec3 axis2 = glm::axis(rotation);
glRotatef(-glm::degrees(glm::angle(rotation)), axis2.x, axis2.y, axis2.z);
glTranslatef(viewMatrixTranslation.x, viewMatrixTranslation.y, viewMatrixTranslation.z);
// Translate to the front of the camera
glm::vec3 pos = whichCamera.getPosition();
glm::quat rot = myAvatar->getOrientation();
glm::vec3 axis = glm::axis(rot);
glTranslatef(pos.x, pos.y, pos.z);
glRotatef(glm::degrees(glm::angle(rot)), axis.x, axis.y, axis.z);
glColor4f(1.0f, 1.0f, 1.0f, _alpha);
//Render
// fov -= RADIANS_PER_DEGREE * 2.5f; //reduce by 5 degrees so it fits in the view
const GLfloat distance = 1.0f;
const GLfloat halfQuadHeight = distance * tan(fov);
const GLfloat halfQuadWidth = halfQuadHeight * aspectRatio;
const GLfloat quadWidth = halfQuadWidth * 2.0f;
const GLfloat quadHeight = halfQuadHeight * 2.0f;
GLfloat x = -halfQuadWidth;
GLfloat y = -halfQuadHeight;
glDisable(GL_DEPTH_TEST);
glBegin(GL_QUADS);
glTexCoord2f(0.0f, 1.0f); glVertex3f(x, y + quadHeight, -distance);
glTexCoord2f(1.0f, 1.0f); glVertex3f(x + quadWidth, y + quadHeight, -distance);
glTexCoord2f(1.0f, 0.0f); glVertex3f(x + quadWidth, y, -distance);
glTexCoord2f(0.0f, 0.0f); glVertex3f(x, y, -distance);
glEnd();
if (_crosshairTexture == 0) {
_crosshairTexture = Application::getInstance()->getGLWidget()->bindTexture(QImage(Application::resourcesPath() + "images/sixense-reticle.png"));
}
//draw the mouse pointer
glBindTexture(GL_TEXTURE_2D, _crosshairTexture);
const float reticleSize = 40.0f / application->getGLWidget()->width() * quadWidth;
x -= reticleSize / 2.0f;
y += reticleSize / 2.0f;
const float mouseX = (application->getMouseX() / (float)application->getGLWidget()->width()) * quadWidth;
const float mouseY = (1.0 - (application->getMouseY() / (float)application->getGLWidget()->height())) * quadHeight;
glBegin(GL_QUADS);
glColor3f(RETICLE_COLOR[0], RETICLE_COLOR[1], RETICLE_COLOR[2]);
glTexCoord2d(0.0f, 0.0f); glVertex3f(x + mouseX, y + mouseY, -distance);
glTexCoord2d(1.0f, 0.0f); glVertex3f(x + mouseX + reticleSize, y + mouseY, -distance);
glTexCoord2d(1.0f, 1.0f); glVertex3f(x + mouseX + reticleSize, y + mouseY - reticleSize, -distance);
glTexCoord2d(0.0f, 1.0f); glVertex3f(x + mouseX, y + mouseY - reticleSize, -distance);
glEnd();
glEnable(GL_DEPTH_TEST);
glPopMatrix();
glDepthMask(GL_TRUE);
glBindTexture(GL_TEXTURE_2D, 0);
glDisable(GL_TEXTURE_2D);
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_CONSTANT_ALPHA, GL_ONE);
glEnable(GL_LIGHTING);
glColor4f(1.0f, 1.0f, 1.0f, 1.0f);
}
//Renders optional pointers
void ApplicationOverlay::renderPointers() {
Application* application = Application::getInstance();

View file

@ -29,6 +29,7 @@ public:
void renderOverlay(bool renderToTexture = false);
void displayOverlayTexture();
void displayOverlayTextureOculus(Camera& whichCamera);
void displayOverlayTexture3DTV(Camera& whichCamera, float aspectRatio, float fov);
void computeOculusPickRay(float x, float y, glm::vec3& direction) const;
void getClickLocation(int &x, int &y) const;

