Merge pull request #7961 from AndrewMeadows/convexification

vhacd-util improvements
This commit is contained in:
Brad Hefta-Gaub 2016-06-02 14:52:10 -07:00
commit 4b2e2ca10a
5 changed files with 362 additions and 209 deletions

View file

@ -9,10 +9,12 @@
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include <QVector>
#include "VHACDUtil.h"
const float COLLISION_TETRAHEDRON_SCALE = 0.25f;
#include <unordered_map>
#include <QVector>
#include <NumericalConstants.h>
// FBXReader jumbles the order of the meshes by reading them back out of a hashtable. This will put
@ -27,13 +29,16 @@ void reSortFBXGeometryMeshes(FBXGeometry& geometry) {
// Read all the meshes from provided FBX file
bool vhacd::VHACDUtil::loadFBX(const QString filename, FBXGeometry& result) {
if (_verbose) {
qDebug() << "reading FBX file =" << filename << "...";
}
// open the fbx file
QFile fbx(filename);
if (!fbx.open(QIODevice::ReadOnly)) {
qWarning() << "unable to open FBX file =" << filename;
return false;
}
std::cout << "Reading FBX.....\n";
try {
QByteArray fbxContents = fbx.readAll();
FBXGeometry* geom;
@ -42,14 +47,14 @@ bool vhacd::VHACDUtil::loadFBX(const QString filename, FBXGeometry& result) {
} else if (filename.toLower().endsWith(".fbx")) {
geom = readFBX(fbxContents, QVariantHash(), filename);
} else {
qDebug() << "unknown file extension";
qWarning() << "file has unknown extension" << filename;
return false;
}
result = *geom;
reSortFBXGeometryMeshes(result);
} catch (const QString& error) {
qDebug() << "Error reading " << filename << ": " << error;
qWarning() << "error reading" << filename << ":" << error;
return false;
}
@ -57,68 +62,62 @@ bool vhacd::VHACDUtil::loadFBX(const QString filename, FBXGeometry& result) {
}
unsigned int getTrianglesInMeshPart(const FBXMeshPart &meshPart, std::vector<int>& triangles) {
// append all the triangles (and converted quads) from this mesh-part to triangles
std::vector<int> meshPartTriangles = meshPart.triangleIndices.toStdVector();
triangles.insert(triangles.end(), meshPartTriangles.begin(), meshPartTriangles.end());
void getTrianglesInMeshPart(const FBXMeshPart &meshPart, std::vector<int>& triangleIndices) {
// append triangle indices
triangleIndices.reserve(triangleIndices.size() + (size_t)meshPart.triangleIndices.size());
for (auto index : meshPart.triangleIndices) {
triangleIndices.push_back(index);
}
// convert quads to triangles
unsigned int triangleCount = meshPart.triangleIndices.size() / 3;
unsigned int quadCount = meshPart.quadIndices.size() / 4;
for (unsigned int i = 0; i < quadCount; i++) {
unsigned int p0Index = meshPart.quadIndices[i * 4];
unsigned int p1Index = meshPart.quadIndices[i * 4 + 1];
unsigned int p2Index = meshPart.quadIndices[i * 4 + 2];
unsigned int p3Index = meshPart.quadIndices[i * 4 + 3];
const uint32_t QUAD_STRIDE = 4;
uint32_t numIndices = (uint32_t)meshPart.quadIndices.size();
for (uint32_t i = 0; i < numIndices; i += QUAD_STRIDE) {
uint32_t p0Index = meshPart.quadIndices[i];
uint32_t p1Index = meshPart.quadIndices[i + 1];
uint32_t p2Index = meshPart.quadIndices[i + 2];
uint32_t p3Index = meshPart.quadIndices[i + 3];
// split each quad into two triangles
triangles.push_back(p0Index);
triangles.push_back(p1Index);
triangles.push_back(p2Index);
triangles.push_back(p0Index);
triangles.push_back(p2Index);
triangles.push_back(p3Index);
triangleCount += 2;
triangleIndices.push_back(p0Index);
triangleIndices.push_back(p1Index);
triangleIndices.push_back(p2Index);
triangleIndices.push_back(p0Index);
triangleIndices.push_back(p2Index);
triangleIndices.push_back(p3Index);
}
}
return triangleCount;
}
void vhacd::VHACDUtil::fattenMeshes(const FBXMesh& mesh, FBXMesh& result,
unsigned int& meshPartCount,
unsigned int startMeshIndex, unsigned int endMeshIndex) const {
void vhacd::VHACDUtil::fattenMesh(const FBXMesh& mesh, const glm::mat4& geometryOffset, FBXMesh& result) const {
// this is used to make meshes generated from a highfield collidable. each triangle
// is converted into a tetrahedron and made into its own mesh-part.
