mirror of
https://github.com/overte-org/overte.git
synced 2025-04-25 20:36:38 +02:00
Merge branch 'master' of https://github.com/highfidelity/hifi
This commit is contained in:
commit
6038c33fe6
12 changed files with 832 additions and 38 deletions
|
@ -10,6 +10,7 @@ add_definitions(-DGLM_FORCE_RADIANS)
|
|||
if (WIN32)
|
||||
add_definitions(-DNOMINMAX -D_CRT_SECURE_NO_WARNINGS)
|
||||
set(CMAKE_PREFIX_PATH ${CMAKE_PREFIX_PATH} "C:\\Program Files\\Microsoft SDKs\\Windows\\v7.1 ")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /MP")
|
||||
elseif (CMAKE_COMPILER_IS_GNUCC OR CMAKE_COMPILER_IS_GNUCXX)
|
||||
#SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -Wno-long-long -pedantic")
|
||||
#SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -Wno-unknown-pragmas")
|
||||
|
|
|
@ -99,6 +99,7 @@ void AudioMixer::addBufferToMixForListeningNodeWithBuffer(PositionalAudioRingBuf
|
|||
bool shouldAttenuate = (bufferToAdd != listeningNodeBuffer);
|
||||
|
||||
if (shouldAttenuate) {
|
||||
|
||||
// if the two buffer pointers do not match then these are different buffers
|
||||
glm::vec3 relativePosition = bufferToAdd->getPosition() - listeningNodeBuffer->getPosition();
|
||||
|
||||
|
|
|
@ -11,6 +11,8 @@
|
|||
|
||||
#include <glm/gtx/norm.hpp>
|
||||
|
||||
#include <AngularConstraint.h>
|
||||
//#include <GeometryUtil.h>
|
||||
#include <SharedUtil.h>
|
||||
|
||||
#include "JointState.h"
|
||||
|
@ -18,7 +20,48 @@
|
|||
JointState::JointState() :
|
||||
_animationPriority(0.0f),
|
||||
_fbxJoint(NULL),
|
||||
_isConstrained(false) {
|
||||
_constraint(NULL) {
|
||||
}
|
||||
|
||||
JointState::JointState(const JointState& other) : _constraint(NULL) {
|
||||
_transform = other._transform;
|
||||
_rotation = other._rotation;
|
||||
_rotationInParentFrame = other._rotationInParentFrame;
|
||||
_animationPriority = other._animationPriority;
|
||||
_fbxJoint = other._fbxJoint;
|
||||
// DO NOT copy _constraint
|
||||
}
|
||||
|
||||
JointState::~JointState() {
|
||||
delete _constraint;
|
||||
_constraint = NULL;
|
||||
if (_constraint) {
|
||||
delete _constraint;
|
||||
_constraint = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
void JointState::setFBXJoint(const FBXJoint* joint) {
|
||||
assert(joint != NULL);
|
||||
_rotationInParentFrame = joint->rotation;
|
||||
// NOTE: JointState does not own the FBXJoint to which it points.
|
||||
_fbxJoint = joint;
|
||||
if (_constraint) {
|
||||
delete _constraint;
|
||||
_constraint = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
void JointState::updateConstraint() {
|
||||
if (_constraint) {
|
||||
delete _constraint;
|
||||
_constraint = NULL;
|
||||
}
|
||||
if (glm::distance2(glm::vec3(-PI), _fbxJoint->rotationMin) > EPSILON ||
|
||||
glm::distance2(glm::vec3(PI), _fbxJoint->rotationMax) > EPSILON ) {
|
||||
// this joint has rotation constraints
|
||||
_constraint = AngularConstraint::newAngularConstraint(_fbxJoint->rotationMin, _fbxJoint->rotationMax);
|
||||
}
|
||||
}
|
||||
|
||||
void JointState::copyState(const JointState& state) {
|
||||
|
@ -30,18 +73,7 @@ void JointState::copyState(const JointState& state) {
|
|||
_visibleTransform = state._visibleTransform;
|
||||
_visibleRotation = extractRotation(_visibleTransform);
|
||||
_visibleRotationInParentFrame = state._visibleRotationInParentFrame;
|
||||
// DO NOT copy _fbxJoint
|
||||
}
|
||||
|
||||
void JointState::setFBXJoint(const FBXJoint* joint) {
|
||||
assert(joint != NULL);
|
||||
_rotationInParentFrame = joint->rotation;
|
||||
// NOTE: JointState does not own the FBXJoint to which it points.
|
||||
_fbxJoint = joint;
|
||||
// precompute whether there are any constraints or not
|
||||
float distanceMin = glm::distance(_fbxJoint->rotationMin, glm::vec3(-PI));
|
||||
float distanceMax = glm::distance(_fbxJoint->rotationMax, glm::vec3(PI));
|
||||
_isConstrained = distanceMin > EPSILON || distanceMax > EPSILON;
|
||||
// DO NOT copy _fbxJoint or _constraint
|
||||
}
|
||||
|
||||
void JointState::computeTransform(const glm::mat4& parentTransform) {
|
||||
|
@ -70,11 +102,15 @@ void JointState::restoreRotation(float fraction, float priority) {
|
|||
}
|
||||
}
|
||||
|
||||
void JointState::setRotationFromBindFrame(const glm::quat& rotation, float priority) {
|
||||
void JointState::setRotationFromBindFrame(const glm::quat& rotation, float priority, bool constrain) {
|
||||
// rotation is from bind- to model-frame
|
||||
assert(_fbxJoint != NULL);
|
||||
if (priority >= _animationPriority) {
|
||||
setRotationInParentFrame(_rotationInParentFrame * glm::inverse(_rotation) * rotation * glm::inverse(_fbxJoint->inverseBindRotation));
|
||||
glm::quat targetRotation = _rotationInParentFrame * glm::inverse(_rotation) * rotation * glm::inverse(_fbxJoint->inverseBindRotation);
|
||||
if (constrain && _constraint) {
|
||||
_constraint->softClamp(targetRotation, _rotationInParentFrame, 0.5f);
|
||||
}
|
||||
setRotationInParentFrame(targetRotation);