View file

@ -83,17 +83,10 @@ void UserActivityLogger::close(int delayTime) {
// In order to get the end of the session, we need to give the account manager enough time to send the packet.
QEventLoop loop;
// Here we connect the callbacks to stop the event loop
JSONCallbackParameters params;
params.jsonCallbackReceiver = &loop;
params.errorCallbackReceiver = &loop;
params.jsonCallbackMethod = "quit";
params.errorCallbackMethod = "quit";
// In case something goes wrong, we also setup a timer so that the delai is not greater than delayTime
QTimer timer;
connect(&timer, &QTimer::timeout, &loop, &QEventLoop::quit);
// Now we can log it
logAction(ACTION_NAME, QJsonObject(), params);
logAction(ACTION_NAME, QJsonObject());
timer.start(delayTime);
loop.exec();
}

View file

@ -183,7 +183,6 @@ void ParticleCollisionSystem::updateCollisionWithParticles(Particle* particleA)
// MIN_VALID_SPEED is obtained by computing speed gained at one gravity after the shortest expected frame
const float MIN_EXPECTED_FRAME_PERIOD = 0.0167f; // 1/60th of a second
const float HALTING_SPEED = 9.8 * MIN_EXPECTED_FRAME_PERIOD / (float)(TREE_SCALE);
void ParticleCollisionSystem::updateCollisionWithAvatars(Particle* particle) {
// particles that are in hand, don't collide with avatars

