Merge pull request #3778 from samcake/temp1

Introduce the Transform class and use it in the gpu api and for rendering models
This commit is contained in:
AndrewMeadows 2014-11-12 18:26:04 -08:00
commit 65a2aaee9d
11 changed files with 703 additions and 43 deletions

View file

@ -109,6 +109,7 @@ static unsigned STARFIELD_SEED = 1;
static const int BANDWIDTH_METER_CLICK_MAX_DRAG_LENGTH = 6; // farther dragged clicks are ignored
const qint64 MAXIMUM_CACHE_SIZE = 10737418240; // 10GB
static QTimer* idleTimer = NULL;
@ -187,7 +188,8 @@ Application::Application(int& argc, char** argv, QElapsedTimer &startup_time) :
_lastNackTime(usecTimestampNow()),
_lastSendDownstreamAudioStats(usecTimestampNow()),
_isVSyncOn(true),
_aboutToQuit(false)
_aboutToQuit(false),
_viewTransform(new gpu::Transform())
{
// read the ApplicationInfo.ini file for Name/Version/Domain information
@ -836,12 +838,14 @@ void Application::controlledBroadcastToNodes(const QByteArray& packet, const Nod
}
bool Application::event(QEvent* event) {
// handle custom URL
if (event->type() == QEvent::FileOpen) {
QFileOpenEvent* fileEvent = static_cast<QFileOpenEvent*>(event);
if (fileEvent->url().isValid()) {
openUrl(fileEvent->url());
if (!fileEvent->url().isEmpty()) {
AddressManager::getInstance().handleLookupString(fileEvent->url().toLocalFile());
}
return false;
@ -2795,6 +2799,8 @@ void Application::updateShadowMap() {
// store view matrix without translation, which we'll use for precision-sensitive objects
updateUntranslatedViewMatrix();
// TODO: assign an equivalent viewTransform object to the application to match the current path which uses glMatrixStack
// setViewTransform(viewTransform);
glEnable(GL_POLYGON_OFFSET_FILL);
glPolygonOffset(1.1f, 4.0f); // magic numbers courtesy http://www.eecs.berkeley.edu/~ravir/6160/papers/shadowmaps.ppt
@ -2902,6 +2908,19 @@ void Application::displaySide(Camera& whichCamera, bool selfAvatarOnly) {
// store view matrix without translation, which we'll use for precision-sensitive objects
updateUntranslatedViewMatrix(-whichCamera.getPosition());
// Equivalent to what is happening with _untranslatedViewMatrix and the _viewMatrixTranslation
// the viewTransofmr object is updatded with the correct values and saved,
// this is what is used for rendering the Entities and avatars
gpu::Transform viewTransform;
viewTransform.setTranslation(whichCamera.getPosition());
viewTransform.setRotation(rotation);
viewTransform.postTranslate(eyeOffsetPos);
viewTransform.postRotate(eyeOffsetOrient);
if (whichCamera.getMode() == CAMERA_MODE_MIRROR) {
viewTransform.setScale(gpu::Transform::Vec3(-1.0f, 1.0f, 1.0f));
}
setViewTransform(viewTransform);
glTranslatef(_viewMatrixTranslation.x, _viewMatrixTranslation.y, _viewMatrixTranslation.z);
// Setup 3D lights (after the camera transform, so that they are positioned in world space)
@ -3019,13 +3038,16 @@ void Application::displaySide(Camera& whichCamera, bool selfAvatarOnly) {
}
}
bool mirrorMode = (whichCamera.getMode() == CAMERA_MODE_MIRROR);
{
PerformanceTimer perfTimer("avatars");
_avatarManager.renderAvatars(mirrorMode ? Avatar::MIRROR_RENDER_MODE : Avatar::NORMAL_RENDER_MODE,
false, selfAvatarOnly);
}
{
PROFILE_RANGE("DeferredLighting");
PerformanceTimer perfTimer("lighting");
@ -3084,7 +3106,7 @@ void Application::displaySide(Camera& whichCamera, bool selfAvatarOnly) {
emit renderingInWorldInterface();
}
}
if (Menu::getInstance()->isOptionChecked(MenuOption::Wireframe)) {
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
}
@ -3095,6 +3117,10 @@ void Application::updateUntranslatedViewMatrix(const glm::vec3& viewMatrixTransl
_viewMatrixTranslation = viewMatrixTranslation;
}
void Application::setViewTransform(const gpu::Transform& view) {
(*_viewTransform) = view;
}
void Application::loadTranslatedViewMatrix(const glm::vec3& translation) {
glLoadMatrixf((const GLfloat*)&_untranslatedViewMatrix);
glTranslatef(translation.x + _viewMatrixTranslation.x, translation.y + _viewMatrixTranslation.y,