std::vector<int> triangles;
std::vector<int> triangleIndices;
foreach (const FBXMeshPart &meshPart, mesh.parts) {
if (meshPartCount < startMeshIndex || meshPartCount >= endMeshIndex) {
meshPartCount++;
continue;
}
getTrianglesInMeshPart(meshPart, triangles);
getTrianglesInMeshPart(meshPart, triangleIndices);
}
auto triangleCount = triangles.size() / 3;
if (triangleCount == 0) {
if (triangleIndices.size() == 0) {
return;
}
int indexStartOffset = result.vertices.size();
// new mesh gets the transformed points from the original
glm::mat4 totalTransform = geometryOffset * mesh.modelTransform;
for (int i = 0; i < mesh.vertices.size(); i++) {
// apply the source mesh's transform to the points
glm::vec4 v = mesh.modelTransform * glm::vec4(mesh.vertices[i], 1.0f);
glm::vec4 v = totalTransform * glm::vec4(mesh.vertices[i], 1.0f);
result.vertices += glm::vec3(v);
}
// turn each triangle into a tetrahedron
for (unsigned int i = 0; i < triangleCount; i++) {
int index0 = triangles[i * 3] + indexStartOffset;
int index1 = triangles[i * 3 + 1] + indexStartOffset;
int index2 = triangles[i * 3 + 2] + indexStartOffset;
const uint32_t TRIANGLE_STRIDE = 3;
const float COLLISION_TETRAHEDRON_SCALE = 0.25f;
for (uint32_t i = 0; i < triangleIndices.size(); i += TRIANGLE_STRIDE) {
int index0 = triangleIndices[i] + indexStartOffset;
int index1 = triangleIndices[i + 1] + indexStartOffset;
int index2 = triangleIndices[i + 2] + indexStartOffset;
// TODO: skip triangles with a normal that points more negative-y than positive-y
@ -155,156 +154,304 @@ void vhacd::VHACDUtil::fattenMeshes(const FBXMesh& mesh, FBXMesh& result,
}
}
AABox getAABoxForMeshPart(const FBXMesh& mesh, const FBXMeshPart &meshPart) {
AABox aaBox;
unsigned int triangleCount = meshPart.triangleIndices.size() / 3;
for (unsigned int i = 0; i < triangleCount; ++i) {
aaBox += mesh.vertices[meshPart.triangleIndices[i * 3]];
aaBox += mesh.vertices[meshPart.triangleIndices[i * 3 + 1]];
aaBox += mesh.vertices[meshPart.triangleIndices[i * 3 + 2]];
const int TRIANGLE_STRIDE = 3;
for (int i = 0; i < meshPart.triangleIndices.size(); i += TRIANGLE_STRIDE) {
aaBox += mesh.vertices[meshPart.triangleIndices[i]];
aaBox += mesh.vertices[meshPart.triangleIndices[i + 1]];
aaBox += mesh.vertices[meshPart.triangleIndices[i + 2]];
}
unsigned int quadCount = meshPart.quadIndices.size() / 4;
for (unsigned int i = 0; i < quadCount; ++i) {
aaBox += mesh.vertices[meshPart.quadIndices[i * 4]];
aaBox += mesh.vertices[meshPart.quadIndices[i * 4 + 1]];
aaBox += mesh.vertices[meshPart.quadIndices[i * 4 + 2]];
aaBox += mesh.vertices[meshPart.quadIndices[i * 4 + 3]];
const int QUAD_STRIDE = 4;
for (int i = 0; i < meshPart.quadIndices.size(); i += QUAD_STRIDE) {
aaBox += mesh.vertices[meshPart.quadIndices[i]];
aaBox += mesh.vertices[meshPart.quadIndices[i + 1]];
aaBox += mesh.vertices[meshPart.quadIndices[i + 2]];
aaBox += mesh.vertices[meshPart.quadIndices[i + 3]];
}
return aaBox;
}
bool vhacd::VHACDUtil::computeVHACD(FBXGeometry& geometry,
VHACD::IVHACD::Parameters params,
FBXGeometry& result,
int startMeshIndex,
int endMeshIndex,
float minimumMeshSize, float maximumMeshSize) {
// count the mesh-parts
int meshCount = 0;
foreach (const FBXMesh& mesh, geometry.meshes) {
meshCount += mesh.parts.size();
class TriangleEdge {
public:
TriangleEdge() {}
TriangleEdge(uint32_t A, uint32_t B) {
setIndices(A, B);
}
void setIndices(uint32_t A, uint32_t B) {
if (A < B) {
_indexA = A;
_indexB = B;
} else {
_indexA = B;
_indexB = A;
}
}
bool operator==(const TriangleEdge& other) const {
return _indexA == other._indexA && _indexB == other._indexB;
}
VHACD::IVHACD * interfaceVHACD = VHACD::CreateVHACD();
uint32_t getIndexA() const { return _indexA; }
uint32_t getIndexB() const { return _indexB; }
private:
uint32_t _indexA { (uint32_t)(-1) };
uint32_t _indexB { (uint32_t)(-1) };
};
if (startMeshIndex < 0) {
startMeshIndex = 0;
namespace std {
template <>
struct hash<TriangleEdge> {
std::size_t operator()(const TriangleEdge& edge) const {
// use Cantor's pairing function to generate a hash of ZxZ --> Z
uint32_t ab = edge.getIndexA() + edge.getIndexB();
return hash<int>()((ab * (ab + 1)) / 2 + edge.getIndexB());
}
if (endMeshIndex < 0) {
endMeshIndex = meshCount;
};
}
std::cout << "Performing V-HACD computation on " << endMeshIndex - startMeshIndex << " meshes ..... " << std::endl;
// returns false if any edge has only one adjacent triangle
bool isClosedManifold(const std::vector<int>& triangleIndices) {
using EdgeList = std::unordered_map<TriangleEdge, int>;
EdgeList edges;
result.meshExtents.reset();
result.meshes.append(FBXMesh());
FBXMesh &resultMesh = result.meshes.last();
// count the triangles for each edge
const uint32_t TRIANGLE_STRIDE = 3;
for (uint32_t i = 0; i < triangleIndices.size(); i += TRIANGLE_STRIDE) {
TriangleEdge edge;
// the triangles indices are stored in sequential order
for (uint32_t j = 0; j < 3; ++j) {
edge.setIndices(triangleIndices[i + j], triangleIndices[i + ((j + 1) % 3)]);
int count = 0;
foreach (const FBXMesh& mesh, geometry.meshes) {
// each mesh has its own transform to move it to model-space
std::vector<glm::vec3> vertices;
foreach (glm::vec3 vertex, mesh.vertices) {
vertices.push_back(glm::vec3(mesh.modelTransform * glm::vec4(vertex, 1.0f)));
}
foreach (const FBXMeshPart &meshPart, mesh.parts) {
if (count < startMeshIndex || count >= endMeshIndex) {
count ++;
continue;
}
qDebug() << "--------------------";
std::vector<int> triangles;
unsigned int triangleCount = getTrianglesInMeshPart(meshPart, triangles);
// only process meshes with triangles
if (triangles.size() <= 0) {
qDebug() << " Skipping (no triangles)...";
count++;
continue;
}
auto nPoints = vertices.size();
AABox aaBox = getAABoxForMeshPart(mesh, meshPart);
const float largestDimension = aaBox.getLargestDimension();
qDebug() << "Mesh " << count << " -- " << nPoints << " points, " << triangleCount << " triangles, "
<< "size =" << largestDimension;
if (largestDimension < minimumMeshSize) {
