mirror of
https://github.com/overte-org/overte.git
synced 2025-04-21 09:44:21 +02:00
Check for texture translucency, render translucent mesh parts after opaque
ones, without alpha testing, and with back face culling enabled.
This commit is contained in:
parent
30fdb595dd
commit
3edb81baf4
6 changed files with 239 additions and 182 deletions
|
@ -508,3 +508,17 @@ void NetworkGeometry::maybeReadModelWithMapping() {
|
|||
_meshes.append(networkMesh);
|
||||
}
|
||||
}
|
||||
|
||||
bool NetworkMeshPart::isTranslucent() const {
|
||||
return diffuseTexture && diffuseTexture->isTranslucent();
|
||||
}
|
||||
|
||||
int NetworkMesh::getTranslucentPartCount() const {
|
||||
int count = 0;
|
||||
foreach (const NetworkMeshPart& part, parts) {
|
||||
if (part.isTranslucent()) {
|
||||
count++;
|
||||
}
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
|
|
@ -93,6 +93,8 @@ public:
|
|||
|
||||
QSharedPointer<NetworkTexture> diffuseTexture;
|
||||
QSharedPointer<NetworkTexture> normalTexture;
|
||||
|
||||
bool isTranslucent() const;
|
||||
};
|
||||
|
||||
/// The state associated with a single mesh.
|
||||
|
@ -103,6 +105,8 @@ public:
|
|||
GLuint vertexBufferID;
|
||||
|
||||
QVector<NetworkMeshPart> parts;
|
||||
|
||||
int getTranslucentPartCount() const;
|
||||
};
|
||||
|
||||
#endif /* defined(__interface__GeometryCache__) */
|
||||
|
|
|
@ -240,7 +240,6 @@ bool Model::render(float alpha) {
|
|||
|
||||
// set up blended buffer ids on first render after load/simulate
|
||||
const FBXGeometry& geometry = _geometry->getFBXGeometry();
|
||||
const QVector<NetworkMesh>& networkMeshes = _geometry->getMeshes();
|
||||
if (_blendedVertexBufferIDs.isEmpty()) {
|
||||
foreach (const FBXMesh& mesh, geometry.meshes) {
|
||||
GLuint id = 0;
|
||||
|
@ -264,191 +263,28 @@ bool Model::render(float alpha) {
|
|||
|
||||
glDisable(GL_COLOR_MATERIAL);
|
||||
|
||||
// render opaque meshes with alpha testing
|
||||
|
||||
glEnable(GL_ALPHA_TEST);
|
||||
glAlphaFunc(GL_GREATER, 0.5f);
|
||||
|
||||
for (int i = 0; i < networkMeshes.size(); i++) {
|
||||
const NetworkMesh& networkMesh = networkMeshes.at(i);
|
||||
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, networkMesh.indexBufferID);
|
||||
|
||||
const FBXMesh& mesh = geometry.meshes.at(i);
|
||||
int vertexCount = mesh.vertices.size();
|
||||
|
||||
glBindBuffer(GL_ARRAY_BUFFER, networkMesh.vertexBufferID);
|
||||
|
||||
ProgramObject* program = &_program;
|
||||
ProgramObject* skinProgram = &_skinProgram;
|
||||
SkinLocations* skinLocations = &_skinLocations;
|
||||
if (!mesh.tangents.isEmpty()) {
|
||||
program = &_normalMapProgram;
|
||||
skinProgram = &_skinNormalMapProgram;
|
||||
skinLocations = &_skinNormalMapLocations;
|
||||
}
|
||||
|
||||
const MeshState& state = _meshStates.at(i);
|
||||
ProgramObject* activeProgram = program;
|
||||
int tangentLocation = _normalMapTangentLocation;
|
||||