View file

@ -232,6 +232,9 @@ public:
const glm::vec3& getViewMatrixTranslation() const { return _viewMatrixTranslation; }
void setViewMatrixTranslation(const glm::vec3& translation) { _viewMatrixTranslation = translation; }
const gpu::TransformPointer& getViewTransform() const { return _viewTransform; }
void setViewTransform(const gpu::Transform& view);
/// if you need to access the application settings, use lockSettings()/unlockSettings()
QSettings* lockSettings() { _settingsMutex.lock(); return _settings; }
void unlockSettings() { _settingsMutex.unlock(); }
@ -523,6 +526,7 @@ private:
QRect _mirrorViewRect;
RearMirrorTools* _rearMirrorTools;
gpu::TransformPointer _viewTransform;
glm::mat4 _untranslatedViewMatrix;
glm::vec3 _viewMatrixTranslation;
glm::mat4 _projectionMatrix;

View file

@ -21,7 +21,11 @@ Batch::Batch() :
_commandOffsets(),
_params(),
_resources(),
_data(){
_data(),
_buffers(),
_streamFormats(),
_transforms()
{
}
Batch::~Batch() {
@ -32,8 +36,10 @@ void Batch::clear() {
_commandOffsets.clear();
_params.clear();
_resources.clear();
_buffers.clear();
_data.clear();
_buffers.clear();
_streamFormats.clear();
_transforms.clear();
}
uint32 Batch::cacheResource(Resource* res) {
@ -128,3 +134,22 @@ void Batch::setIndexBuffer(Type type, const BufferPointer& buffer, Offset offset
_params.push_back(_buffers.cache(buffer));
_params.push_back(type);
}
void Batch::setModelTransform(const TransformPointer& model) {
ADD_COMMAND(setModelTransform);
_params.push_back(_transforms.cache(model));
}
void Batch::setViewTransform(const TransformPointer& view) {
ADD_COMMAND(setViewTransform);
_params.push_back(_transforms.cache(view));
}
void Batch::setProjectionTransform(const TransformPointer& proj) {
ADD_COMMAND(setProjectionTransform);
_params.push_back(_transforms.cache(proj));
}

View file

@ -14,10 +14,10 @@
#include <assert.h>
#include "InterfaceConfig.h"
#include "Transform.h"
#include <vector>
#include "gpu/Format.h"
#include "gpu/Resource.h"
#include "gpu/Stream.h"
#if defined(NSIGHT_FOUND)
@ -50,6 +50,10 @@ enum Primitive {
NUM_PRIMITIVES,
};
typedef ::Transform Transform;
typedef QSharedPointer< ::gpu::Transform > TransformPointer;
typedef std::vector< TransformPointer > Transforms;
class Batch {
public:
typedef Stream::Slot Slot;
@ -60,11 +64,16 @@ public:
void clear();
// Drawcalls
void draw(Primitive primitiveType, uint32 numVertices, uint32 startVertex = 0);
void drawIndexed(Primitive primitiveType, uint32 nbIndices, uint32 startIndex = 0);
void drawInstanced(uint32 nbInstances, Primitive primitiveType, uint32 nbVertices, uint32 startVertex = 0, uint32 startInstance = 0);
void drawIndexedInstanced(uint32 nbInstances, Primitive primitiveType, uint32 nbIndices, uint32 startIndex = 0, uint32 startInstance = 0);
// Input Stage
// InputFormat
// InputBuffers
// IndexBuffer
void setInputFormat(const Stream::FormatPointer& format);
void setInputStream(Slot startChannel, const BufferStream& stream); // not a command, just unroll into a loop of setInputBuffer
@ -72,6 +81,16 @@ public:
void setIndexBuffer(Type type, const BufferPointer& buffer, Offset offset);
// Transform Stage
// Vertex position is transformed by ModelTransform from object space to world space
// Then by the inverse of the ViewTransform from world space to eye space
// finaly projected into the clip space by the projection transform
// WARNING: ViewTransform transform from eye space to world space, its inverse is composed
// with the ModelTransformu to create the equivalent of the glModelViewMatrix
void setModelTransform(const TransformPointer& model);
void setViewTransform(const TransformPointer& view);
void setProjectionTransform(const TransformPointer& proj);
// TODO: As long as we have gl calls explicitely issued from interface
// code, we need to be able to record and batch these calls. THe long
@ -138,11 +157,13 @@ public:
COMMAND_drawIndexedInstanced,
COMMAND_setInputFormat,
COMMAND_setInputBuffer,
COMMAND_setIndexBuffer,
COMMAND_setModelTransform,
COMMAND_setViewTransform,
COMMAND_setProjectionTransform,
// TODO: As long as we have gl calls explicitely issued from interface
// code, we need to be able to record and batch these calls. THe long
// term strategy is to get rid of any GL calls in favor of the HIFI GPU API
@ -266,6 +287,7 @@ public:
typedef Cache<Buffer>::Vector BufferCaches;
typedef Cache<Stream::Format>::Vector StreamFormatCaches;
typedef Cache<Transform>::Vector TransformCaches;
typedef unsigned char Byte;
typedef std::vector<Byte> Bytes;
@ -299,11 +321,12 @@ public:
CommandOffsets _commandOffsets;
Params _params;
Resources _resources;
Bytes _data;
BufferCaches _buffers;
StreamFormatCaches _streamFormats;
TransformCaches _transforms;
Bytes _data;
protected:
};