|
||||
_animationPriority = priority;
|
||||
}
|
||||
}
|
||||
|
@ -99,7 +135,7 @@ void JointState::applyRotationDelta(const glm::quat& delta, bool constrain, floa
|
|||
return;
|
||||
}
|
||||
_animationPriority = priority;
|
||||
if (!constrain || !_isConstrained) {
|
||||
if (!constrain || _constraint == NULL) {
|
||||
// no constraints
|
||||
_rotationInParentFrame = _rotationInParentFrame * glm::inverse(_rotation) * delta * _rotation;
|
||||
_rotation = delta * _rotation;
|
||||
|
@ -122,10 +158,12 @@ void JointState::mixRotationDelta(const glm::quat& delta, float mixFactor, float
|
|||
if (mixFactor > 0.0f && mixFactor <= 1.0f) {
|
||||
targetRotation = safeMix(targetRotation, _fbxJoint->rotation, mixFactor);
|
||||
}
|
||||
if (_constraint) {
|
||||
_constraint->softClamp(targetRotation, _rotationInParentFrame, 0.5f);
|
||||
}
|
||||
setRotationInParentFrame(targetRotation);
|
||||
}
|
||||
|
||||
|
||||
glm::quat JointState::computeParentRotation() const {
|
||||
// R = Rp * Rpre * r * Rpost
|
||||
// Rp = R * (Rpre * r * Rpost)^
|
||||
|
|
|
@ -18,15 +18,19 @@
|
|||
|
||||
#include <FBXReader.h>
|
||||
|
||||
class AngularConstraint;
|
||||
|
||||
class JointState {
|
||||
public:
|
||||
JointState();
|
||||
|
||||
void copyState(const JointState& state);
|
||||
JointState(const JointState& other);
|
||||
~JointState();
|
||||
|
||||
void setFBXJoint(const FBXJoint* joint);
|
||||
const FBXJoint& getFBXJoint() const { return *_fbxJoint; }
|
||||
|
||||
void updateConstraint();
|
||||
void copyState(const JointState& state);
|
||||
|
||||
void computeTransform(const glm::mat4& parentTransform);
|
||||
|
||||
|
@ -64,7 +68,7 @@ public:
|
|||
/// \param rotation is from bind- to model-frame
|
||||
/// computes and sets new _rotationInParentFrame
|
||||
/// NOTE: the JointState's model-frame transform/rotation are NOT updated!
|
||||
void setRotationFromBindFrame(const glm::quat& rotation, float priority);
|
||||
void setRotationFromBindFrame(const glm::quat& rotation, float priority, bool constrain = false);
|
||||
|
||||
void setRotationInParentFrame(const glm::quat& targetRotation);
|
||||
const glm::quat& getRotationInParentFrame() const { return _rotationInParentFrame; }
|
||||
|
@ -95,7 +99,7 @@ private:
|
|||
glm::quat _visibleRotationInParentFrame;
|
||||
|
||||
const FBXJoint* _fbxJoint; // JointState does NOT own its FBXJoint
|
||||
bool _isConstrained;
|
||||
AngularConstraint* _constraint; // JointState owns its AngularConstraint
|
||||
};
|
||||
|
||||
#endif // hifi_JointState_h
|
||||
|
|
|
@ -561,8 +561,6 @@ bool Model::updateGeometry() {
|
|||
void Model::setJointStates(QVector<JointState> states) {
|
||||
_jointStates = states;
|
||||
|
||||
// compute an approximate bounding radius for broadphase collision queries
|
||||
// against PhysicsSimulation boundaries
|
||||
int numJoints = _jointStates.size();
|
||||
float radius = 0.0f;
|
||||
for (int i = 0; i < numJoints; ++i) {
|
||||
|
@ -570,6 +568,7 @@ void Model::setJointStates(QVector<JointState> states) {
|
|||
if (distance > radius) {
|
||||
radius = distance;
|
||||
}
|
||||
_jointStates[i].updateConstraint();
|
||||
}
|
||||
for (int i = 0; i < _jointStates.size(); i++) {
|
||||
_jointStates[i].slaveVisibleTransform();
|
||||
|
@ -1159,14 +1158,9 @@ void Model::inverseKinematics(int endIndex, glm::vec3 targetPosition, const glm:
|
|||
}
|
||||
glm::quat deltaRotation = rotationBetween(leverArm, targetPosition - pivot);
|
||||
|
||||
/* DON'T REMOVE! This code provides the gravitational effect on the IK solution.
|
||||
* It is commented out for the moment because we're blending the IK solution with
|
||||
* the default pose which provides similar stability, but we might want to use
|
||||
* gravity again later.
|
||||
|
||||
// We want to mix the shortest rotation with one that will pull the system down with gravity.
|
||||
// So we compute a simplified center of mass, where each joint has a mass of 1.0 and we don't
|
||||
// bother averaging it because we only need direction.
|
||||
// We want to mix the shortest rotation with one that will pull the system down with gravity
|
||||
// so that limbs don't float unrealistically. To do this we compute a simplified center of mass
|
||||
// where each joint has unit mass and we don't bother averaging it because we only need direction.
|
||||
if (j > 1) {
|
||||
|
||||
glm::vec3 centerOfMass(0.0f);
|
||||
|
@ -1188,11 +1182,9 @@ void Model::inverseKinematics(int endIndex, glm::vec3 targetPosition, const glm:
|
|||
}
|
||||
deltaRotation = safeMix(deltaRotation, gravityDelta, mixFactor);
|
||||
}
|
||||
*/
|
||||
|
||||
// Apply the rotation, but use mixRotationDelta() which blends a bit of the default pose
|
||||
// at in the process. This provides stability to the IK solution and removes the necessity
|
||||
// for the gravity effect.
|
||||
// at in the process. This provides stability to the IK solution for most models.