if (state.worldSpaceVertices.isEmpty()) {
|
||||
glPushMatrix();
|
||||
Application::getInstance()->loadTranslatedViewMatrix(_translation);
|
||||
|
||||
if (state.clusterMatrices.size() > 1) {
|
||||
skinProgram->bind();
|
||||
glUniformMatrix4fvARB(skinLocations->clusterMatrices, state.clusterMatrices.size(), false,
|
||||
(const float*)state.clusterMatrices.constData());
|
||||
int offset = (mesh.tangents.size() + mesh.colors.size()) * sizeof(glm::vec3) +
|
||||
mesh.texCoords.size() * sizeof(glm::vec2) +
|
||||
(mesh.blendshapes.isEmpty() ? vertexCount * 2 * sizeof(glm::vec3) : 0);
|
||||
skinProgram->setAttributeBuffer(skinLocations->clusterIndices, GL_FLOAT, offset, 4);
|
||||
skinProgram->setAttributeBuffer(skinLocations->clusterWeights, GL_FLOAT,
|
||||
offset + vertexCount * sizeof(glm::vec4), 4);
|
||||
skinProgram->enableAttributeArray(skinLocations->clusterIndices);
|
||||
skinProgram->enableAttributeArray(skinLocations->clusterWeights);
|
||||
activeProgram = skinProgram;
|
||||
tangentLocation = skinLocations->tangent;
|
||||
|
||||
} else {
|
||||
glMultMatrixf((const GLfloat*)&state.clusterMatrices[0]);
|
||||
program->bind();
|
||||
}
|
||||
} else {
|
||||
program->bind();
|
||||
}
|
||||
|
||||
if (mesh.blendshapes.isEmpty() && mesh.springiness == 0.0f) {
|
||||
if (!mesh.tangents.isEmpty()) {
|
||||
activeProgram->setAttributeBuffer(tangentLocation, GL_FLOAT, vertexCount * 2 * sizeof(glm::vec3), 3);
|
||||
activeProgram->enableAttributeArray(tangentLocation);
|
||||
}
|
||||
glColorPointer(3, GL_FLOAT, 0, (void*)(vertexCount * 2 * sizeof(glm::vec3) +
|
||||
mesh.tangents.size() * sizeof(glm::vec3)));
|
||||
glTexCoordPointer(2, GL_FLOAT, 0, (void*)(vertexCount * 2 * sizeof(glm::vec3) +
|
||||
(mesh.tangents.size() + mesh.colors.size()) * sizeof(glm::vec3)));
|
||||
|
||||
} else {
|
||||
if (!mesh.tangents.isEmpty()) {
|
||||
activeProgram->setAttributeBuffer(tangentLocation, GL_FLOAT, 0, 3);
|
||||
activeProgram->enableAttributeArray(tangentLocation);
|
||||
}
|
||||
glColorPointer(3, GL_FLOAT, 0, (void*)(mesh.tangents.size() * sizeof(glm::vec3)));
|
||||
glTexCoordPointer(2, GL_FLOAT, 0, (void*)((mesh.tangents.size() + mesh.colors.size()) * sizeof(glm::vec3)));
|
||||
glBindBuffer(GL_ARRAY_BUFFER, _blendedVertexBufferIDs.at(i));
|
||||
|
||||
if (!state.worldSpaceVertices.isEmpty()) {
|
||||
glBufferSubData(GL_ARRAY_BUFFER, 0, vertexCount * sizeof(glm::vec3), state.worldSpaceVertices.constData());
|
||||
glBufferSubData(GL_ARRAY_BUFFER, vertexCount * sizeof(glm::vec3),
|
||||
vertexCount * sizeof(glm::vec3), state.worldSpaceNormals.constData());
|
||||
|
||||
} else {
|
||||
_blendedVertices.resize(max(_blendedVertices.size(), vertexCount));
|
||||
_blendedNormals.resize(_blendedVertices.size());
|
||||
memcpy(_blendedVertices.data(), mesh.vertices.constData(), vertexCount * sizeof(glm::vec3));
|
||||
memcpy(_blendedNormals.data(), mesh.normals.constData(), vertexCount * sizeof(glm::vec3));