View file

@ -24,11 +24,13 @@ GLBackend::CommandCall GLBackend::_commandCalls[Batch::NUM_COMMANDS] =
(&::gpu::GLBackend::do_drawIndexedInstanced),
(&::gpu::GLBackend::do_setInputFormat),
(&::gpu::GLBackend::do_setInputBuffer),
(&::gpu::GLBackend::do_setIndexBuffer),
(&::gpu::GLBackend::do_setModelTransform),
(&::gpu::GLBackend::do_setViewTransform),
(&::gpu::GLBackend::do_setProjectionTransform),
(&::gpu::GLBackend::do_glEnable),
(&::gpu::GLBackend::do_glDisable),
@ -111,18 +113,16 @@ static const GLenum _elementTypeToGLType[NUM_TYPES]= {
GLBackend::GLBackend() :
_needInputFormatUpdate(true),
_inputFormat(0),
_inputBuffersState(0),
_inputBuffers(_inputBuffersState.size(), BufferPointer(0)),
_inputBufferOffsets(_inputBuffersState.size(), 0),
_inputBufferStrides(_inputBuffersState.size(), 0),
_indexBuffer(0),
_indexBufferOffset(0),
_inputAttributeActivation(0)
_inputAttributeActivation(0),
_transform()
{
}
@ -183,6 +183,7 @@ void GLBackend::checkGLError() {
void GLBackend::do_draw(Batch& batch, uint32 paramOffset) {
updateInput();
updateTransform();
Primitive primitiveType = (Primitive)batch._params[paramOffset + 2]._uint;
GLenum mode = _primitiveToGLmode[primitiveType];
@ -195,6 +196,7 @@ void GLBackend::do_draw(Batch& batch, uint32 paramOffset) {
void GLBackend::do_drawIndexed(Batch& batch, uint32 paramOffset) {
updateInput();
updateTransform();
Primitive primitiveType = (Primitive)batch._params[paramOffset + 2]._uint;
GLenum mode = _primitiveToGLmode[primitiveType];
@ -425,6 +427,82 @@ void GLBackend::do_setIndexBuffer(Batch& batch, uint32 paramOffset) {
CHECK_GL_ERROR();
}
// Transform Stage
void GLBackend::do_setModelTransform(Batch& batch, uint32 paramOffset) {
TransformPointer modelTransform = batch._transforms.get(batch._params[paramOffset]._uint);
if (_transform._model.isNull() || (modelTransform != _transform._model)) {
_transform._model = modelTransform;
_transform._invalidModel = true;
}
}
void GLBackend::do_setViewTransform(Batch& batch, uint32 paramOffset) {
TransformPointer viewTransform = batch._transforms.get(batch._params[paramOffset]._uint);
if (_transform._view.isNull() || (viewTransform != _transform._view)) {
_transform._view = viewTransform;
_transform._invalidView = true;
}
}
void GLBackend::do_setProjectionTransform(Batch& batch, uint32 paramOffset) {
TransformPointer projectionTransform = batch._transforms.get(batch._params[paramOffset]._uint);
if (_transform._projection.isNull() || (projectionTransform != _transform._projection)) {
_transform._projection = projectionTransform;
_transform._invalidProj = true;
}
}
void GLBackend::updateTransform() {
if (_transform._invalidProj) {
// TODO: implement the projection matrix assignment to gl state
/* if (_transform._lastMode != GL_PROJECTION) {
glMatrixMode(GL_PROJECTION);
_transform._lastMode = GL_PROJECTION;
}
CHECK_GL_ERROR();*/
_transform._invalidProj;
}
if (_transform._invalidModel || _transform._invalidView) {
if (!_transform._model.isNull()) {
if (_transform._lastMode != GL_MODELVIEW) {
glMatrixMode(GL_MODELVIEW);
_transform._lastMode = GL_MODELVIEW;
}
Transform::Mat4 modelView;
if (!_transform._view.isNull()) {
Transform mvx;
Transform::inverseMult(mvx, (*_transform._view), (*_transform._model));
mvx.getMatrix(modelView);
} else {
_transform._model->getMatrix(modelView);
}
glLoadMatrixf(reinterpret_cast< const GLfloat* >(&modelView));
} else {
if (!_transform._view.isNull()) {
if (_transform._lastMode != GL_MODELVIEW) {
glMatrixMode(GL_MODELVIEW);
_transform._lastMode = GL_MODELVIEW;
}
Transform::Mat4 modelView;
_transform._view->getInverseMatrix(modelView);
glLoadMatrixf(reinterpret_cast< const GLfloat* >(&modelView));
} else {
// TODO: eventually do something about the matrix when neither view nor model is specified?
// glLoadIdentity();
}
}
CHECK_GL_ERROR();
_transform._invalidModel = false;
_transform._invalidView = false;
}
}
// TODO: As long as we have gl calls explicitely issued from interface
// code, we need to be able to record and batch these calls. THe long
// term strategy is to get rid of any GL calls in favor of the HIFI GPU API