|
||||
glm::quat oldNextRotation = nextState.getRotation();
|
||||
float mixFactor = 0.03f;
|
||||
nextState.mixRotationDelta(deltaRotation, mixFactor, priority);
|
||||
|
@ -1217,7 +1209,7 @@ void Model::inverseKinematics(int endIndex, glm::vec3 targetPosition, const glm:
|
|||
} while (numIterations < MAX_ITERATION_COUNT && distanceToGo < ACCEPTABLE_IK_ERROR);
|
||||
|
||||
// set final rotation of the end joint
|
||||
endState.setRotationFromBindFrame(targetRotation, priority);
|
||||
endState.setRotationFromBindFrame(targetRotation, priority, true);
|
||||
|
||||
_shapesAreDirty = !_shapes.isEmpty();
|
||||
}
|
||||
|
|
|
@ -214,7 +214,7 @@ void ModelHandler::update() {
|
|||
NetworkAccessManager& networkAccessManager = NetworkAccessManager::getInstance();
|
||||
QNetworkRequest request(url);
|
||||
QNetworkReply* reply = networkAccessManager.head(request);
|
||||
connect(reply, SIGNAL(finished()), SLOT(processCheck()));
|
||||
connect(reply, SIGNAL(finished()), SLOT(downloadFinished()));
|
||||
}
|
||||
_lock.unlock();
|
||||
}
|
||||
|
@ -266,7 +266,7 @@ void ModelHandler::queryNewFiles(QString marker) {
|
|||
NetworkAccessManager& networkAccessManager = NetworkAccessManager::getInstance();
|
||||
QNetworkRequest request(url);
|
||||
QNetworkReply* reply = networkAccessManager.get(request);
|
||||
connect(reply, SIGNAL(finished()), SLOT(processCheck()));
|
||||
connect(reply, SIGNAL(finished()), SLOT(downloadFinished()));
|
||||
|
||||
}
|
||||
|
||||
|
|
|
@ -471,7 +471,10 @@ void ScriptEngine::run() {
|
|||
|
||||
// pack a placeholder value for sequence number for now, will be packed when destination node is known
|
||||
int numPreSequenceNumberBytes = audioPacket.size();
|
||||
packetStream << (quint16)0;
|
||||
packetStream << (quint16) 0;
|
||||
|
||||
// assume scripted avatar audio is mono and set channel flag to zero
|
||||
packetStream << (quint8) 0;
|
||||
|
||||
// use the orientation and position of this avatar for the source of this audio
|
||||
packetStream.writeRawData(reinterpret_cast<const char*>(&_avatarData->getPosition()), sizeof(glm::vec3));
|
||||
|
|
201
libraries/shared/src/AngularConstraint.cpp
Normal file
201
libraries/shared/src/AngularConstraint.cpp
Normal file
|
@ -0,0 +1,201 @@
|
|||
//
|
||||
// AngularConstraint.cpp
|
||||
// interface/src/renderer
|
||||
//
|
||||
// Created by Andrew Meadows on 2014.05.30
|
||||
// Copyright 2014 High Fidelity, Inc.
|
||||
//
|
||||
// Distributed under the Apache License, Version 2.0.
|
||||
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
|
||||
//
|
||||
|
||||
#include <glm/gtx/norm.hpp>
|
||||
|
||||
#include "AngularConstraint.h"
|
||||
#include "SharedUtil.h"
|
||||
|
||||
// helper function
|
||||
/// \param angle radian angle to be clamped within angleMin and angleMax
|
||||
/// \param angleMin minimum value
|
||||
/// \param angleMax maximum value
|
||||
/// \return value between minAngle and maxAngle closest to angle
|
||||
float clampAngle(float angle, float angleMin, float angleMax) {
|
||||
float minDistance = angle - angleMin;
|
||||
float maxDistance = angle - angleMax;
|
||||
if (maxDistance > 0.0f) {
|
||||
minDistance = glm::min(minDistance, angleMin + TWO_PI - angle);
|
||||
angle = (minDistance < maxDistance) ? angleMin : angleMax;
|
||||
} else if (minDistance < 0.0f) {
|
||||
maxDistance = glm::max(maxDistance, angleMax - TWO_PI - angle);
|
||||
angle = (minDistance > maxDistance) ? angleMin : angleMax;
|
||||
}
|
||||
return angle;
|
||||
}
|
||||
|
||||
// static
|
||||
AngularConstraint* AngularConstraint::newAngularConstraint(const glm::vec3& minAngles, const glm::vec3& maxAngles) {
|
||||
float minDistance2 = glm::distance2(minAngles, glm::vec3(-PI, -PI, -PI));
|
||||
float maxDistance2 = glm::distance2(maxAngles, glm::vec3(PI, PI, PI));
|
||||
if (minDistance2 < EPSILON && maxDistance2 < EPSILON) {
|
||||
// no constraint
|
||||
return NULL;
|
||||
}
|
||||
// count the zero length elements
|
||||
glm::vec3 rangeAngles = maxAngles - minAngles;
|
||||
int pivotIndex = -1;
|
||||
int numZeroes = 0;
|
||||
for (int i = 0; i < 3; ++i) {
|
||||
if (rangeAngles[i] < EPSILON) {
|
||||
++numZeroes;
|
||||
} else {
|
||||
pivotIndex = i;
|
||||
}
|
||||
}
|
||||
if (numZeroes == 2) {
|
||||
// this is a hinge
|
||||
int forwardIndex = (pivotIndex + 1) % 3;
|
||||
glm::vec3 forwardAxis(0.0f);
|
||||
forwardAxis[forwardIndex] = 1.0f;
|
||||
glm::vec3 rotationAxis(0.0f);
|
||||
rotationAxis[pivotIndex] = 1.0f;
|
||||
return new HingeConstraint(forwardAxis, rotationAxis, minAngles[pivotIndex], maxAngles[pivotIndex]);
|
||||
} else if (numZeroes == 0) {
|
||||
// approximate the angular limits with a cone roller
|
||||
// we assume the roll is about z
|
||||
glm::vec3 middleAngles = 0.5f * (maxAngles + minAngles);
|
||||
glm::quat yaw = glm::angleAxis(middleAngles[1], glm::vec3(0.0f, 1.0f, 0.0f));
|
||||
glm::quat pitch = glm::angleAxis(middleAngles[0], glm::vec3(1.0f, 0.0f, 0.0f));
|
||||
glm::vec3 coneAxis = pitch * yaw * glm::vec3(0.0f, 0.0f, 1.0f);
|
||||
// the coneAngle is half the average range of the two non-roll rotations
|
||||
glm::vec3 range = maxAngles - minAngles;
|
||||
float coneAngle = 0.25f * (range[0] + range[1]);
|
||||
return new ConeRollerConstraint(coneAngle, coneAxis, minAngles.z, maxAngles.z);
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
bool AngularConstraint::softClamp(glm::quat& targetRotation, const glm::quat& oldRotation, float mixFraction) {
|