View file

@ -0,0 +1,201 @@
//
// AngularConstraint.cpp
// interface/src/renderer
//
// Created by Andrew Meadows on 2014.05.30
// Copyright 2014 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include <glm/gtx/norm.hpp>
#include "AngularConstraint.h"
#include "SharedUtil.h"
// helper function
/// \param angle radian angle to be clamped within angleMin and angleMax
/// \param angleMin minimum value
/// \param angleMax maximum value
/// \return value between minAngle and maxAngle closest to angle
float clampAngle(float angle, float angleMin, float angleMax) {
float minDistance = angle - angleMin;
float maxDistance = angle - angleMax;
if (maxDistance > 0.0f) {
minDistance = glm::min(minDistance, angleMin + TWO_PI - angle);
angle = (minDistance < maxDistance) ? angleMin : angleMax;
} else if (minDistance < 0.0f) {
maxDistance = glm::max(maxDistance, angleMax - TWO_PI - angle);
angle = (minDistance > maxDistance) ? angleMin : angleMax;
}
return angle;
}
// static
AngularConstraint* AngularConstraint::newAngularConstraint(const glm::vec3& minAngles, const glm::vec3& maxAngles) {
float minDistance2 = glm::distance2(minAngles, glm::vec3(-PI, -PI, -PI));
float maxDistance2 = glm::distance2(maxAngles, glm::vec3(PI, PI, PI));
if (minDistance2 < EPSILON && maxDistance2 < EPSILON) {
// no constraint
return NULL;
}
// count the zero length elements
glm::vec3 rangeAngles = maxAngles - minAngles;
int pivotIndex = -1;
int numZeroes = 0;
for (int i = 0; i < 3; ++i) {
if (rangeAngles[i] < EPSILON) {
++numZeroes;
} else {
pivotIndex = i;
}
}
if (numZeroes == 2) {
// this is a hinge
int forwardIndex = (pivotIndex + 1) % 3;
glm::vec3 forwardAxis(0.0f);
forwardAxis[forwardIndex] = 1.0f;
glm::vec3 rotationAxis(0.0f);
rotationAxis[pivotIndex] = 1.0f;
return new HingeConstraint(forwardAxis, rotationAxis, minAngles[pivotIndex], maxAngles[pivotIndex]);
} else if (numZeroes == 0) {
// approximate the angular limits with a cone roller
// we assume the roll is about z
glm::vec3 middleAngles = 0.5f * (maxAngles + minAngles);
glm::quat yaw = glm::angleAxis(middleAngles[1], glm::vec3(0.0f, 1.0f, 0.0f));
glm::quat pitch = glm::angleAxis(middleAngles[0], glm::vec3(1.0f, 0.0f, 0.0f));
glm::vec3 coneAxis = pitch * yaw * glm::vec3(0.0f, 0.0f, 1.0f);
// the coneAngle is half the average range of the two non-roll rotations
glm::vec3 range = maxAngles - minAngles;
float coneAngle = 0.25f * (range[0] + range[1]);
return new ConeRollerConstraint(coneAngle, coneAxis, minAngles.z, maxAngles.z);
}
return NULL;
}
bool AngularConstraint::softClamp(glm::quat& targetRotation, const glm::quat& oldRotation, float mixFraction) {
glm::quat clampedTarget = targetRotation;
bool clamped = clamp(clampedTarget);
if (clamped) {
// check if oldRotation is also clamped
glm::quat clampedOld = oldRotation;
bool clamped2 = clamp(clampedOld);
if (clamped2) {
// oldRotation is already beyond the constraint
// we clamp again midway between targetRotation and clamped oldPosition
clampedTarget = glm::shortMix(clampedOld, targetRotation, mixFraction);
// and then clamp that
clamp(clampedTarget);
}
// finally we mix targetRotation with the clampedTarget
targetRotation = glm::shortMix(clampedTarget, targetRotation, mixFraction);
}
return clamped;
}
HingeConstraint::HingeConstraint(const glm::vec3& forwardAxis, const glm::vec3& rotationAxis, float minAngle, float maxAngle)
: _minAngle(minAngle), _maxAngle(maxAngle) {
assert(_minAngle < _maxAngle);
// we accept the rotationAxis direction
assert(glm::length(rotationAxis) > EPSILON);
_rotationAxis = glm::normalize(rotationAxis);
// but we compute the final _forwardAxis
glm::vec3 otherAxis = glm::cross(_rotationAxis, forwardAxis);
assert(glm::length(otherAxis) > EPSILON);
_forwardAxis = glm::normalize(glm::cross(otherAxis, _rotationAxis));
}
// virtual
bool HingeConstraint::clamp(glm::quat& rotation) const {
glm::vec3 forward = rotation * _forwardAxis;
forward -= glm::dot(forward, _rotationAxis) * _rotationAxis;
float length = glm::length(forward);
if (length < EPSILON) {
// infinite number of solutions ==> choose the middle of the contrained range
rotation = glm::angleAxis(0.5f * (_minAngle + _maxAngle), _rotationAxis);
return true;
}
forward /= length;
float sign = (glm::dot(glm::cross(_forwardAxis, forward), _rotationAxis) > 0.0f ? 1.0f : -1.0f);
//float angle = sign * acos(glm::dot(forward, _forwardAxis) / length);
float angle = sign * acos(glm::dot(forward, _forwardAxis));
glm::quat newRotation = glm::angleAxis(clampAngle(angle, _minAngle, _maxAngle), _rotationAxis);
if (fabsf(1.0f - glm::dot(newRotation, rotation)) > EPSILON * EPSILON) {
rotation = newRotation;
return true;
}
return false;
}
bool HingeConstraint::softClamp(glm::quat& targetRotation, const glm::quat& oldRotation, float mixFraction) {
// the hinge works best without a soft clamp
return clamp(targetRotation);
}
ConeRollerConstraint::ConeRollerConstraint(float coneAngle, const glm::vec3& coneAxis, float minRoll, float maxRoll)
: _coneAngle(coneAngle), _minRoll(minRoll), _maxRoll(maxRoll) {
assert(_maxRoll >= _minRoll);
float axisLength = glm::length(coneAxis);
assert(axisLength > EPSILON);
_coneAxis = coneAxis / axisLength;
}
// virtual
bool ConeRollerConstraint::clamp(glm::quat& rotation) const {
bool applied = false;
glm::vec3 rotatedAxis = rotation * _coneAxis;
glm::vec3 perpAxis = glm::cross(rotatedAxis, _coneAxis);
float perpAxisLength = glm::length(perpAxis);
if (perpAxisLength > EPSILON) {
perpAxis /= perpAxisLength;
// enforce the cone
float angle = acosf(glm::dot(rotatedAxis, _coneAxis));
if (angle > _coneAngle) {
rotation = glm::angleAxis(angle - _coneAngle, perpAxis) * rotation;
rotatedAxis = rotation * _coneAxis;
applied = true;
}
} else {
// the rotation is 100% roll
// there is no obvious perp axis so we must pick one
perpAxis = rotatedAxis;
// find the first non-zero element:
float iValue = 0.0f;
int i = 0;
for (i = 0; i < 3; ++i) {
if (fabsf(perpAxis[i]) > EPSILON) {
iValue = perpAxis[i];
break;
}
}
assert(i != 3);
// swap or negate the next element
int j = (i + 1) % 3;
float jValue = perpAxis[j];
if (fabsf(jValue - iValue) > EPSILON) {
perpAxis[i] = jValue;
perpAxis[j] = iValue;
} else {
perpAxis[i] = -iValue;
}
perpAxis = glm::cross(perpAxis, rotatedAxis);
perpAxisLength = glm::length(perpAxis);
assert(perpAxisLength > EPSILON);
perpAxis /= perpAxisLength;
}
// measure the roll
// NOTE: perpAxis is perpendicular to both _coneAxis and rotatedConeAxis, so we can
// rotate it again and we'll end up with an something that has only been rolled.
glm::vec3 rolledPerpAxis = rotation * perpAxis;
float sign = glm::dot(rotatedAxis, glm::cross(perpAxis, rolledPerpAxis)) > 0.0f ? 1.0f : -1.0f;
float roll = sign * angleBetween(rolledPerpAxis, perpAxis);
if (roll < _minRoll || roll > _maxRoll) {
float clampedRoll = clampAngle(roll, _minRoll, _maxRoll);
rotation = glm::normalize(glm::angleAxis(clampedRoll - roll, rotatedAxis) * rotation);
applied = true;
}
return applied;
}