View file

@ -52,11 +52,22 @@ public:
protected:
// Draw Stage
void do_draw(Batch& batch, uint32 paramOffset);
void do_drawIndexed(Batch& batch, uint32 paramOffset);
void do_drawInstanced(Batch& batch, uint32 paramOffset);
void do_drawIndexedInstanced(Batch& batch, uint32 paramOffset);
// Input Stage
void do_setInputFormat(Batch& batch, uint32 paramOffset);
void do_setInputBuffer(Batch& batch, uint32 paramOffset);
void do_setIndexBuffer(Batch& batch, uint32 paramOffset);
void updateInput();
bool _needInputFormatUpdate;
Stream::FormatPointer _inputFormat;
typedef std::bitset<MAX_NUM_INPUT_BUFFERS> InputBuffersState;
InputBuffersState _inputBuffersState;
Buffers _inputBuffers;
Offsets _inputBufferOffsets;
Offsets _inputBufferStrides;
@ -68,18 +79,31 @@ protected:
typedef std::bitset<MAX_NUM_ATTRIBUTES> InputActivationCache;
InputActivationCache _inputAttributeActivation;
void do_draw(Batch& batch, uint32 paramOffset);
void do_drawIndexed(Batch& batch, uint32 paramOffset);
void do_drawInstanced(Batch& batch, uint32 paramOffset);
void do_drawIndexedInstanced(Batch& batch, uint32 paramOffset);
// Transform Stage
void do_setModelTransform(Batch& batch, uint32 paramOffset);
void do_setViewTransform(Batch& batch, uint32 paramOffset);
void do_setProjectionTransform(Batch& batch, uint32 paramOffset);
void updateInput();
void do_setInputFormat(Batch& batch, uint32 paramOffset);
void do_setInputBuffer(Batch& batch, uint32 paramOffset);
void updateTransform();
struct TransformStageState {
TransformPointer _model;
TransformPointer _view;
TransformPointer _projection;
bool _invalidModel;
bool _invalidView;
bool _invalidProj;
void do_setVertexBuffer(Batch& batch, uint32 paramOffset);
void do_setIndexBuffer(Batch& batch, uint32 paramOffset);
GLenum _lastMode;
TransformStageState() :
_model(0),
_view(0),
_projection(0),
_invalidModel(true),
_invalidView(true),
_invalidProj(true),
_lastMode(GL_TEXTURE) {}
} _transform;
// TODO: As long as we have gl calls explicitely issued from interface
// code, we need to be able to record and batch these calls. THe long