||||
glm::quat clampedTarget = targetRotation;
|
||||
bool clamped = clamp(clampedTarget);
|
||||
if (clamped) {
|
||||
// check if oldRotation is also clamped
|
||||
glm::quat clampedOld = oldRotation;
|
||||
bool clamped2 = clamp(clampedOld);
|
||||
if (clamped2) {
|
||||
// oldRotation is already beyond the constraint
|
||||
// we clamp again midway between targetRotation and clamped oldPosition
|
||||
clampedTarget = glm::shortMix(clampedOld, targetRotation, mixFraction);
|
||||
// and then clamp that
|
||||
clamp(clampedTarget);
|
||||
}
|
||||
// finally we mix targetRotation with the clampedTarget
|
||||
targetRotation = glm::shortMix(clampedTarget, targetRotation, mixFraction);
|
||||
}
|
||||
return clamped;
|
||||
}
|
||||
|
||||
HingeConstraint::HingeConstraint(const glm::vec3& forwardAxis, const glm::vec3& rotationAxis, float minAngle, float maxAngle)
|
||||
: _minAngle(minAngle), _maxAngle(maxAngle) {
|
||||
assert(_minAngle < _maxAngle);
|
||||
// we accept the rotationAxis direction
|
||||
assert(glm::length(rotationAxis) > EPSILON);
|
||||
_rotationAxis = glm::normalize(rotationAxis);
|
||||
// but we compute the final _forwardAxis
|
||||
glm::vec3 otherAxis = glm::cross(_rotationAxis, forwardAxis);
|
||||
assert(glm::length(otherAxis) > EPSILON);
|
||||
_forwardAxis = glm::normalize(glm::cross(otherAxis, _rotationAxis));
|
||||
}
|
||||
|
||||
// virtual
|
||||
bool HingeConstraint::clamp(glm::quat& rotation) const {
|
||||
glm::vec3 forward = rotation * _forwardAxis;
|
||||
forward -= glm::dot(forward, _rotationAxis) * _rotationAxis;
|
||||
float length = glm::length(forward);
|
||||
if (length < EPSILON) {
|
||||
// infinite number of solutions ==> choose the middle of the contrained range
|
||||
rotation = glm::angleAxis(0.5f * (_minAngle + _maxAngle), _rotationAxis);
|
||||
return true;
|
||||
}
|
||||
forward /= length;
|
||||
float sign = (glm::dot(glm::cross(_forwardAxis, forward), _rotationAxis) > 0.0f ? 1.0f : -1.0f);
|
||||
//float angle = sign * acos(glm::dot(forward, _forwardAxis) / length);
|
||||
float angle = sign * acos(glm::dot(forward, _forwardAxis));
|
||||
glm::quat newRotation = glm::angleAxis(clampAngle(angle, _minAngle, _maxAngle), _rotationAxis);
|
||||
if (fabsf(1.0f - glm::dot(newRotation, rotation)) > EPSILON * EPSILON) {
|
||||
rotation = newRotation;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool HingeConstraint::softClamp(glm::quat& targetRotation, const glm::quat& oldRotation, float mixFraction) {
|
||||
// the hinge works best without a soft clamp
|
||||
return clamp(targetRotation);
|
||||
}
|
||||
|
||||
ConeRollerConstraint::ConeRollerConstraint(float coneAngle, const glm::vec3& coneAxis, float minRoll, float maxRoll)
|
||||
: _coneAngle(coneAngle), _minRoll(minRoll), _maxRoll(maxRoll) {
|
||||
assert(_maxRoll >= _minRoll);
|
||||
float axisLength = glm::length(coneAxis);
|
||||
assert(axisLength > EPSILON);
|
||||
_coneAxis = coneAxis / axisLength;
|
||||
}
|
||||
|
||||
// virtual
|
||||
bool ConeRollerConstraint::clamp(glm::quat& rotation) const {
|
||||
bool applied = false;
|
||||
glm::vec3 rotatedAxis = rotation * _coneAxis;
|
||||
glm::vec3 perpAxis = glm::cross(rotatedAxis, _coneAxis);
|
||||
float perpAxisLength = glm::length(perpAxis);
|
||||
if (perpAxisLength > EPSILON) {
|
||||
perpAxis /= perpAxisLength;
|
||||
// enforce the cone
|
||||
float angle = acosf(glm::dot(rotatedAxis, _coneAxis));
|
||||
if (angle > _coneAngle) {
|
||||
rotation = glm::angleAxis(angle - _coneAngle, perpAxis) * rotation;
|
||||
rotatedAxis = rotation * _coneAxis;
|
||||
applied = true;
|
||||
}
|
||||
} else {
|
||||
// the rotation is 100% roll
|
||||
// there is no obvious perp axis so we must pick one
|
||||
perpAxis = rotatedAxis;
|
||||
// find the first non-zero element:
|
||||
float iValue = 0.0f;
|
||||
int i = 0;
|
||||
for (i = 0; i < 3; ++i) {
|
||||
if (fabsf(perpAxis[i]) > EPSILON) {
|
||||
iValue = perpAxis[i];
|
||||
break;
|
||||
}
|
||||
}
|
||||
assert(i != 3);
|
||||
// swap or negate the next element
|
||||
int j = (i + 1) % 3;
|
||||
float jValue = perpAxis[j];
|
||||
if (fabsf(jValue - iValue) > EPSILON) {
|
||||
perpAxis[i] = jValue;
|
||||
perpAxis[j] = iValue;
|
||||
} else {
|
||||
perpAxis[i] = -iValue;
|
||||
}
|
||||
perpAxis = glm::cross(perpAxis, rotatedAxis);
|
||||
perpAxisLength = glm::length(perpAxis);
|
||||
assert(perpAxisLength > EPSILON);
|
||||
perpAxis /= perpAxisLength;
|
||||
}
|
||||
// measure the roll
|
||||
// NOTE: perpAxis is perpendicular to both _coneAxis and rotatedConeAxis, so we can
|
||||
// rotate it again and we'll end up with an something that has only been rolled.
|
||||
glm::vec3 rolledPerpAxis = rotation * perpAxis;
|
||||
float sign = glm::dot(rotatedAxis, glm::cross(perpAxis, rolledPerpAxis)) > 0.0f ? 1.0f : -1.0f;
|
||||
float roll = sign * angleBetween(rolledPerpAxis, perpAxis);
|
||||
if (roll < _minRoll || roll > _maxRoll) {
|
||||
float clampedRoll = clampAngle(roll, _minRoll, _maxRoll);
|
||||
rotation = glm::normalize(glm::angleAxis(clampedRoll - roll, rotatedAxis) * rotation);
|
||||
applied = true;
|
||||
}
|
||||
return applied;
|
||||
}
|
||||
|
||||
|
55
libraries/shared/src/AngularConstraint.h
Normal file
55
libraries/shared/src/AngularConstraint.h
Normal file
|
@ -0,0 +1,55 @@
|
|||
//
|
||||
// AngularConstraint.h
|
||||
// interface/src/renderer
|
||||
//
|
||||
// Created by Andrew Meadows on 2014.05.30
|
||||
// Copyright 2013 High Fidelity, Inc.