qDebug() << " Skipping (too small)...";
count++;
continue;
}
if (maximumMeshSize > 0.0f && largestDimension > maximumMeshSize) {
qDebug() << " Skipping (too large)...";
count++;
continue;
}
// compute approximate convex decomposition
bool res = interfaceVHACD->Compute(&vertices[0].x, 3, (uint)nPoints, &triangles[0], 3, triangleCount, params);
if (!res){
qDebug() << "V-HACD computation failed for Mesh : " << count;
count++;
continue;
EdgeList::iterator edgeEntry = edges.find(edge);
if (edgeEntry == edges.end()) {
edges.insert(std::pair<TriangleEdge, uint32_t>(edge, 1));
} else {
edgeEntry->second += 1;
}
}
}
// scan for outside edge
for (auto& edgeEntry : edges) {
if (edgeEntry.second == 1) {
return false;
}
}
return true;
}
void vhacd::VHACDUtil::getConvexResults(VHACD::IVHACD* convexifier, FBXMesh& resultMesh) const {
// Number of hulls for this input meshPart
unsigned int nConvexHulls = interfaceVHACD->GetNConvexHulls();
uint32_t numHulls = convexifier->GetNConvexHulls();
if (_verbose) {
qDebug() << " hulls =" << numHulls;
}
// create an output meshPart for each convex hull
for (unsigned int j = 0; j < nConvexHulls; j++) {
const uint32_t TRIANGLE_STRIDE = 3;
const uint32_t POINT_STRIDE = 3;
for (uint32_t j = 0; j < numHulls; j++) {
VHACD::IVHACD::ConvexHull hull;
interfaceVHACD->GetConvexHull(j, hull);
convexifier->GetConvexHull(j, hull);
resultMesh.parts.append(FBXMeshPart());
FBXMeshPart& resultMeshPart = resultMesh.parts.last();
int hullIndexStart = resultMesh.vertices.size();
for (unsigned int i = 0; i < hull.m_nPoints; i++) {
float x = hull.m_points[i * 3];
float y = hull.m_points[i * 3 + 1];
float z = hull.m_points[i * 3 + 2];
resultMesh.vertices.reserve(hullIndexStart + hull.m_nPoints);
uint32_t numIndices = hull.m_nPoints * POINT_STRIDE;
for (uint32_t i = 0; i < numIndices; i += POINT_STRIDE) {
float x = hull.m_points[i];
float y = hull.m_points[i + 1];
float z = hull.m_points[i + 2];
resultMesh.vertices.append(glm::vec3(x, y, z));
}
for (unsigned int i = 0; i < hull.m_nTriangles; i++) {
int index0 = hull.m_triangles[i * 3] + hullIndexStart;
int index1 = hull.m_triangles[i * 3 + 1] + hullIndexStart;
int index2 = hull.m_triangles[i * 3 + 2] + hullIndexStart;
resultMeshPart.triangleIndices.append(index0);
resultMeshPart.triangleIndices.append(index1);
resultMeshPart.triangleIndices.append(index2);
numIndices = hull.m_nTriangles * TRIANGLE_STRIDE;
resultMeshPart.triangleIndices.reserve(resultMeshPart.triangleIndices.size() + numIndices);
for (uint32_t i = 0; i < numIndices; i += TRIANGLE_STRIDE) {
resultMeshPart.triangleIndices.append(hull.m_triangles[i] + hullIndexStart);
resultMeshPart.triangleIndices.append(hull.m_triangles[i + 1] + hullIndexStart);
resultMeshPart.triangleIndices.append(hull.m_triangles[i + 2] + hullIndexStart);
}
if (_verbose) {
qDebug() << " hull" << j << " vertices =" << hull.m_nPoints
<< " triangles =" << hull.m_nTriangles
<< " FBXMeshVertices =" << resultMesh.vertices.size();
}
}
}
count++;
float computeDt(uint64_t start) {
return (float)(usecTimestampNow() - start) / (float)USECS_PER_SECOND;
}
bool vhacd::VHACDUtil::computeVHACD(FBXGeometry& geometry,
VHACD::IVHACD::Parameters params,
FBXGeometry& result,
float minimumMeshSize, float maximumMeshSize) {
if (_verbose) {
qDebug() << "meshes =" << geometry.meshes.size();
}
// count the mesh-parts
int numParts = 0;
foreach (const FBXMesh& mesh, geometry.meshes) {
numParts += mesh.parts.size();
}
if (_verbose) {
qDebug() << "total parts =" << numParts;
}
VHACD::IVHACD * convexifier = VHACD::CreateVHACD();
result.meshExtents.reset();
result.meshes.append(FBXMesh());
FBXMesh &resultMesh = result.meshes.last();
const uint32_t POINT_STRIDE = 3;
const uint32_t TRIANGLE_STRIDE = 3;
int meshIndex = 0;
int validPartsFound = 0;
foreach (const FBXMesh& mesh, geometry.meshes) {
// find duplicate points
int numDupes = 0;
std::vector<int> dupeIndexMap;
dupeIndexMap.reserve(mesh.vertices.size());
for (int i = 0; i < mesh.vertices.size(); ++i) {
dupeIndexMap.push_back(i);
for (int j = 0; j < i; ++j) {
float distance = glm::distance2(mesh.vertices[i], mesh.vertices[j]);
const float MAX_DUPE_DISTANCE_SQUARED = 0.000001f;
if (distance < MAX_DUPE_DISTANCE_SQUARED) {
dupeIndexMap[i] = j;
++numDupes;
break;
}
}
}
// each mesh has its own transform to move it to model-space
std::vector<glm::vec3> vertices;
glm::mat4 totalTransform = geometry.offset * mesh.modelTransform;
foreach (glm::vec3 vertex, mesh.vertices) {
vertices.push_back(glm::vec3(totalTransform * glm::vec4(vertex, 1.0f)));
}
uint32_t numVertices = (uint32_t)vertices.size();
if (_verbose) {
qDebug() << "mesh" << meshIndex << ": "
<< " parts =" << mesh.parts.size() << " clusters =" << mesh.clusters.size()
<< " vertices =" << numVertices;
}
++meshIndex;
std::vector<int> openParts;
int partIndex = 0;
std::vector<int> triangleIndices;
foreach (const FBXMeshPart &meshPart, mesh.parts) {
triangleIndices.clear();
getTrianglesInMeshPart(meshPart, triangleIndices);
// only process meshes with triangles
if (triangleIndices.size() <= 0) {
if (_verbose) {
qDebug() << " skip part" << partIndex << "(zero triangles)";
}
++partIndex;
continue;
}
// collapse dupe indices
for (auto& index : triangleIndices) {
index = dupeIndexMap[index];
}
AABox aaBox = getAABoxForMeshPart(mesh, meshPart);
const float largestDimension = aaBox.getLargestDimension();
if (largestDimension < minimumMeshSize) {
if (_verbose) {
qDebug() << " skip part" << partIndex << ": dimension =" << largestDimension << "(too small)";
}
++partIndex;
continue;
}
if (maximumMeshSize > 0.0f && largestDimension > maximumMeshSize) {
if (_verbose) {
qDebug() << " skip part" << partIndex << ": dimension =" << largestDimension << "(too large)";
}
++partIndex;
continue;
}
// figure out if the mesh is a closed manifold or not
bool closed = isClosedManifold(triangleIndices);
if (closed) {
uint32_t triangleCount = (uint32_t)(triangleIndices.size()) / TRIANGLE_STRIDE;
if (_verbose) {
qDebug() << " process closed part" << partIndex << ": " << " triangles =" << triangleCount;
}
// compute approximate convex decomposition
bool success = convexifier->Compute(&vertices[0].x, POINT_STRIDE, numVertices,
&triangleIndices[0], TRIANGLE_STRIDE, triangleCount, params);
if (success) {
getConvexResults(convexifier, resultMesh);
} else if (_verbose) {
qDebug() << " failed to convexify";
}
} else {
if (_verbose) {
qDebug() << " postpone open part" << partIndex;
}
openParts.push_back(partIndex);
}
++partIndex;
++validPartsFound;
}
if (! openParts.empty()) {
// combine open meshes in an attempt to produce a closed mesh
triangleIndices.clear();
for (auto index : openParts) {
const FBXMeshPart &meshPart = mesh.parts[index];
getTrianglesInMeshPart(meshPart, triangleIndices);
}
// collapse dupe indices
for (auto& index : triangleIndices) {
index = dupeIndexMap[index];
}
// this time we don't care if the parts are closed or not
uint32_t triangleCount = (uint32_t)(triangleIndices.size()) / TRIANGLE_STRIDE;
if (_verbose) {
qDebug() << " process remaining open parts =" << openParts.size() << ": "
<< " triangles =" << triangleCount;
}
// compute approximate convex decomposition
bool success = convexifier->Compute(&vertices[0].x, POINT_STRIDE, numVertices,
&triangleIndices[0], TRIANGLE_STRIDE, triangleCount, params);
if (success) {
getConvexResults(convexifier, resultMesh);
} else if (_verbose) {
qDebug() << " failed to convexify";
}
}
}
//release memory
interfaceVHACD->Clean();
interfaceVHACD->Release();
convexifier->Clean();
convexifier->Release();
if (count > 0){
return true;
}
else{
return false;
}
return validPartsFound > 0;
}
vhacd::VHACDUtil:: ~VHACDUtil(){
@ -319,15 +466,8 @@ void vhacd::ProgressCallback::Update(const double overallProgress,
const char* const operation) {
int progress = (int)(overallProgress + 0.5);
if (progress < 10){
std::cout << "\b\b";
}
else{
std::cout << "\b\b\b";
}
std::cout << progress << "%";
std::cout << progress << "%" << std::flush;
if (progress >= 100) {
std::cout << std::endl;
}

View file

@ -25,18 +25,23 @@
namespace vhacd {
class VHACDUtil {
public:
void setVerbose(bool verbose) { _verbose = verbose; }
bool loadFBX(const QString filename, FBXGeometry& result);
void fattenMeshes(const FBXMesh& mesh, FBXMesh& result,
unsigned int& meshPartCount,
unsigned int startMeshIndex, unsigned int endMeshIndex) const;
void fattenMesh(const FBXMesh& mesh, const glm::mat4& gometryOffset, FBXMesh& result) const;
bool computeVHACD(FBXGeometry& geometry,
VHACD::IVHACD::Parameters params,
FBXGeometry& result,
int startMeshIndex, int endMeshIndex,
float minimumMeshSize, float maximumMeshSize);
void getConvexResults(VHACD::IVHACD* convexifier, FBXMesh& resultMesh) const;
~VHACDUtil();
private:
bool _verbose { false };
};
class ProgressCallback : public VHACD::IVHACD::IUserCallback {

View file

@ -19,7 +19,6 @@ using namespace std;
using namespace VHACD;
QString formatFloat(double n) {
// limit precision to 6, but don't output trailing zeros.
QString s = QString::number(n, 'f', 6);
@ -33,14 +32,15 @@ QString formatFloat(double n) {
}
bool writeOBJ(QString outFileName, FBXGeometry& geometry, bool outputCentimeters, int whichMeshPart = -1) {
bool VHACDUtilApp::writeOBJ(QString outFileName, FBXGeometry& geometry, bool outputCentimeters, int whichMeshPart) {
QFile file(outFileName);
if (!file.open(QIODevice::WriteOnly)) {
qDebug() << "Unable to write to " << outFileName;
qWarning() << "unable to write to" << outFileName;
_returnCode = VHACD_RETURN_CODE_FAILURE_TO_WRITE;
return false;
}
QTextStream out(&file);
QTextStream out(&file);
if (outputCentimeters) {
out << "# This file uses centimeters as units\n\n";
}
@ -105,6 +105,9 @@ VHACDUtilApp::VHACDUtilApp(int argc, char* argv[]) :
const QCommandLineOption helpOption = parser.addHelpOption();
const QCommandLineOption verboseOutput("v", "verbose output");
parser.addOption(verboseOutput);
const QCommandLineOption splitOption("split", "split input-file into one mesh per output-file");
parser.addOption(splitOption);
@ -123,12 +126,6 @@ VHACDUtilApp::VHACDUtilApp(int argc, char* argv[]) :
const QCommandLineOption outputCentimetersOption("c", "output units are centimeters");
parser.addOption(outputCentimetersOption);
const QCommandLineOption startMeshIndexOption("s", "start-mesh index", "0");
parser.addOption(startMeshIndexOption);
const QCommandLineOption endMeshIndexOption("e", "end-mesh index", "0");
parser.addOption(endMeshIndexOption);
const QCommandLineOption minimumMeshSizeOption("m", "minimum mesh (diagonal) size to consider", "0");
parser.addOption(minimumMeshSizeOption);
@ -195,8 +192,10 @@ VHACDUtilApp::VHACDUtilApp(int argc, char* argv[]) :
Q_UNREACHABLE();
}
bool outputCentimeters = parser.isSet(outputCentimetersOption);
bool verbose = parser.isSet(verboseOutput);
vUtil.setVerbose(verbose);
bool outputCentimeters = parser.isSet(outputCentimetersOption);
bool fattenFaces = parser.isSet(fattenFacesOption);
bool generateHulls = parser.isSet(generateHullsOption);
bool splitModel = parser.isSet(splitOption);
@ -225,16 +224,6 @@ VHACDUtilApp::VHACDUtilApp(int argc, char* argv[]) :
Q_UNREACHABLE();
}
int startMeshIndex = -1;
if (parser.isSet(startMeshIndexOption)) {
startMeshIndex = parser.value(startMeshIndexOption).toInt();
}
int endMeshIndex = -1;
if (parser.isSet(endMeshIndexOption)) {
endMeshIndex = parser.value(endMeshIndexOption).toInt();
}
float minimumMeshSize = 0.0f;
if (parser.isSet(minimumMeshSizeOption)) {
minimumMeshSize = parser.value(minimumMeshSizeOption).toFloat();
@ -301,17 +290,20 @@ VHACDUtilApp::VHACDUtilApp(int argc, char* argv[]) :
Q_UNREACHABLE();
}
// load the mesh
FBXGeometry fbx;
auto begin = std::chrono::high_resolution_clock::now();
if (!vUtil.loadFBX(inputFilename, fbx)){
cout << "Error in opening FBX file....";
_returnCode = VHACD_RETURN_CODE_FAILURE_TO_READ;
return;
}
auto end = std::chrono::high_resolution_clock::now();
auto loadDuration = std::chrono::duration_cast<std::chrono::nanoseconds>(end - begin).count();
if (verbose) {
auto loadDuration = std::chrono::duration_cast<std::chrono::nanoseconds>(end - begin).count();
const double NANOSECS_PER_SECOND = 1.0e9;
qDebug() << "load time =" << (double)loadDuration / NANOSECS_PER_SECOND << "seconds";
}
if (splitModel) {
QVector<QString> infileExtensions = {"fbx", "obj"};
@ -329,10 +321,14 @@ VHACDUtilApp::VHACDUtilApp(int argc, char* argv[]) :
if (generateHulls) {
VHACD::IVHACD::Parameters params;
vhacd::ProgressCallback pCallBack;
vhacd::ProgressCallback progressCallback;
//set parameters for V-HACD
params.m_callback = &pCallBack; //progress callback
if (verbose) {
params.m_callback = &progressCallback; //progress callback
} else {
params.m_callback = nullptr;
}
params.m_resolution = vHacdResolution;
params.m_depth = vHacdDepth;
params.m_concavity = vHacdConcavity;
@ -346,44 +342,51 @@ VHACDUtilApp::VHACDUtilApp(int argc, char* argv[]) :
params.m_mode = 0; // 0: voxel-based (recommended), 1: tetrahedron-based
params.m_maxNumVerticesPerCH = vHacdMaxVerticesPerCH;
params.m_minVolumePerCH = 0.0001; // 0.0001
params.m_callback = 0; // 0
params.m_logger = 0; // 0
params.m_logger = nullptr;
params.m_convexhullApproximation = true; // true
params.m_oclAcceleration = true; // true
//perform vhacd computation
if (verbose) {
qDebug() << "running V-HACD algorithm ...";
}
begin = std::chrono::high_resolution_clock::now();
FBXGeometry result;
if (!vUtil.computeVHACD(fbx, params, result, startMeshIndex, endMeshIndex,
minimumMeshSize, maximumMeshSize)) {
cout << "Compute Failed...";
}
bool success = vUtil.computeVHACD(fbx, params, result, minimumMeshSize, maximumMeshSize);
end = std::chrono::high_resolution_clock::now();
auto computeDuration = std::chrono::duration_cast<std::chrono::nanoseconds>(end - begin).count();
if (verbose) {
qDebug() << "run time =" << (double)computeDuration / 1000000000.00 << " seconds";
}
if (!success) {
if (verbose) {
qDebug() << "failed to convexify model";
}
_returnCode = VHACD_RETURN_CODE_FAILURE_TO_CONVEXIFY;
return;
}
int totalVertices = 0;
int totalTriangles = 0;
int totalMeshParts = 0;
foreach (const FBXMesh& mesh, result.meshes) {
totalVertices += mesh.vertices.size();
foreach (const FBXMeshPart &meshPart, mesh.parts) {
totalTriangles += meshPart.triangleIndices.size() / 3;
// each quad was made into two triangles
totalTriangles += 2 * meshPart.quadIndices.size() / 4;
totalMeshParts++;
}
}
if (verbose) {
int totalHulls = result.meshes[0].parts.size();
cout << endl << "Summary of V-HACD Computation..................." << endl;
cout << "File Path : " << inputFilename.toStdString() << endl;
cout << "Number Of Meshes : " << totalMeshParts << endl;
cout << "Total vertices : " << totalVertices << endl;
cout << "Total Triangles : " << totalTriangles << endl;
cout << "Total Convex Hulls : " << totalHulls << endl;
cout << "Total FBX load time: " << (double)loadDuration / 1000000000.00 << " seconds" << endl;
cout << "V-HACD Compute time: " << (double)computeDuration / 1000000000.00 << " seconds" << endl;
qDebug() << "output file =" << outputFilename;
qDebug() << "vertices =" << totalVertices;
qDebug() << "triangles =" << totalTriangles;
qDebug() << "hulls =" << totalHulls;
}
writeOBJ(outputFilename, result, outputCentimeters);
}
@ -398,17 +401,9 @@ VHACDUtilApp::VHACDUtilApp(int argc, char* argv[]) :
meshCount += mesh.parts.size();
}
if (startMeshIndex < 0) {
startMeshIndex = 0;
}
if (endMeshIndex < 0) {
endMeshIndex = meshCount;
}
unsigned int meshPartCount = 0;
result.modelTransform = glm::mat4(); // Identity matrix
foreach (const FBXMesh& mesh, fbx.meshes) {
vUtil.fattenMeshes(mesh, result, meshPartCount, startMeshIndex, endMeshIndex);
vUtil.fattenMesh(mesh, fbx.offset, result);
}
newFbx.meshes.append(result);

View file

@ -15,12 +15,25 @@
#include <QApplication>
#include <FBXReader.h>
const int VHACD_RETURN_CODE_FAILURE_TO_READ = 1;
const int VHACD_RETURN_CODE_FAILURE_TO_WRITE = 2;
const int VHACD_RETURN_CODE_FAILURE_TO_CONVEXIFY = 3;
class VHACDUtilApp : public QCoreApplication {
Q_OBJECT
public:
VHACDUtilApp(int argc, char* argv[]);
~VHACDUtilApp();
bool writeOBJ(QString outFileName, FBXGeometry& geometry, bool outputCentimeters, int whichMeshPart = -1);
int getReturnCode() const { return _returnCode; }
private:
int _returnCode { 0 };
};

View file

@ -23,5 +23,5 @@ using namespace VHACD;
int main(int argc, char * argv[]) {
VHACDUtilApp app(argc, argv);
return 0;
return app.getReturnCode();
}