View file

@ -551,8 +551,19 @@ bool Model::render(float alpha, RenderMode mode, RenderArgs* args) {
}
// Let's introduce a gpu::Batch to capture all the calls to the graphics api
gpu::Batch batch;
_renderBatch.clear();
gpu::Batch& batch = _renderBatch;
GLBATCH(glPushMatrix)();
// Capture the view matrix once for the rendering of this model
if (_transforms.empty()) {
_transforms.push_back(gpu::TransformPointer(new gpu::Transform()));
}
(*_transforms[0]) = gpu::Transform((*Application::getInstance()->getViewTransform()));
// apply entity translation offset to the viewTransform in one go (it's a preTranslate because viewTransform goes from world to eye space)
_transforms[0]->preTranslate(-_translation);
batch.setViewTransform(_transforms[0]);
GLBATCH(glDisable)(GL_COLOR_MATERIAL);
@ -677,11 +688,12 @@ bool Model::render(float alpha, RenderMode mode, RenderArgs* args) {
GLBATCH(glBindBuffer)(GL_ELEMENT_ARRAY_BUFFER, 0);
GLBATCH(glBindTexture)(GL_TEXTURE_2D, 0);
GLBATCH(glPopMatrix)();
// Render!
{
PROFILE_RANGE("render Batch");
::gpu::GLBackend::renderBatch(batch);
batch.clear();
}
// restore all the default material settings
@ -1849,20 +1861,17 @@ int Model::renderMeshes(gpu::Batch& batch, RenderMode mode, bool translucent, fl
}
GLBATCH(glPushMatrix)();
//Application::getInstance()->loadTranslatedViewMatrix(_translation);
GLBATCH(glLoadMatrixf)((const GLfloat*)&Application::getInstance()->getUntranslatedViewMatrix());
glm::vec3 viewMatTranslation = Application::getInstance()->getViewMatrixTranslation();
GLBATCH(glTranslatef)(_translation.x + viewMatTranslation.x, _translation.y + viewMatTranslation.y,
_translation.z + viewMatTranslation.z);
const MeshState& state = _meshStates.at(i);
if (state.clusterMatrices.size() > 1) {
GLBATCH(glUniformMatrix4fv)(skinLocations->clusterMatrices, state.clusterMatrices.size(), false,
(const float*)state.clusterMatrices.constData());
batch.setModelTransform(gpu::TransformPointer());
} else {
GLBATCH(glMultMatrixf)((const GLfloat*)&state.clusterMatrices[0]);
gpu::TransformPointer modelTransform(new gpu::Transform(state.clusterMatrices[0]));
batch.setModelTransform(modelTransform);
}
if (mesh.blendshapes.isEmpty()) {
batch.setInputFormat(networkMesh._vertexFormat);
batch.setInputStream(0, *networkMesh._vertexStream);

View file

@ -16,6 +16,7 @@
#include <QObject>
#include <QUrl>
#include "Transform.h"
#include <AABox.h>
#include <AnimationCache.h>
#include <PhysicsEntity.h>
@ -36,11 +37,9 @@ class ViewFrustum;
typedef QSharedPointer<AnimationHandle> AnimationHandlePointer;
typedef QWeakPointer<AnimationHandle> WeakAnimationHandlePointer;
namespace gpu {
class Batch;
}
#include "gpu/Stream.h"
#include "gpu/Batch.h"
/// A generic 3D model displaying geometry loaded from a URL.
class Model : public QObject, public PhysicsEntity {
@ -283,7 +282,9 @@ private:
QUrl _url;
gpu::Buffers _blendedVertexBuffers;
gpu::Transforms _transforms;
gpu::Batch _renderBatch;
QVector<QVector<QSharedPointer<Texture> > > _dilatedTextures;
QVector<Model*> _attachments;

View file

@ -919,7 +919,9 @@ void SetSpannerTool::applyEdit(const AttributePointer& attribute, const SharedOb
Application::getInstance()->setupWorldLight();
Application::getInstance()->updateUntranslatedViewMatrix();
// TODO: assign an equivalent viewTransform object to the application to match the current path which uses glMatrixStack
// setViewTransform(viewTransform);
const glm::vec4 OPAQUE_WHITE(1.0f, 1.0f, 1.0f, 1.0f);
spannerData->getRenderer()->render(OPAQUE_WHITE, SpannerRenderer::DIFFUSE_MODE, glm::vec3(), 0.0f);