|
||||
//
|
||||
// Distributed under the Apache License, Version 2.0.
|
||||
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
|
||||
//
|
||||
|
||||
#ifndef hifi_AngularConstraint_h
|
||||
#define hifi_AngularConstraint_h
|
||||
|
||||
#include <glm/glm.hpp>
|
||||
|
||||
|
||||
class AngularConstraint {
|
||||
public:
|
||||
/// \param minAngles minumum euler angles for the constraint
|
||||
/// \param maxAngles minumum euler angles for the constraint
|
||||
/// \return pointer to new AngularConstraint of the right type or NULL if none could be made
|
||||
static AngularConstraint* newAngularConstraint(const glm::vec3& minAngles, const glm::vec3& maxAngles);
|
||||
|
||||
AngularConstraint() {}
|
||||
virtual ~AngularConstraint() {}
|
||||
virtual bool clamp(glm::quat& rotation) const = 0;
|
||||
virtual bool softClamp(glm::quat& targetRotation, const glm::quat& oldRotation, float mixFraction);
|
||||
protected:
|
||||
};
|
||||
|
||||
class HingeConstraint : public AngularConstraint {
|
||||
public:
|
||||
HingeConstraint(const glm::vec3& forwardAxis, const glm::vec3& rotationAxis, float minAngle, float maxAngle);
|
||||
virtual bool clamp(glm::quat& rotation) const;
|
||||
virtual bool softClamp(glm::quat& targetRotation, const glm::quat& oldRotation, float mixFraction);
|
||||
protected:
|
||||
glm::vec3 _forwardAxis;
|
||||
glm::vec3 _rotationAxis;
|
||||
float _minAngle;
|
||||
float _maxAngle;
|
||||
};
|
||||
|
||||
class ConeRollerConstraint : public AngularConstraint {
|
||||
public:
|
||||
ConeRollerConstraint(float coneAngle, const glm::vec3& coneAxis, float minRoll, float maxRoll);
|
||||
virtual bool clamp(glm::quat& rotation) const;
|
||||
private:
|
||||
float _coneAngle;
|
||||
glm::vec3 _coneAxis;
|
||||
float _minRoll;
|
||||
float _maxRoll;
|
||||
};
|
||||
|
||||
#endif // hifi_AngularConstraint_h
|
476
tests/shared/src/AngularConstraintTests.cpp
Normal file
476
tests/shared/src/AngularConstraintTests.cpp
Normal file
|
@ -0,0 +1,476 @@
|
|||
//
|
||||
// AngularConstraintTests.cpp
|
||||
// tests/physics/src
|
||||
//
|
||||
// Created by Andrew Meadows on 2014.05.30
|
||||
// Copyright 2014 High Fidelity, Inc.
|
||||
//
|
||||
// Distributed under the Apache License, Version 2.0.
|
||||
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
|
||||
//
|
||||
|
||||
#include <iostream>
|
||||
|
||||
#include <AngularConstraint.h>
|
||||
#include <SharedUtil.h>
|
||||
#include <StreamUtils.h>
|
||||
|
||||
#include "AngularConstraintTests.h"
|
||||
|
||||
|
||||
void AngularConstraintTests::testHingeConstraint() {
|
||||
float minAngle = -PI;
|
||||
float maxAngle = 0.0f;
|
||||
glm::vec3 yAxis(0.0f, 1.0f, 0.0f);
|
||||
glm::vec3 minAngles(0.0f, -PI, 0.0f);
|
||||
glm::vec3 maxAngles(0.0f, 0.0f, 0.0f);
|
||||
|
||||
AngularConstraint* c = AngularConstraint::newAngularConstraint(minAngles, maxAngles);
|
||||
if (!c) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: newAngularConstraint() should make a constraint" << std::endl;
|
||||
}
|
||||
|
||||
{ // test in middle of constraint
|
||||
float angle = 0.5f * (minAngle + maxAngle);
|
||||
glm::quat rotation = glm::angleAxis(angle, yAxis);
|
||||
|
||||
glm::quat newRotation = rotation;
|
||||
bool constrained = c->clamp(newRotation);
|
||||
if (constrained) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: HingeConstraint should not clamp()" << std::endl;
|
||||
}
|
||||
if (rotation != newRotation) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: HingeConstraint should not change rotation" << std::endl;
|
||||
}
|
||||
}
|
||||
{ // test just inside min edge of constraint
|
||||
float angle = minAngle + 10.f * EPSILON;
|
||||
glm::quat rotation = glm::angleAxis(angle, yAxis);
|
||||
|
||||
glm::quat newRotation = rotation;
|
||||
bool constrained = c->clamp(newRotation);
|
||||
if (constrained) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: HingeConstraint should not clamp()" << std::endl;
|
||||
}
|
||||
if (rotation != newRotation) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: HingeConstraint should not change rotation" << std::endl;
|
||||
}
|
||||
}
|
||||
{ // test just inside max edge of constraint
|
||||
float angle = maxAngle - 10.f * EPSILON;
|
||||
glm::quat rotation = glm::angleAxis(angle, yAxis);
|
||||
|
||||
glm::quat newRotation = rotation;
|
||||
bool constrained = c->clamp(newRotation);
|
||||
if (constrained) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: HingeConstraint should not clamp()" << std::endl;
|
||||
}
|
||||
if (rotation != newRotation) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: HingeConstraint should not change rotation" << std::endl;
|
||||
}
|
||||
}
|
||||
{ // test just outside min edge of constraint
|
||||
float angle = minAngle - 0.001f;
|
||||
glm::quat rotation = glm::angleAxis(angle, yAxis);
|
||||
|
||||
glm::quat newRotation = rotation;
|
||||
bool constrained = c->clamp(newRotation);
|
||||
if (!constrained) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: HingeConstraint should clamp()" << std::endl;
|
||||
}
|
||||
if (rotation == newRotation) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: HingeConstraint should change rotation" << std::endl;
|
||||
}
|
||||
glm::quat expectedRotation = glm::angleAxis(minAngle, yAxis);
|
||||
float qDot = glm::dot(expectedRotation, newRotation);
|
||||
if (fabsf(qDot - 1.0f) > EPSILON) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: HingeConstraint rotation = " << newRotation << " but expected " << expectedRotation << std::endl;
|
||||
}
|
||||
}
|
||||
{ // test just outside max edge of constraint
|
||||
float angle = maxAngle + 0.001f;
|
||||
glm::quat rotation = glm::angleAxis(angle, yAxis);
|
||||
|
||||
glm::quat newRotation = rotation;