View file

@ -0,0 +1,55 @@
//
// AngularConstraint.h
// interface/src/renderer
//
// Created by Andrew Meadows on 2014.05.30
// Copyright 2013 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#ifndef hifi_AngularConstraint_h
#define hifi_AngularConstraint_h
#include <glm/glm.hpp>
class AngularConstraint {
public:
/// \param minAngles minumum euler angles for the constraint
/// \param maxAngles minumum euler angles for the constraint
/// \return pointer to new AngularConstraint of the right type or NULL if none could be made
static AngularConstraint* newAngularConstraint(const glm::vec3& minAngles, const glm::vec3& maxAngles);
AngularConstraint() {}
virtual ~AngularConstraint() {}
virtual bool clamp(glm::quat& rotation) const = 0;
virtual bool softClamp(glm::quat& targetRotation, const glm::quat& oldRotation, float mixFraction);
protected:
};
class HingeConstraint : public AngularConstraint {
public:
HingeConstraint(const glm::vec3& forwardAxis, const glm::vec3& rotationAxis, float minAngle, float maxAngle);
virtual bool clamp(glm::quat& rotation) const;
virtual bool softClamp(glm::quat& targetRotation, const glm::quat& oldRotation, float mixFraction);
protected:
glm::vec3 _forwardAxis;
glm::vec3 _rotationAxis;
float _minAngle;
float _maxAngle;
};
class ConeRollerConstraint : public AngularConstraint {
public:
ConeRollerConstraint(float coneAngle, const glm::vec3& coneAxis, float minRoll, float maxRoll);
virtual bool clamp(glm::quat& rotation) const;
private:
float _coneAngle;
glm::vec3 _coneAxis;
float _minRoll;
float _maxRoll;
};
#endif // hifi_AngularConstraint_h

View file

@ -0,0 +1,476 @@
//
// AngularConstraintTests.cpp
// tests/physics/src
//
// Created by Andrew Meadows on 2014.05.30
// Copyright 2014 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include <iostream>
#include <AngularConstraint.h>
#include <SharedUtil.h>
#include <StreamUtils.h>
#include "AngularConstraintTests.h"
void AngularConstraintTests::testHingeConstraint() {
float minAngle = -PI;
float maxAngle = 0.0f;
glm::vec3 yAxis(0.0f, 1.0f, 0.0f);
glm::vec3 minAngles(0.0f, -PI, 0.0f);
glm::vec3 maxAngles(0.0f, 0.0f, 0.0f);
AngularConstraint* c = AngularConstraint::newAngularConstraint(minAngles, maxAngles);
if (!c) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: newAngularConstraint() should make a constraint" << std::endl;
}
{ // test in middle of constraint
float angle = 0.5f * (minAngle + maxAngle);
glm::quat rotation = glm::angleAxis(angle, yAxis);
glm::quat newRotation = rotation;
bool constrained = c->clamp(newRotation);
if (constrained) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: HingeConstraint should not clamp()" << std::endl;
}
if (rotation != newRotation) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: HingeConstraint should not change rotation" << std::endl;
}
}
{ // test just inside min edge of constraint
float angle = minAngle + 10.f * EPSILON;
glm::quat rotation = glm::angleAxis(angle, yAxis);
glm::quat newRotation = rotation;
bool constrained = c->clamp(newRotation);
if (constrained) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: HingeConstraint should not clamp()" << std::endl;
}
if (rotation != newRotation) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: HingeConstraint should not change rotation" << std::endl;
}
}
{ // test just inside max edge of constraint
float angle = maxAngle - 10.f * EPSILON;
glm::quat rotation = glm::angleAxis(angle, yAxis);
glm::quat newRotation = rotation;
bool constrained = c->clamp(newRotation);
if (constrained) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: HingeConstraint should not clamp()" << std::endl;
}
if (rotation != newRotation) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: HingeConstraint should not change rotation" << std::endl;
}
}
{ // test just outside min edge of constraint
float angle = minAngle - 0.001f;
glm::quat rotation = glm::angleAxis(angle, yAxis);
glm::quat newRotation = rotation;
bool constrained = c->clamp(newRotation);
if (!constrained) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: HingeConstraint should clamp()" << std::endl;
}
if (rotation == newRotation) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: HingeConstraint should change rotation" << std::endl;
}
glm::quat expectedRotation = glm::angleAxis(minAngle, yAxis);
float qDot = glm::dot(expectedRotation, newRotation);
if (fabsf(qDot - 1.0f) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: HingeConstraint rotation = " << newRotation << " but expected " << expectedRotation << std::endl;
}
}
{ // test just outside max edge of constraint
float angle = maxAngle + 0.001f;
glm::quat rotation = glm::angleAxis(angle, yAxis);
glm::quat newRotation = rotation;
bool constrained = c->clamp(newRotation);
if (!constrained) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: HingeConstraint should clamp()" << std::endl;
}
if (rotation == newRotation) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: HingeConstraint should change rotation" << std::endl;
}
glm::quat expectedRotation = glm::angleAxis(maxAngle, yAxis);
float qDot = glm::dot(expectedRotation, newRotation);
if (fabsf(qDot - 1.0f) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: HingeConstraint rotation = " << newRotation << " but expected " << expectedRotation << std::endl;
}
}
{ // test far outside min edge of constraint (wraps around to max)
float angle = minAngle - 0.75f * (TWO_PI - (maxAngle - minAngle));
glm::quat rotation = glm::angleAxis(angle, yAxis);
glm::quat newRotation = rotation;
bool constrained = c->clamp(newRotation);
if (!constrained) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: HingeConstraint should clamp()" << std::endl;
}
if (rotation == newRotation) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: HingeConstraint should change rotation" << std::endl;
}
glm::quat expectedRotation = glm::angleAxis(maxAngle, yAxis);
float qDot = glm::dot(expectedRotation, newRotation);
if (fabsf(qDot - 1.0f) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: HingeConstraint rotation = " << newRotation << " but expected " << expectedRotation << std::endl;
}
}
{ // test far outside max edge of constraint (wraps around to min)
float angle = maxAngle + 0.75f * (TWO_PI - (maxAngle - minAngle));
glm::quat rotation = glm::angleAxis(angle, yAxis);
glm::quat newRotation = rotation;
bool constrained = c->clamp(newRotation);
if (!constrained) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: HingeConstraint should clamp()" << std::endl;
}
if (rotation == newRotation) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: HingeConstraint should change rotation" << std::endl;
}
glm::quat expectedRotation = glm::angleAxis(minAngle, yAxis);
float qDot = glm::dot(expectedRotation, newRotation);
if (fabsf(qDot - 1.0f) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: HingeConstraint rotation = " << newRotation << " but expected " << expectedRotation << std::endl;
}
}
float ACCEPTABLE_ERROR = 1.0e-4f;
{ // test nearby but off-axis rotation
float offAngle = 0.1f;
glm::quat offRotation(offAngle, glm::vec3(1.0f, 0.0f, 0.0f));
float angle = 0.5f * (maxAngle + minAngle);
glm::quat rotation = offRotation * glm::angleAxis(angle, yAxis);
glm::quat newRotation = rotation;
bool constrained = c->clamp(newRotation);
if (!constrained) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: HingeConstraint should clamp()" << std::endl;
}
if (rotation == newRotation) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: HingeConstraint should change rotation" << std::endl;
}
glm::quat expectedRotation = glm::angleAxis(angle, yAxis);
float qDot = glm::dot(expectedRotation, newRotation);
if (fabsf(qDot - 1.0f) > ACCEPTABLE_ERROR) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: HingeConstraint rotation = " << newRotation << " but expected " << expectedRotation << std::endl;
}
}
{ // test way off rotation > maxAngle
float offAngle = 0.5f;
glm::quat offRotation = glm::angleAxis(offAngle, glm::vec3(1.0f, 0.0f, 0.0f));
float angle = maxAngle + 0.2f * (TWO_PI - (maxAngle - minAngle));
glm::quat rotation = glm::angleAxis(angle, yAxis);
rotation = offRotation * glm::angleAxis(angle, yAxis);
glm::quat newRotation = rotation;
bool constrained = c->clamp(newRotation);
if (!constrained) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: HingeConstraint should clamp()" << std::endl;
}
if (rotation == newRotation) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: HingeConstraint should change rotation" << std::endl;
}
glm::quat expectedRotation = glm::angleAxis(maxAngle, yAxis);
float qDot = glm::dot(expectedRotation, newRotation);
if (fabsf(qDot - 1.0f) > ACCEPTABLE_ERROR) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: HingeConstraint rotation = " << newRotation << " but expected " << expectedRotation << std::endl;
}
}
{ // test way off rotation < minAngle
float offAngle = 0.5f;
glm::quat offRotation = glm::angleAxis(offAngle, glm::vec3(1.0f, 0.0f, 0.0f));
float angle = minAngle - 0.2f * (TWO_PI - (maxAngle - minAngle));
glm::quat rotation = glm::angleAxis(angle, yAxis);
rotation = offRotation * glm::angleAxis(angle, yAxis);
glm::quat newRotation = rotation;
bool constrained = c->clamp(newRotation);
if (!constrained) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: HingeConstraint should clamp()" << std::endl;
}
if (rotation == newRotation) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: HingeConstraint should change rotation" << std::endl;
}
glm::quat expectedRotation = glm::angleAxis(minAngle, yAxis);
float qDot = glm::dot(expectedRotation, newRotation);
if (fabsf(qDot - 1.0f) > ACCEPTABLE_ERROR) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: HingeConstraint rotation = " << newRotation << " but expected " << expectedRotation << std::endl;
}
}
{ // test way off rotation > maxAngle with wrap over to minAngle
float offAngle = -0.5f;
glm::quat offRotation = glm::angleAxis(offAngle, glm::vec3(1.0f, 0.0f, 0.0f));
float angle = maxAngle + 0.6f * (TWO_PI - (maxAngle - minAngle));
glm::quat rotation = glm::angleAxis(angle, yAxis);
rotation = offRotation * glm::angleAxis(angle, yAxis);
glm::quat newRotation = rotation;
bool constrained = c->clamp(newRotation);
if (!constrained) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: HingeConstraint should clamp()" << std::endl;
}
if (rotation == newRotation) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: HingeConstraint should change rotation" << std::endl;
}
glm::quat expectedRotation = glm::angleAxis(minAngle, yAxis);
float qDot = glm::dot(expectedRotation, newRotation);
if (fabsf(qDot - 1.0f) > ACCEPTABLE_ERROR) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: HingeConstraint rotation = " << newRotation << " but expected " << expectedRotation << std::endl;
}
}
{ // test way off rotation < minAngle with wrap over to maxAngle
float offAngle = -0.6f;
glm::quat offRotation = glm::angleAxis(offAngle, glm::vec3(1.0f, 0.0f, 0.0f));
float angle = minAngle - 0.7f * (TWO_PI - (maxAngle - minAngle));
glm::quat rotation = glm::angleAxis(angle, yAxis);
rotation = offRotation * glm::angleAxis(angle, yAxis);
glm::quat newRotation = rotation;
bool constrained = c->clamp(newRotation);
if (!constrained) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: HingeConstraint should clamp()" << std::endl;
}
if (rotation == newRotation) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: HingeConstraint should change rotation" << std::endl;
}
glm::quat expectedRotation = glm::angleAxis(maxAngle, yAxis);
float qDot = glm::dot(expectedRotation, newRotation);
if (fabsf(qDot - 1.0f) > ACCEPTABLE_ERROR) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: HingeConstraint rotation = " << newRotation << " but expected " << expectedRotation << std::endl;
}
}
delete c;
}
void AngularConstraintTests::testConeRollerConstraint() {
float minAngleX = -PI / 5.0f;
float minAngleY = -PI / 5.0f;
float minAngleZ = -PI / 8.0f;
float maxAngleX = PI / 4.0f;
float maxAngleY = PI / 3.0f;
float maxAngleZ = PI / 4.0f;
glm::vec3 minAngles(minAngleX, minAngleY, minAngleZ);
glm::vec3 maxAngles(maxAngleX, maxAngleY, maxAngleZ);
AngularConstraint* c = AngularConstraint::newAngularConstraint(minAngles, maxAngles);
float expectedConeAngle = 0.25 * (maxAngleX - minAngleX + maxAngleY - minAngleY);
glm::vec3 middleAngles = 0.5f * (maxAngles + minAngles);
glm::quat yaw = glm::angleAxis(middleAngles[1], glm::vec3(0.0f, 1.0f, 0.0f));
glm::quat pitch = glm::angleAxis(middleAngles[0], glm::vec3(1.0f, 0.0f, 0.0f));
glm::vec3 expectedConeAxis = pitch * yaw * glm::vec3(0.0f, 0.0f, 1.0f);
glm::vec3 xAxis(1.0f, 0.0f, 0.0f);
glm::vec3 perpAxis = glm::normalize(xAxis - glm::dot(xAxis, expectedConeAxis) * expectedConeAxis);
if (!c) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: newAngularConstraint() should make a constraint" << std::endl;
}
{ // test in middle of constraint
glm::vec3 angles(PI/20.0f, 0.0f, PI/10.0f);
glm::quat rotation(angles);
glm::quat newRotation = rotation;
bool constrained = c->clamp(newRotation);
if (constrained) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: ConeRollerConstraint should not clamp()" << std::endl;
}
if (rotation != newRotation) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: ConeRollerConstraint should not change rotation" << std::endl;
}
}
float deltaAngle = 0.001f;
{ // test just inside edge of cone
glm::quat rotation = glm::angleAxis(expectedConeAngle - deltaAngle, perpAxis);
glm::quat newRotation = rotation;
bool constrained = c->clamp(newRotation);
if (constrained) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: ConeRollerConstraint should not clamp()" << std::endl;
}
if (rotation != newRotation) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: ConeRollerConstraint should not change rotation" << std::endl;
}
}
{ // test just outside edge of cone
glm::quat rotation = glm::angleAxis(expectedConeAngle + deltaAngle, perpAxis);
glm::quat newRotation = rotation;
bool constrained = c->clamp(newRotation);
if (!constrained) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: ConeRollerConstraint should clamp()" << std::endl;
}
if (rotation == newRotation) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: ConeRollerConstraint should change rotation" << std::endl;
}
}
{ // test just inside min edge of roll
glm::quat rotation = glm::angleAxis(minAngleZ + deltaAngle, expectedConeAxis);
glm::quat newRotation = rotation;
bool constrained = c->clamp(newRotation);
if (constrained) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: ConeRollerConstraint should not clamp()" << std::endl;
}
if (rotation != newRotation) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: ConeRollerConstraint should not change rotation" << std::endl;
}
}
{ // test just inside max edge of roll
glm::quat rotation = glm::angleAxis(maxAngleZ - deltaAngle, expectedConeAxis);
glm::quat newRotation = rotation;
bool constrained = c->clamp(newRotation);
if (constrained) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: ConeRollerConstraint should not clamp()" << std::endl;
}
if (rotation != newRotation) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: ConeRollerConstraint should not change rotation" << std::endl;
}
}
{ // test just outside min edge of roll
glm::quat rotation = glm::angleAxis(minAngleZ - deltaAngle, expectedConeAxis);
glm::quat newRotation = rotation;
bool constrained = c->clamp(newRotation);
if (!constrained) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: ConeRollerConstraint should clamp()" << std::endl;
}
if (rotation == newRotation) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: ConeRollerConstraint should change rotation" << std::endl;
}
glm::quat expectedRotation = glm::angleAxis(minAngleZ, expectedConeAxis);
if (fabsf(1.0f - glm::dot(newRotation, expectedRotation)) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: rotation = " << newRotation << " but expected " << expectedRotation << std::endl;
}
}
{ // test just outside max edge of roll
glm::quat rotation = glm::angleAxis(maxAngleZ + deltaAngle, expectedConeAxis);
glm::quat newRotation = rotation;
bool constrained = c->clamp(newRotation);
if (!constrained) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: ConeRollerConstraint should clamp()" << std::endl;
}
if (rotation == newRotation) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: ConeRollerConstraint should change rotation" << std::endl;
}
glm::quat expectedRotation = glm::angleAxis(maxAngleZ, expectedConeAxis);
if (fabsf(1.0f - glm::dot(newRotation, expectedRotation)) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: rotation = " << newRotation << " but expected " << expectedRotation << std::endl;
}
}
deltaAngle = 0.25f * expectedConeAngle;
{ // test far outside cone and min roll
glm::quat roll = glm::angleAxis(minAngleZ - deltaAngle, expectedConeAxis);
glm::quat pitchYaw = glm::angleAxis(expectedConeAngle + deltaAngle, perpAxis);
glm::quat rotation = pitchYaw * roll;
glm::quat newRotation = rotation;
bool constrained = c->clamp(newRotation);
if (!constrained) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: ConeRollerConstraint should clamp()" << std::endl;
}
if (rotation == newRotation) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: ConeRollerConstraint should change rotation" << std::endl;
}
glm::quat expectedRoll = glm::angleAxis(minAngleZ, expectedConeAxis);
glm::quat expectedPitchYaw = glm::angleAxis(expectedConeAngle, perpAxis);
glm::quat expectedRotation = expectedPitchYaw * expectedRoll;
if (fabsf(1.0f - glm::dot(newRotation, expectedRotation)) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: rotation = " << newRotation << " but expected " << expectedRotation << std::endl;
}
}
{ // test far outside cone and max roll
glm::quat roll = glm::angleAxis(maxAngleZ + deltaAngle, expectedConeAxis);
glm::quat pitchYaw = glm::angleAxis(- expectedConeAngle - deltaAngle, perpAxis);
glm::quat rotation = pitchYaw * roll;
glm::quat newRotation = rotation;
bool constrained = c->clamp(newRotation);
if (!constrained) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: ConeRollerConstraint should clamp()" << std::endl;
}
if (rotation == newRotation) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: ConeRollerConstraint should change rotation" << std::endl;
}
glm::quat expectedRoll = glm::angleAxis(maxAngleZ, expectedConeAxis);
glm::quat expectedPitchYaw = glm::angleAxis(- expectedConeAngle, perpAxis);
glm::quat expectedRotation = expectedPitchYaw * expectedRoll;
if (fabsf(1.0f - glm::dot(newRotation, expectedRotation)) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: rotation = " << newRotation << " but expected " << expectedRotation << std::endl;
}
}
delete c;
}
void AngularConstraintTests::runAllTests() {
testHingeConstraint();
testConeRollerConstraint();
}

View file

@ -0,0 +1,21 @@
//
// AngularConstraintTests.h
// tests/physics/src
//
// Created by Andrew Meadows on 2014.05.30
// Copyright 2014 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#ifndef hifi_AngularConstraintTests_h
#define hifi_AngularConstraintTests_h
namespace AngularConstraintTests {
void testHingeConstraint();
void testConeRollerConstraint();
void runAllTests();
}
#endif // hifi_AngularConstraintTests_h

View file

@ -8,9 +8,11 @@
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "AngularConstraintTests.h"
#include "MovingPercentileTests.h"
int main(int argc, char** argv) {
MovingPercentileTests::runAllTests();
AngularConstraintTests::runAllTests();
return 0;
}