View file

@ -0,0 +1,71 @@
//
// Transform.cpp
// shared/src/gpu
//
// Created by Sam Gateau on 11/4/2014.
// Copyright 2014 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "Transform.h"
void Transform::evalRotationScale(Quat& rotation, Vec3& scale, const Mat3& rotationScaleMatrix) {
const float ACCURACY_THREASHOLD = 0.00001f;
// Following technique taken from:
// http://callumhay.blogspot.com/2010/10/decomposing-affine-transforms.html
// Extract the rotation component - this is done using polar decompostion, where
// we successively average the matrix with its inverse transpose until there is
// no/a very small difference between successive averages
float norm;
int count = 0;
Mat3 rotationMat = rotationScaleMatrix;
do {
Mat3 currInvTranspose = glm::inverse(glm::transpose(rotationMat));
Mat3 nextRotation = 0.5f * (rotationMat + currInvTranspose);
norm = 0.0;
for (int i = 0; i < 3; i++) {
float n = static_cast<float>(
fabs(rotationMat[0][i] - nextRotation[0][i]) +
fabs(rotationMat[1][i] - nextRotation[1][i]) +
fabs(rotationMat[2][i] - nextRotation[2][i]));
norm = (norm > n ? norm : n);
}
rotationMat = nextRotation;
} while (count < 100 && norm > ACCURACY_THREASHOLD);
// extract scale of the matrix as the length of each axis
Mat3 scaleMat = glm::inverse(rotationMat) * rotationScaleMatrix;
scale = glm::max(Vec3(ACCURACY_THREASHOLD), Vec3(scaleMat[0][0], scaleMat[1][1], scaleMat[2][2]));
// Let's work on a local matrix containing rotation only
Mat3 matRot(
rotationScaleMatrix[0] / scale.x,
rotationScaleMatrix[1] / scale.y,
rotationScaleMatrix[2] / scale.z);
// Beware!!! needs to detect for the case there is a negative scale
// Based on the determinant sign we just can flip the scale sign of one component: we choose X axis
float determinant = glm::determinant(matRot);
if (determinant < 0.f) {
scale.x = -scale.x;
matRot[0] *= -1.f;
}
// Beware: even though the matRot is supposed to be normalized at that point,
// glm::quat_cast doesn't always return a normalized quaternion...
// rotation = glm::normalize(glm::quat_cast(matRot));
rotation = (glm::quat_cast(matRot));
}