|
||||
bool constrained = c->clamp(newRotation);
|
||||
if (!constrained) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: HingeConstraint should clamp()" << std::endl;
|
||||
}
|
||||
if (rotation == newRotation) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: HingeConstraint should change rotation" << std::endl;
|
||||
}
|
||||
glm::quat expectedRotation = glm::angleAxis(maxAngle, yAxis);
|
||||
float qDot = glm::dot(expectedRotation, newRotation);
|
||||
if (fabsf(qDot - 1.0f) > EPSILON) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: HingeConstraint rotation = " << newRotation << " but expected " << expectedRotation << std::endl;
|
||||
}
|
||||
}
|
||||
{ // test far outside min edge of constraint (wraps around to max)
|
||||
float angle = minAngle - 0.75f * (TWO_PI - (maxAngle - minAngle));
|
||||
glm::quat rotation = glm::angleAxis(angle, yAxis);
|
||||
|
||||
glm::quat newRotation = rotation;
|
||||
bool constrained = c->clamp(newRotation);
|
||||
if (!constrained) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: HingeConstraint should clamp()" << std::endl;
|
||||
}
|
||||
if (rotation == newRotation) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: HingeConstraint should change rotation" << std::endl;
|
||||
}
|
||||
glm::quat expectedRotation = glm::angleAxis(maxAngle, yAxis);
|
||||
float qDot = glm::dot(expectedRotation, newRotation);
|
||||
if (fabsf(qDot - 1.0f) > EPSILON) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: HingeConstraint rotation = " << newRotation << " but expected " << expectedRotation << std::endl;
|
||||
}
|
||||
}
|
||||
{ // test far outside max edge of constraint (wraps around to min)
|
||||
float angle = maxAngle + 0.75f * (TWO_PI - (maxAngle - minAngle));
|
||||
glm::quat rotation = glm::angleAxis(angle, yAxis);
|
||||
|
||||
glm::quat newRotation = rotation;
|
||||
bool constrained = c->clamp(newRotation);
|
||||
if (!constrained) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: HingeConstraint should clamp()" << std::endl;
|
||||
}
|
||||
if (rotation == newRotation) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: HingeConstraint should change rotation" << std::endl;
|
||||
}
|
||||
glm::quat expectedRotation = glm::angleAxis(minAngle, yAxis);
|
||||
float qDot = glm::dot(expectedRotation, newRotation);
|
||||
if (fabsf(qDot - 1.0f) > EPSILON) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: HingeConstraint rotation = " << newRotation << " but expected " << expectedRotation << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
float ACCEPTABLE_ERROR = 1.0e-4f;
|
||||
{ // test nearby but off-axis rotation
|
||||
float offAngle = 0.1f;
|
||||
glm::quat offRotation(offAngle, glm::vec3(1.0f, 0.0f, 0.0f));
|
||||
float angle = 0.5f * (maxAngle + minAngle);
|
||||
glm::quat rotation = offRotation * glm::angleAxis(angle, yAxis);
|
||||
|
||||
glm::quat newRotation = rotation;
|
||||
bool constrained = c->clamp(newRotation);
|
||||
if (!constrained) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: HingeConstraint should clamp()" << std::endl;
|
||||
}
|
||||
if (rotation == newRotation) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: HingeConstraint should change rotation" << std::endl;
|
||||
}
|
||||
glm::quat expectedRotation = glm::angleAxis(angle, yAxis);
|
||||
float qDot = glm::dot(expectedRotation, newRotation);
|
||||
if (fabsf(qDot - 1.0f) > ACCEPTABLE_ERROR) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: HingeConstraint rotation = " << newRotation << " but expected " << expectedRotation << std::endl;
|
||||
}
|
||||
}
|
||||
{ // test way off rotation > maxAngle
|
||||
float offAngle = 0.5f;
|
||||
glm::quat offRotation = glm::angleAxis(offAngle, glm::vec3(1.0f, 0.0f, 0.0f));
|
||||
float angle = maxAngle + 0.2f * (TWO_PI - (maxAngle - minAngle));
|
||||
glm::quat rotation = glm::angleAxis(angle, yAxis);
|
||||
rotation = offRotation * glm::angleAxis(angle, yAxis);
|
||||
|
||||
glm::quat newRotation = rotation;
|
||||
bool constrained = c->clamp(newRotation);
|
||||
if (!constrained) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: HingeConstraint should clamp()" << std::endl;
|
||||
}
|
||||
if (rotation == newRotation) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: HingeConstraint should change rotation" << std::endl;
|
||||
}
|
||||
glm::quat expectedRotation = glm::angleAxis(maxAngle, yAxis);
|
||||
float qDot = glm::dot(expectedRotation, newRotation);
|
||||
if (fabsf(qDot - 1.0f) > ACCEPTABLE_ERROR) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: HingeConstraint rotation = " << newRotation << " but expected " << expectedRotation << std::endl;
|
||||
}
|
||||
}
|
||||
{ // test way off rotation < minAngle
|
||||
float offAngle = 0.5f;
|
||||
glm::quat offRotation = glm::angleAxis(offAngle, glm::vec3(1.0f, 0.0f, 0.0f));
|
||||
float angle = minAngle - 0.2f * (TWO_PI - (maxAngle - minAngle));
|
||||
glm::quat rotation = glm::angleAxis(angle, yAxis);
|
||||
rotation = offRotation * glm::angleAxis(angle, yAxis);
|
||||
|
||||
glm::quat newRotation = rotation;
|
||||
bool constrained = c->clamp(newRotation);
|
||||
if (!constrained) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: HingeConstraint should clamp()" << std::endl;
|
||||
}
|
||||
if (rotation == newRotation) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: HingeConstraint should change rotation" << std::endl;
|
||||
}
|
||||
glm::quat expectedRotation = glm::angleAxis(minAngle, yAxis);
|
||||
float qDot = glm::dot(expectedRotation, newRotation);
|
||||
if (fabsf(qDot - 1.0f) > ACCEPTABLE_ERROR) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: HingeConstraint rotation = " << newRotation << " but expected " << expectedRotation << std::endl;