|
||||
|
||||
// blend in each coefficient
|
||||
for (unsigned int j = 0; j < _blendshapeCoefficients.size(); j++) {
|
||||
float coefficient = _blendshapeCoefficients[j];
|
||||
if (coefficient == 0.0f || j >= (unsigned int)mesh.blendshapes.size() || mesh.blendshapes[j].vertices.isEmpty()) {
|
||||
continue;
|
||||
}
|
||||
const float NORMAL_COEFFICIENT_SCALE = 0.01f;
|
||||
float normalCoefficient = coefficient * NORMAL_COEFFICIENT_SCALE;
|
||||
const glm::vec3* vertex = mesh.blendshapes[j].vertices.constData();
|
||||
const glm::vec3* normal = mesh.blendshapes[j].normals.constData();
|
||||
for (const int* index = mesh.blendshapes[j].indices.constData(),
|
||||
*end = index + mesh.blendshapes[j].indices.size(); index != end; index++, vertex++, normal++) {
|
||||
_blendedVertices[*index] += *vertex * coefficient;
|
||||
_blendedNormals[*index] += *normal * normalCoefficient;
|
||||
}
|
||||
}
|
||||
|
||||
glBufferSubData(GL_ARRAY_BUFFER, 0, vertexCount * sizeof(glm::vec3), _blendedVertices.constData());
|
||||
glBufferSubData(GL_ARRAY_BUFFER, vertexCount * sizeof(glm::vec3),
|
||||
vertexCount * sizeof(glm::vec3), _blendedNormals.constData());
|
||||
}
|
||||
}
|
||||
glVertexPointer(3, GL_FLOAT, 0, 0);
|
||||
glNormalPointer(GL_FLOAT, 0, (void*)(vertexCount * sizeof(glm::vec3)));
|
||||
|
||||
if (!mesh.colors.isEmpty()) {
|
||||
glEnableClientState(GL_COLOR_ARRAY);
|
||||
} else {
|
||||
glColor3f(1.0f, 1.0f, 1.0f);
|
||||
}
|
||||
if (!mesh.texCoords.isEmpty()) {
|
||||
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
|
||||
}
|
||||
|
||||
qint64 offset = 0;
|
||||
for (int j = 0; j < networkMesh.parts.size(); j++) {
|
||||
const NetworkMeshPart& networkPart = networkMesh.parts.at(j);
|
||||
const FBXMeshPart& part = mesh.parts.at(j);
|
||||
|
||||
// apply material properties
|
||||
glm::vec4 diffuse = glm::vec4(part.diffuseColor, alpha);
|
||||
glm::vec4 specular = glm::vec4(part.specularColor, alpha);
|
||||
glMaterialfv(GL_FRONT, GL_AMBIENT, (const float*)&diffuse);
|
||||
glMaterialfv(GL_FRONT, GL_DIFFUSE, (const float*)&diffuse);
|
||||
glMaterialfv(GL_FRONT, GL_SPECULAR, (const float*)&specular);
|
||||
glMaterialf(GL_FRONT, GL_SHININESS, part.shininess);
|
||||
|
||||
Texture* diffuseMap = networkPart.diffuseTexture.data();
|
||||
if (mesh.isEye) {
|
||||
if (diffuseMap != NULL) {
|
||||
diffuseMap = (_dilatedTextures[i][j] =
|
||||
static_cast<DilatableNetworkTexture*>(diffuseMap)->getDilatedTexture(_pupilDilation)).data();
|
||||
}
|
||||
}
|
||||
glBindTexture(GL_TEXTURE_2D, diffuseMap == NULL ?
|
||||
Application::getInstance()->getTextureCache()->getWhiteTextureID() : diffuseMap->getID());
|
||||
|
||||
if (!mesh.tangents.isEmpty()) {
|
||||
glActiveTexture(GL_TEXTURE1);
|
||||
Texture* normalMap = networkPart.normalTexture.data();
|
||||
glBindTexture(GL_TEXTURE_2D, normalMap == NULL ?
|
||||
Application::getInstance()->getTextureCache()->getBlueTextureID() : normalMap->getID());
|
||||
glActiveTexture(GL_TEXTURE0);
|
||||
}
|
||||
|
||||
glDrawRangeElementsEXT(GL_QUADS, 0, vertexCount - 1, part.quadIndices.size(), GL_UNSIGNED_INT, (void*)offset);
|
||||
offset += part.quadIndices.size() * sizeof(int);
|
||||
glDrawRangeElementsEXT(GL_TRIANGLES, 0, vertexCount - 1, part.triangleIndices.size(),
|
||||
GL_UNSIGNED_INT, (void*)offset);
|
||||
offset += part.triangleIndices.size() * sizeof(int);
|
||||
}
|
||||
|
||||
if (!mesh.colors.isEmpty()) {
|
||||
glDisableClientState(GL_COLOR_ARRAY);
|
||||
}
|
||||
if (!mesh.texCoords.isEmpty()) {
|
||||
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
|
||||
}
|
||||
|
||||
if (!mesh.tangents.isEmpty()) {
|
||||
glActiveTexture(GL_TEXTURE1);
|
||||
glBindTexture(GL_TEXTURE_2D, 0);
|
||||
glActiveTexture(GL_TEXTURE0);
|
||||
|
||||
activeProgram->disableAttributeArray(tangentLocation);
|
||||
}
|
||||
|
||||
if (state.worldSpaceVertices.isEmpty()) {
|
||||
if (state.clusterMatrices.size() > 1) {
|
||||
skinProgram->disableAttributeArray(skinLocations->clusterIndices);
|
||||
skinProgram->disableAttributeArray(skinLocations->clusterWeights);
|
||||
}
|
||||
glPopMatrix();
|
||||
}
|
||||
activeProgram->release();
|
||||
}
|
||||
renderMeshes(alpha, false);
|
||||
|
||||
glDisable(GL_ALPHA_TEST);
|
||||
|
||||
// render translucent meshes afterwards, with back face culling and no depth writes
|
||||
|
||||
glEnable(GL_CULL_FACE);
|
||||
|
||||
renderMeshes(alpha, true);
|
||||
|
||||
glDisable(GL_CULL_FACE);
|
||||
|
||||
// deactivate vertex arrays after drawing
|
||||
glDisableClientState(GL_NORMAL_ARRAY);
|
||||
glDisableClientState(GL_VERTEX_ARRAY);
|
||||
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
|
||||
|
||||
glDisable(GL_ALPHA_TEST);
|
||||
|
||||
// bind with 0 to switch back to normal operation
|
||||
glBindBuffer(GL_ARRAY_BUFFER, 0);
|
||||
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
|
||||
|
@ -882,3 +718,191 @@ void Model::deleteGeometry() {
|
|||
_jointStates.clear();
|
||||
_meshStates.clear();
|
||||
}
|
||||
|
||||
void Model::renderMeshes(float alpha, bool translucent) {
|
||||
const FBXGeometry& geometry = _geometry->getFBXGeometry();
|
||||
const QVector<NetworkMesh>& networkMeshes = _geometry->getMeshes();
|
||||
|
||||
for (int i = 0; i < networkMeshes.size(); i++) {
|
||||
// exit early if the translucency doesn't match what we're drawing
|
||||
const NetworkMesh& networkMesh = networkMeshes.at(i);
|
||||
if (translucent ? (networkMesh.getTranslucentPartCount() == 0) :
|
||||
(networkMesh.getTranslucentPartCount() == networkMesh.parts.size())) {
|
||||
continue;
|
||||
}
|
||||
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, networkMesh.indexBufferID);
|
||||
|
||||
const FBXMesh& mesh = geometry.meshes.at(i);
|
||||
int vertexCount = mesh.vertices.size();
|
||||
|
||||
glBindBuffer(GL_ARRAY_BUFFER, networkMesh.vertexBufferID);
|
||||
|
||||
ProgramObject* program = &_program;
|
||||
ProgramObject* skinProgram = &_skinProgram;
|
||||
SkinLocations* skinLocations = &_skinLocations;
|
||||
if (!mesh.tangents.isEmpty()) {
|
||||
program = &_normalMapProgram;
|
||||
skinProgram = &_skinNormalMapProgram;
|
||||
skinLocations = &_skinNormalMapLocations;
|
||||
}
|
||||
|
||||
const MeshState& state = _meshStates.at(i);
|
||||
ProgramObject* activeProgram = program;
|
||||
int tangentLocation = _normalMapTangentLocation;
|
||||
if (state.worldSpaceVertices.isEmpty()) {
|
||||
glPushMatrix();
|
||||
Application::getInstance()->loadTranslatedViewMatrix(_translation);
|
||||
|
||||
if (state.clusterMatrices.size() > 1) {
|
||||
skinProgram->bind();
|
||||
glUniformMatrix4fvARB(skinLocations->clusterMatrices, state.clusterMatrices.size(), false,
|
||||
(const float*)state.clusterMatrices.constData());
|
||||
int offset = (mesh.tangents.size() + mesh.colors.size()) * sizeof(glm::vec3) +
|
||||
mesh.texCoords.size() * sizeof(glm::vec2) +
|
||||
(mesh.blendshapes.isEmpty() ? vertexCount * 2 * sizeof(glm::vec3) : 0);
|
||||
skinProgram->setAttributeBuffer(skinLocations->clusterIndices, GL_FLOAT, offset, 4);
|
||||
skinProgram->setAttributeBuffer(skinLocations->clusterWeights, GL_FLOAT,
|
||||
offset + vertexCount * sizeof(glm::vec4), 4);
|
||||
skinProgram->enableAttributeArray(skinLocations->clusterIndices);
|
||||
skinProgram->enableAttributeArray(skinLocations->clusterWeights);
|
||||
activeProgram = skinProgram;
|
||||
tangentLocation = skinLocations->tangent;
|
||||
|
||||
} else {
|
||||
glMultMatrixf((const GLfloat*)&state.clusterMatrices[0]);
|
||||
program->bind();
|
||||
}
|
||||
} else {
|
||||
program->bind();
|
||||
}
|
||||
|
||||
if (mesh.blendshapes.isEmpty() && mesh.springiness == 0.0f) {
|
||||
if (!mesh.tangents.isEmpty()) {
|
||||
activeProgram->setAttributeBuffer(tangentLocation, GL_FLOAT, vertexCount * 2 * sizeof(glm::vec3), 3);
|
||||
activeProgram->enableAttributeArray(tangentLocation);
|
||||
}
|
||||
glColorPointer(3, GL_FLOAT, 0, (void*)(vertexCount * 2 * sizeof(glm::vec3) +
|
||||
mesh.tangents.size() * sizeof(glm::vec3)));
|
||||
glTexCoordPointer(2, GL_FLOAT, 0, (void*)(vertexCount * 2 * sizeof(glm::vec3) +
|
||||
(mesh.tangents.size() + mesh.colors.size()) * sizeof(glm::vec3)));
|
||||
|
||||
} else {
|
||||
if (!mesh.tangents.isEmpty()) {
|
||||
activeProgram->setAttributeBuffer(tangentLocation, GL_FLOAT, 0, 3);
|
||||
activeProgram->enableAttributeArray(tangentLocation);
|
||||
}
|
||||
glColorPointer(3, GL_FLOAT, 0, (void*)(mesh.tangents.size() * sizeof(glm::vec3)));
|
||||
glTexCoordPointer(2, GL_FLOAT, 0, (void*)((mesh.tangents.size() + mesh.colors.size()) * sizeof(glm::vec3)));
|
||||
glBindBuffer(GL_ARRAY_BUFFER, _blendedVertexBufferIDs.at(i));
|
||||
|
||||
if (!state.worldSpaceVertices.isEmpty()) {
|
||||
glBufferSubData(GL_ARRAY_BUFFER, 0, vertexCount * sizeof(glm::vec3), state.worldSpaceVertices.constData());
|
||||
glBufferSubData(GL_ARRAY_BUFFER, vertexCount * sizeof(glm::vec3),
|
||||
vertexCount * sizeof(glm::vec3), state.worldSpaceNormals.constData());
|
||||
|
||||
} else {
|
||||
_blendedVertices.resize(max(_blendedVertices.size(), vertexCount));
|
||||
_blendedNormals.resize(_blendedVertices.size());
|
||||