View file

@ -0,0 +1,397 @@
//
// Transform.h
// shared/src/gpu
//
// Created by Sam Gateau on 11/4/2014.
// Copyright 2014 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#ifndef hifi_gpu_Transform_h
#define hifi_gpu_Transform_h
#include <assert.h>
#include <glm/glm.hpp>
#include <glm/gtc/quaternion.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtx/quaternion.hpp>
#include <bitset>
class Transform {
public:
typedef glm::mat4 Mat4;
typedef glm::mat3 Mat3;
typedef glm::vec4 Vec4;
typedef glm::vec3 Vec3;
typedef glm::vec2 Vec2;
typedef glm::quat Quat;
Transform() :
_translation(0),
_rotation(1.0f, 0, 0, 0),
_scale(1.0f),
_flags(FLAG_CACHE_INVALID_BITSET) // invalid cache
{
}
Transform(const Transform& transform) :
_translation(transform._translation),
_rotation(transform._rotation),
_scale(transform._scale),
_flags(transform._flags)
{
invalidCache();
}
Transform(const Mat4& raw) {
evalFromRawMatrix(raw);
}
~Transform() {}
void setIdentity();
const Vec3& getTranslation() const;
void setTranslation(const Vec3& translation);
void preTranslate(const Vec3& translation);
void postTranslate(const Vec3& translation);
const Quat& getRotation() const;
void setRotation(const Quat& rotation);
void preRotate(const Quat& rotation);
void postRotate(const Quat& rotation);
const Vec3& getScale() const;
void setScale(float scale);
void setScale(const Vec3& scale);
void postScale(float scale);
void postScale(const Vec3& scale);
bool isIdentity() const { return (_flags & ~Flags(FLAG_CACHE_INVALID_BITSET)).none(); }
bool isTranslating() const { return _flags[FLAG_TRANSLATION]; }
bool isRotating() const { return _flags[FLAG_ROTATION]; }
bool isScaling() const { return _flags[FLAG_SCALING]; }
bool isUniform() const { return !isNonUniform(); }
bool isNonUniform() const { return _flags[FLAG_NON_UNIFORM]; }
void evalFromRawMatrix(const Mat4& matrix);
void evalFromRawMatrix(const Mat3& rotationScalematrix);
Mat4& getMatrix(Mat4& result) const;
Mat4& getInverseMatrix(Mat4& result) const;
Transform& evalInverse(Transform& result) const;
static void evalRotationScale(Quat& rotation, Vec3& scale, const Mat3& rotationScaleMatrix);
static Transform& mult(Transform& result, const Transform& left, const Transform& right);
// Left will be inversed before the multiplication
static Transform& inverseMult(Transform& result, const Transform& left, const Transform& right);
protected:
enum Flag {
FLAG_CACHE_INVALID = 0,
FLAG_TRANSLATION,
FLAG_ROTATION,
FLAG_SCALING,
FLAG_NON_UNIFORM,
FLAG_ZERO_SCALE,
FLAG_PROJECTION,
NUM_FLAGS,
FLAG_CACHE_INVALID_BITSET = 1,
};
typedef std::bitset<NUM_FLAGS> Flags;
// TRS
Vec3 _translation;
Quat _rotation;
Vec3 _scale;
mutable Flags _flags;
// Cached transform
mutable Mat4 _matrix;
bool isCacheInvalid() const { return _flags[FLAG_CACHE_INVALID]; }
void validCache() const { _flags.set(FLAG_CACHE_INVALID, false); }
void invalidCache() const { _flags.set(FLAG_CACHE_INVALID, true); }
void flagTranslation() { _flags.set(FLAG_TRANSLATION, true); }
void flagRotation() { _flags.set(FLAG_ROTATION, true); }
void flagScaling() { _flags.set(FLAG_SCALING, true); }
void unflagScaling() { _flags.set(FLAG_SCALING, false); }
void flagUniform() { _flags.set(FLAG_NON_UNIFORM, false); }
void flagNonUniform() { _flags.set(FLAG_NON_UNIFORM, true); }
void updateCache() const;
};
inline void Transform::setIdentity() {
_translation = Vec3(0);
_rotation = Quat(1.0f, 0, 0, 0);
_scale = Vec3(1.0f);
_flags = Flags(FLAG_CACHE_INVALID_BITSET);
}
inline const Transform::Vec3& Transform::getTranslation() const {
return _translation;
}
inline void Transform::setTranslation(const Vec3& translation) {
invalidCache();
flagTranslation();
_translation = translation;
}
inline void Transform::preTranslate(const Vec3& translation) {
invalidCache();
flagTranslation();
_translation += translation;
}
inline void Transform::postTranslate(const Vec3& translation) {
invalidCache();
flagTranslation();
Vec3 scaledT = translation;
if (isScaling()) scaledT *= _scale;
if (isRotating()) {
_translation += glm::rotate(_rotation, scaledT);
} else {
_translation += scaledT;
}
}
inline const Transform::Quat& Transform::getRotation() const {
return _rotation;
}
inline void Transform::setRotation(const Quat& rotation) {
invalidCache();
flagRotation();
_rotation = rotation;
}
inline void Transform::preRotate(const Quat& rotation) {
invalidCache();
if (isRotating()) {
_rotation = rotation * _rotation;
} else {
_rotation = rotation;
}
flagRotation();
_translation = glm::rotate(rotation, _translation);
}
inline void Transform::postRotate(const Quat& rotation) {
invalidCache();
if (isNonUniform()) {