|
||||
}
|
||||
}
|
||||
{ // test way off rotation > maxAngle with wrap over to minAngle
|
||||
float offAngle = -0.5f;
|
||||
glm::quat offRotation = glm::angleAxis(offAngle, glm::vec3(1.0f, 0.0f, 0.0f));
|
||||
float angle = maxAngle + 0.6f * (TWO_PI - (maxAngle - minAngle));
|
||||
glm::quat rotation = glm::angleAxis(angle, yAxis);
|
||||
rotation = offRotation * glm::angleAxis(angle, yAxis);
|
||||
|
||||
glm::quat newRotation = rotation;
|
||||
bool constrained = c->clamp(newRotation);
|
||||
if (!constrained) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: HingeConstraint should clamp()" << std::endl;
|
||||
}
|
||||
if (rotation == newRotation) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: HingeConstraint should change rotation" << std::endl;
|
||||
}
|
||||
glm::quat expectedRotation = glm::angleAxis(minAngle, yAxis);
|
||||
float qDot = glm::dot(expectedRotation, newRotation);
|
||||
if (fabsf(qDot - 1.0f) > ACCEPTABLE_ERROR) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: HingeConstraint rotation = " << newRotation << " but expected " << expectedRotation << std::endl;
|
||||
}
|
||||
}
|
||||
{ // test way off rotation < minAngle with wrap over to maxAngle
|
||||
float offAngle = -0.6f;
|
||||
glm::quat offRotation = glm::angleAxis(offAngle, glm::vec3(1.0f, 0.0f, 0.0f));
|
||||
float angle = minAngle - 0.7f * (TWO_PI - (maxAngle - minAngle));
|
||||
glm::quat rotation = glm::angleAxis(angle, yAxis);
|
||||
rotation = offRotation * glm::angleAxis(angle, yAxis);
|
||||
|
||||
glm::quat newRotation = rotation;
|
||||
bool constrained = c->clamp(newRotation);
|
||||
if (!constrained) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: HingeConstraint should clamp()" << std::endl;
|
||||
}
|
||||
if (rotation == newRotation) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: HingeConstraint should change rotation" << std::endl;
|
||||
}
|
||||
glm::quat expectedRotation = glm::angleAxis(maxAngle, yAxis);
|
||||
float qDot = glm::dot(expectedRotation, newRotation);
|
||||
if (fabsf(qDot - 1.0f) > ACCEPTABLE_ERROR) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: HingeConstraint rotation = " << newRotation << " but expected " << expectedRotation << std::endl;
|
||||
}
|
||||
}
|
||||
delete c;
|
||||
}
|
||||
|
||||
void AngularConstraintTests::testConeRollerConstraint() {
|
||||
float minAngleX = -PI / 5.0f;
|
||||
float minAngleY = -PI / 5.0f;
|
||||
float minAngleZ = -PI / 8.0f;
|
||||
|
||||
float maxAngleX = PI / 4.0f;
|
||||
float maxAngleY = PI / 3.0f;
|
||||
float maxAngleZ = PI / 4.0f;
|
||||
|
||||
glm::vec3 minAngles(minAngleX, minAngleY, minAngleZ);
|
||||
glm::vec3 maxAngles(maxAngleX, maxAngleY, maxAngleZ);
|
||||
AngularConstraint* c = AngularConstraint::newAngularConstraint(minAngles, maxAngles);
|
||||
|
||||
float expectedConeAngle = 0.25 * (maxAngleX - minAngleX + maxAngleY - minAngleY);
|
||||
glm::vec3 middleAngles = 0.5f * (maxAngles + minAngles);
|
||||
glm::quat yaw = glm::angleAxis(middleAngles[1], glm::vec3(0.0f, 1.0f, 0.0f));
|
||||
glm::quat pitch = glm::angleAxis(middleAngles[0], glm::vec3(1.0f, 0.0f, 0.0f));
|
||||
glm::vec3 expectedConeAxis = pitch * yaw * glm::vec3(0.0f, 0.0f, 1.0f);
|
||||
|
||||
glm::vec3 xAxis(1.0f, 0.0f, 0.0f);
|
||||
glm::vec3 perpAxis = glm::normalize(xAxis - glm::dot(xAxis, expectedConeAxis) * expectedConeAxis);
|
||||
|
||||
if (!c) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: newAngularConstraint() should make a constraint" << std::endl;
|
||||
}
|
||||
{ // test in middle of constraint
|
||||
glm::vec3 angles(PI/20.0f, 0.0f, PI/10.0f);
|
||||
glm::quat rotation(angles);
|
||||
|
||||
glm::quat newRotation = rotation;
|
||||
bool constrained = c->clamp(newRotation);
|
||||
if (constrained) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: ConeRollerConstraint should not clamp()" << std::endl;
|
||||
}
|
||||
if (rotation != newRotation) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: ConeRollerConstraint should not change rotation" << std::endl;
|
||||
}
|
||||
}
|
||||
float deltaAngle = 0.001f;
|
||||
{ // test just inside edge of cone
|
||||
glm::quat rotation = glm::angleAxis(expectedConeAngle - deltaAngle, perpAxis);
|
||||
|
||||
glm::quat newRotation = rotation;
|
||||
bool constrained = c->clamp(newRotation);
|
||||
if (constrained) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: ConeRollerConstraint should not clamp()" << std::endl;
|
||||
}
|
||||
if (rotation != newRotation) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: ConeRollerConstraint should not change rotation" << std::endl;
|
||||
}
|
||||
}
|
||||
{ // test just outside edge of cone
|
||||
glm::quat rotation = glm::angleAxis(expectedConeAngle + deltaAngle, perpAxis);
|
||||
|
||||
glm::quat newRotation = rotation;
|
||||
bool constrained = c->clamp(newRotation);
|
||||
if (!constrained) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: ConeRollerConstraint should clamp()" << std::endl;
|
||||
}
|
||||
if (rotation == newRotation) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: ConeRollerConstraint should change rotation" << std::endl;
|
||||
}
|
||||
}
|
||||
{ // test just inside min edge of roll
|
||||
glm::quat rotation = glm::angleAxis(minAngleZ + deltaAngle, expectedConeAxis);
|
||||
|
||||
glm::quat newRotation = rotation;
|
||||
bool constrained = c->clamp(newRotation);
|
||||
if (constrained) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: ConeRollerConstraint should not clamp()" << std::endl;
|
||||
}
|
||||
if (rotation != newRotation) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: ConeRollerConstraint should not change rotation" << std::endl;
|
||||
}
|
||||
}
|
||||
{ // test just inside max edge of roll
|
||||