memcpy(_blendedVertices.data(), mesh.vertices.constData(), vertexCount * sizeof(glm::vec3));
|
||||
memcpy(_blendedNormals.data(), mesh.normals.constData(), vertexCount * sizeof(glm::vec3));
|
||||
|
||||
// blend in each coefficient
|
||||
for (unsigned int j = 0; j < _blendshapeCoefficients.size(); j++) {
|
||||
float coefficient = _blendshapeCoefficients[j];
|
||||
if (coefficient == 0.0f || j >= (unsigned int)mesh.blendshapes.size() || mesh.blendshapes[j].vertices.isEmpty()) {
|
||||
continue;
|
||||
}
|
||||
const float NORMAL_COEFFICIENT_SCALE = 0.01f;
|
||||
float normalCoefficient = coefficient * NORMAL_COEFFICIENT_SCALE;
|
||||
const glm::vec3* vertex = mesh.blendshapes[j].vertices.constData();
|
||||
const glm::vec3* normal = mesh.blendshapes[j].normals.constData();
|
||||
for (const int* index = mesh.blendshapes[j].indices.constData(),
|
||||
*end = index + mesh.blendshapes[j].indices.size(); index != end; index++, vertex++, normal++) {
|
||||
_blendedVertices[*index] += *vertex * coefficient;
|
||||
_blendedNormals[*index] += *normal * normalCoefficient;
|
||||
}
|
||||
}
|
||||
|
||||
glBufferSubData(GL_ARRAY_BUFFER, 0, vertexCount * sizeof(glm::vec3), _blendedVertices.constData());
|
||||
glBufferSubData(GL_ARRAY_BUFFER, vertexCount * sizeof(glm::vec3),
|
||||
vertexCount * sizeof(glm::vec3), _blendedNormals.constData());
|
||||
}
|
||||
}
|
||||
glVertexPointer(3, GL_FLOAT, 0, 0);
|
||||
glNormalPointer(GL_FLOAT, 0, (void*)(vertexCount * sizeof(glm::vec3)));
|
||||
|
||||
if (!mesh.colors.isEmpty()) {
|
||||
glEnableClientState(GL_COLOR_ARRAY);
|
||||
} else {
|
||||
glColor3f(1.0f, 1.0f, 1.0f);
|
||||
}
|
||||
if (!mesh.texCoords.isEmpty()) {
|
||||
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
|
||||
}
|
||||
|
||||
qint64 offset = 0;
|
||||
for (int j = 0; j < networkMesh.parts.size(); j++) {
|
||||
const NetworkMeshPart& networkPart = networkMesh.parts.at(j);
|
||||
if (networkPart.isTranslucent() != translucent) {
|
||||
continue;
|
||||
}
|
||||
const FBXMeshPart& part = mesh.parts.at(j);
|
||||
|
||||
// apply material properties
|
||||
glm::vec4 diffuse = glm::vec4(part.diffuseColor, alpha);
|
||||
glm::vec4 specular = glm::vec4(part.specularColor, alpha);
|
||||
glMaterialfv(GL_FRONT, GL_AMBIENT, (const float*)&diffuse);
|
||||
glMaterialfv(GL_FRONT, GL_DIFFUSE, (const float*)&diffuse);
|
||||
glMaterialfv(GL_FRONT, GL_SPECULAR, (const float*)&specular);
|
||||
glMaterialf(GL_FRONT, GL_SHININESS, part.shininess);
|
||||
|
||||
Texture* diffuseMap = networkPart.diffuseTexture.data();
|
||||
if (mesh.isEye) {
|
||||
if (diffuseMap != NULL) {
|
||||
diffuseMap = (_dilatedTextures[i][j] =
|
||||
static_cast<DilatableNetworkTexture*>(diffuseMap)->getDilatedTexture(_pupilDilation)).data();
|
||||
}
|
||||
}
|
||||
glBindTexture(GL_TEXTURE_2D, diffuseMap == NULL ?
|
||||
Application::getInstance()->getTextureCache()->getWhiteTextureID() : diffuseMap->getID());
|
||||
|
||||
if (!mesh.tangents.isEmpty()) {
|
||||
glActiveTexture(GL_TEXTURE1);
|
||||
Texture* normalMap = networkPart.normalTexture.data();
|
||||
glBindTexture(GL_TEXTURE_2D, normalMap == NULL ?
|
||||
Application::getInstance()->getTextureCache()->getBlueTextureID() : normalMap->getID());
|
||||
glActiveTexture(GL_TEXTURE0);
|
||||
}
|
||||
|
||||
glDrawRangeElementsEXT(GL_QUADS, 0, vertexCount - 1, part.quadIndices.size(), GL_UNSIGNED_INT, (void*)offset);
|
||||
offset += part.quadIndices.size() * sizeof(int);
|
||||
glDrawRangeElementsEXT(GL_TRIANGLES, 0, vertexCount - 1, part.triangleIndices.size(),
|
||||
GL_UNSIGNED_INT, (void*)offset);
|
||||
offset += part.triangleIndices.size() * sizeof(int);
|
||||
}
|
||||
|
||||
if (!mesh.colors.isEmpty()) {
|
||||
glDisableClientState(GL_COLOR_ARRAY);
|
||||
}
|
||||
if (!mesh.texCoords.isEmpty()) {
|
||||
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
|
||||
}
|
||||
|
||||
if (!mesh.tangents.isEmpty()) {
|
||||
glActiveTexture(GL_TEXTURE1);
|
||||
glBindTexture(GL_TEXTURE_2D, 0);
|
||||
glActiveTexture(GL_TEXTURE0);
|
||||
|
||||
activeProgram->disableAttributeArray(tangentLocation);
|
||||
}
|
||||
|
||||
if (state.worldSpaceVertices.isEmpty()) {
|
||||
if (state.clusterMatrices.size() > 1) {
|
||||
skinProgram->disableAttributeArray(skinLocations->clusterIndices);
|
||||
skinProgram->disableAttributeArray(skinLocations->clusterWeights);
|
||||
}
|
||||
glPopMatrix();
|
||||
}
|
||||
activeProgram->release();
|
||||
}
|
||||
}
|
||||
|
|
|
@ -214,6 +214,7 @@ protected:
|
|||
private:
|
||||
|
||||
void deleteGeometry();
|
||||
void renderMeshes(float alpha, bool translucent);
|
||||
|
||||
float _pupilDilation;
|
||||
std::vector<float> _blendshapeCoefficients;
|
||||
|
|
|
@ -257,7 +257,8 @@ NetworkTexture::NetworkTexture(const QUrl& url, bool normalMap) :
|
|||
_request(url),
|
||||
_reply(NULL),
|
||||
_attempts(0),
|
||||
_averageColor(1.0f, 1.0f, 1.0f, 1.0f) {
|
||||
_averageColor(1.0f, 1.0f, 1.0f, 1.0f),
|
||||
_translucent(false) {
|
||||
|
||||
if (!url.isValid()) {
|
||||
return;
|
||||
|
@ -300,19 +301,27 @@ void NetworkTexture::handleDownloadProgress(qint64 bytesReceived, qint64 bytesTo
|
|||
|
||||
QImage image = QImage::fromData(entirety).convertToFormat(QImage::Format_ARGB32);
|
||||
|
||||
// sum up the colors for the average
|
||||
// sum up the colors for the average and check for translucency
|
||||
glm::vec4 accumulated;
|
||||
int translucentPixels = 0;
|
||||
const int EIGHT_BIT_MAXIMUM = 255;
|
||||
for (int y = 0; y < image.height(); y++) {
|
||||
for (int x = 0; x < image.width(); x++) {
|
||||
QRgb pixel = image.pixel(x, y);
|
||||
accumulated.r += qRed(pixel);
|
||||
accumulated.g += qGreen(pixel);
|
||||
accumulated.b += qBlue(pixel);
|
||||
accumulated.a += qAlpha(pixel);
|
||||
|
||||
int alpha = qAlpha(pixel);
|
||||
if (alpha != 0 && alpha != EIGHT_BIT_MAXIMUM) {
|
||||
translucentPixels++;
|
||||
}
|
||||
accumulated.a += alpha;
|
||||
}
|
||||
}
|
||||
const float EIGHT_BIT_MAXIMUM = 255.0f;
|
||||
_averageColor = accumulated / (image.width() * image.height() * EIGHT_BIT_MAXIMUM);
|
||||
int imageArea = image.width() * image.height();
|
||||
_averageColor = accumulated / (imageArea * EIGHT_BIT_MAXIMUM);
|
||||
_translucent = (translucentPixels >= imageArea / 2);
|
||||
|
||||
imageLoaded(image);
|
||||
glBindTexture(GL_TEXTURE_2D, getID());
|
||||
|
|
|
@ -121,6 +121,10 @@ public:
|
|||
/// Returns the average color over the entire texture.
|
||||
const glm::vec4& getAverageColor() const { return _averageColor; }
|
||||
|
||||
/// Checks whether it "looks like" this texture is translucent
|
||||
/// (majority of pixels neither fully opaque or fully transparent).
|
||||
bool isTranslucent() const { return _translucent; }
|
||||
|
||||
protected:
|
||||
|
||||
virtual void imageLoaded(const QImage& image);
|
||||
|
@ -137,6 +141,7 @@ private:
|
|||
QNetworkReply* _reply;
|
||||
int _attempts;
|
||||
glm::vec4 _averageColor;
|
||||
bool _translucent;
|
||||
};
|
||||
|
||||
/// Caches derived, dilated textures.
|
||||
|
|
Loading…
Reference in a new issue