Quat newRot;
Vec3 newScale;
Mat3 scaleRot(glm::mat3_cast(rotation));
scaleRot[0] *= _scale;
scaleRot[1] *= _scale;
scaleRot[2] *= _scale;
evalRotationScale(newRot, newScale, scaleRot);
if (isRotating()) {
_rotation *= newRot;
} else {
_rotation = newRot;
}
setScale(newScale);
} else {
if (isRotating()) {
_rotation *= rotation;
} else {
_rotation = rotation;
}
}
flagRotation();
}
inline const Transform::Vec3& Transform::getScale() const {
return _scale;
}
inline void Transform::setScale(float scale) {
invalidCache();
flagUniform();
if (scale == 1.0f) {
unflagScaling();
} else {
flagScaling();
}
_scale = Vec3(scale);
}
inline void Transform::setScale(const Vec3& scale) {
if ((scale.x == scale.y) && (scale.x == scale.z)) {
setScale(scale.x);
} else {
invalidCache();
flagScaling();
flagNonUniform();
_scale = scale;
}
}
inline void Transform::postScale(float scale) {
if (scale == 1.0f) return;
if (isScaling()) {
// if already scaling, just invalid cache and aply uniform scale
invalidCache();
_scale *= scale;
} else {
setScale(scale);
}
}
inline void Transform::postScale(const Vec3& scale) {
invalidCache();
if (isScaling()) {
_scale *= scale;
} else {
_scale = scale;
}
flagScaling();
}
inline Transform::Mat4& Transform::getMatrix(Transform::Mat4& result) const {
updateCache();
result = _matrix;
return result;
}
inline Transform::Mat4& Transform::getInverseMatrix(Transform::Mat4& result) const {
Transform inverse;
evalInverse(inverse);
return inverse.getMatrix(result);
}
inline void Transform::evalFromRawMatrix(const Mat4& matrix) {
// for now works only in the case of TRS transformation
if ((matrix[0][3] == 0) && (matrix[1][3] == 0) && (matrix[2][3] == 0) && (matrix[3][3] == 1.f)) {
setTranslation(Vec3(matrix[3]));
evalFromRawMatrix(Mat3(matrix));
}
}
inline void Transform::evalFromRawMatrix(const Mat3& rotationScaleMatrix) {
Quat rotation;
Vec3 scale;
evalRotationScale(rotation, scale, rotationScaleMatrix);
setRotation(rotation);
setScale(scale);
}
inline Transform& Transform::evalInverse(Transform& inverse) const {
inverse.setIdentity();
if (isScaling()) {
// TODO: At some point we will face the case when scale is 0 and so 1/0 will blow up...
// WHat should we do for this one?
assert(_scale.x != 0);
assert(_scale.y != 0);
assert(_scale.z != 0);
if (isNonUniform()) {
inverse.setScale(Vec3(1.0f/_scale.x, 1.0f/_scale.y, 1.0f/_scale.z));
} else {
inverse.setScale(1.0f/_scale.x);
}
}
if (isRotating()) {
inverse.postRotate(glm::conjugate(_rotation));
}
if (isTranslating()) {
inverse.postTranslate(-_translation);
}
return inverse;
}
inline Transform& Transform::mult( Transform& result, const Transform& left, const Transform& right) {
result = left;
if (right.isTranslating()) {
result.postTranslate(right.getTranslation());
}
if (right.isRotating()) {
result.postRotate(right.getRotation());
}
if (right.isScaling()) {
result.postScale(right.getScale());
}
// HACK: In case of an issue in the Transform multiplication results, to make sure this code is
// working properly uncomment the next 2 lines and compare the results, they should be the same...
// Transform::Mat4 mv = left.getMatrix() * right.getMatrix();
// Transform::Mat4 mv2 = result.getMatrix();
return result;
}
inline Transform& Transform::inverseMult( Transform& result, const Transform& left, const Transform& right) {
result.setIdentity();
if (left.isScaling()) {
const Vec3& s = left.getScale();
result.setScale(Vec3(1.0f / s.x, 1.0f / s.y, 1.0f / s.z));
}
if (left.isRotating()) {
result.postRotate(glm::conjugate(left.getRotation()));
}
if (left.isTranslating() || right.isTranslating()) {
result.postTranslate(right.getTranslation() - left.getTranslation());
}
if (right.isRotating()) {
result.postRotate(right.getRotation());
}
if (right.isScaling()) {
result.postScale(right.getScale());
}
// HACK: In case of an issue in the Transform multiplication results, to make sure this code is
// working properly uncomment the next 2 lines and compare the results, they should be the same...
// Transform::Mat4 mv = left.getMatrix() * right.getMatrix();
// Transform::Mat4 mv2 = result.getMatrix();
return result;
}
inline void Transform::updateCache() const {
if (isCacheInvalid()) {
if (isRotating()) {
Mat3 rot = glm::mat3_cast(_rotation);
if (isScaling()) {
rot[0] *= _scale.x;
rot[1] *= _scale.y;
rot[2] *= _scale.z;
}
_matrix[0] = Vec4(rot[0], 0.f);
_matrix[1] = Vec4(rot[1], 0.f);
_matrix[2] = Vec4(rot[2], 0.f);
} else {
_matrix[0] = Vec4(_scale.x, 0.f, 0.f, 0.f);
_matrix[1] = Vec4(0.f, _scale.y, 0.f, 0.f);
_matrix[2] = Vec4(0.f, 0.f, _scale.z, 0.f);
}
_matrix[3] = Vec4(_translation, 1.0f);
validCache();
}
}
#endif