glm::quat rotation = glm::angleAxis(maxAngleZ - deltaAngle, expectedConeAxis);
|
||||
|
||||
glm::quat newRotation = rotation;
|
||||
bool constrained = c->clamp(newRotation);
|
||||
if (constrained) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: ConeRollerConstraint should not clamp()" << std::endl;
|
||||
}
|
||||
if (rotation != newRotation) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: ConeRollerConstraint should not change rotation" << std::endl;
|
||||
}
|
||||
}
|
||||
{ // test just outside min edge of roll
|
||||
glm::quat rotation = glm::angleAxis(minAngleZ - deltaAngle, expectedConeAxis);
|
||||
|
||||
glm::quat newRotation = rotation;
|
||||
bool constrained = c->clamp(newRotation);
|
||||
if (!constrained) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: ConeRollerConstraint should clamp()" << std::endl;
|
||||
}
|
||||
if (rotation == newRotation) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: ConeRollerConstraint should change rotation" << std::endl;
|
||||
}
|
||||
glm::quat expectedRotation = glm::angleAxis(minAngleZ, expectedConeAxis);
|
||||
if (fabsf(1.0f - glm::dot(newRotation, expectedRotation)) > EPSILON) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: rotation = " << newRotation << " but expected " << expectedRotation << std::endl;
|
||||
}
|
||||
}
|
||||
{ // test just outside max edge of roll
|
||||
glm::quat rotation = glm::angleAxis(maxAngleZ + deltaAngle, expectedConeAxis);
|
||||
|
||||
glm::quat newRotation = rotation;
|
||||
bool constrained = c->clamp(newRotation);
|
||||
if (!constrained) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: ConeRollerConstraint should clamp()" << std::endl;
|
||||
}
|
||||
if (rotation == newRotation) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: ConeRollerConstraint should change rotation" << std::endl;
|
||||
}
|
||||
glm::quat expectedRotation = glm::angleAxis(maxAngleZ, expectedConeAxis);
|
||||
if (fabsf(1.0f - glm::dot(newRotation, expectedRotation)) > EPSILON) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: rotation = " << newRotation << " but expected " << expectedRotation << std::endl;
|
||||
}
|
||||
}
|
||||
deltaAngle = 0.25f * expectedConeAngle;
|
||||
{ // test far outside cone and min roll
|
||||
glm::quat roll = glm::angleAxis(minAngleZ - deltaAngle, expectedConeAxis);
|
||||
glm::quat pitchYaw = glm::angleAxis(expectedConeAngle + deltaAngle, perpAxis);
|
||||
glm::quat rotation = pitchYaw * roll;
|
||||
|
||||
glm::quat newRotation = rotation;
|
||||
bool constrained = c->clamp(newRotation);
|
||||
if (!constrained) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: ConeRollerConstraint should clamp()" << std::endl;
|
||||
}
|
||||
if (rotation == newRotation) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: ConeRollerConstraint should change rotation" << std::endl;
|
||||
}
|
||||
glm::quat expectedRoll = glm::angleAxis(minAngleZ, expectedConeAxis);
|
||||
glm::quat expectedPitchYaw = glm::angleAxis(expectedConeAngle, perpAxis);
|
||||
glm::quat expectedRotation = expectedPitchYaw * expectedRoll;
|
||||
if (fabsf(1.0f - glm::dot(newRotation, expectedRotation)) > EPSILON) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: rotation = " << newRotation << " but expected " << expectedRotation << std::endl;
|
||||
}
|
||||
}
|
||||
{ // test far outside cone and max roll
|
||||
glm::quat roll = glm::angleAxis(maxAngleZ + deltaAngle, expectedConeAxis);
|
||||
glm::quat pitchYaw = glm::angleAxis(- expectedConeAngle - deltaAngle, perpAxis);
|
||||
glm::quat rotation = pitchYaw * roll;
|
||||
|
||||
glm::quat newRotation = rotation;
|
||||
bool constrained = c->clamp(newRotation);
|
||||
if (!constrained) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: ConeRollerConstraint should clamp()" << std::endl;
|
||||
}
|
||||
if (rotation == newRotation) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: ConeRollerConstraint should change rotation" << std::endl;
|
||||
}
|
||||
glm::quat expectedRoll = glm::angleAxis(maxAngleZ, expectedConeAxis);
|
||||
glm::quat expectedPitchYaw = glm::angleAxis(- expectedConeAngle, perpAxis);
|
||||
glm::quat expectedRotation = expectedPitchYaw * expectedRoll;
|
||||
if (fabsf(1.0f - glm::dot(newRotation, expectedRotation)) > EPSILON) {
|
||||
std::cout << __FILE__ << ":" << __LINE__
|
||||
<< " ERROR: rotation = " << newRotation << " but expected " << expectedRotation << std::endl;
|
||||
}
|
||||
}
|
||||
delete c;
|
||||
}
|
||||
|
||||
void AngularConstraintTests::runAllTests() {
|
||||
testHingeConstraint();
|
||||
testConeRollerConstraint();
|
||||
}
|
21
tests/shared/src/AngularConstraintTests.h
Normal file
21
tests/shared/src/AngularConstraintTests.h
Normal file
|
@ -0,0 +1,21 @@
|
|||
//
|
||||
// AngularConstraintTests.h
|
||||
// tests/physics/src
|
||||
//
|
||||
// Created by Andrew Meadows on 2014.05.30
|
||||
// Copyright 2014 High Fidelity, Inc.
|
||||
//
|
||||
// Distributed under the Apache License, Version 2.0.
|
||||
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
|
||||
//
|
||||
|
||||
#ifndef hifi_AngularConstraintTests_h
|
||||
#define hifi_AngularConstraintTests_h
|
||||
|
||||
namespace AngularConstraintTests {
|
||||
void testHingeConstraint();
|
||||
void testConeRollerConstraint();
|
||||
void runAllTests();
|
||||
}
|
||||
|
||||
#endif // hifi_AngularConstraintTests_h
|
|
@ -8,9 +8,11 @@
|
|||
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
|
||||
//
|
||||
|
||||
#include "AngularConstraintTests.h"
|
||||
#include "MovingPercentileTests.h"
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
MovingPercentileTests::runAllTests();
|
||||
AngularConstraintTests::runAllTests();
|
||||
return 0;
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue