use dispatchTable for shape-vs-shape collisions

This commit is contained in:
Andrew Meadows 2014-08-21 16:40:25 -07:00
parent 1bc88a0224
commit 3ebd8c1969
14 changed files with 240 additions and 152 deletions

View file

@ -81,6 +81,7 @@ MyAvatar::MyAvatar() :
_billboardValid(false),
_physicsSimulation()
{
ShapeCollider::initDispatchTable();
for (int i = 0; i < MAX_DRIVE_KEYS; i++) {
_driveKeys[i] = 0.0f;
}

View file

@ -618,19 +618,19 @@ void SkeletonModel::buildShapes() {
Shape::Type type = joint.shapeType;
int parentIndex = joint.parentIndex;
if (parentIndex == -1 || radius < EPSILON) {
type = Shape::UNKNOWN_SHAPE;
} else if (type == Shape::CAPSULE_SHAPE && halfHeight < EPSILON) {
type = UNKNOWN_SHAPE;
} else if (type == CAPSULE_SHAPE && halfHeight < EPSILON) {
// this shape is forced to be a sphere
type = Shape::SPHERE_SHAPE;
type = SPHERE_SHAPE;
}
Shape* shape = NULL;
if (type == Shape::SPHERE_SHAPE) {
if (type == SPHERE_SHAPE) {
shape = new VerletSphereShape(radius, &(points[i]));
shape->setEntity(this);
float mass = massScale * glm::max(MIN_JOINT_MASS, DENSITY_OF_WATER * shape->getVolume());
points[i].setMass(mass);
totalMass += mass;
} else if (type == Shape::CAPSULE_SHAPE) {
} else if (type == CAPSULE_SHAPE) {
assert(parentIndex != -1);
shape = new VerletCapsuleShape(radius, &(points[parentIndex]), &(points[i]));
shape->setEntity(this);
@ -729,7 +729,7 @@ void SkeletonModel::computeBoundingShape(const FBXGeometry& geometry) {
shapeExtents.reset();
glm::vec3 localPosition = shape->getTranslation();
int type = shape->getType();
if (type == Shape::CAPSULE_SHAPE) {
if (type == CAPSULE_SHAPE) {
// add the two furthest surface points of the capsule
CapsuleShape* capsule = static_cast<CapsuleShape*>(shape);
glm::vec3 axis;
@ -741,7 +741,7 @@ void SkeletonModel::computeBoundingShape(const FBXGeometry& geometry) {
shapeExtents.addPoint(localPosition + axis);
shapeExtents.addPoint(localPosition - axis);
totalExtents.addExtents(shapeExtents);
} else if (type == Shape::SPHERE_SHAPE) {
} else if (type == SPHERE_SHAPE) {
float radius = shape->getBoundingRadius();
glm::vec3 axis = glm::vec3(radius);
shapeExtents.addPoint(localPosition + axis);
@ -845,13 +845,13 @@ void SkeletonModel::renderJointCollisionShapes(float alpha) {
glPushMatrix();
// shapes are stored in simulation-frame but we want position to be model-relative
if (shape->getType() == Shape::SPHERE_SHAPE) {
if (shape->getType() == SPHERE_SHAPE) {
glm::vec3 position = shape->getTranslation() - simulationTranslation;
glTranslatef(position.x, position.y, position.z);
// draw a grey sphere at shape position
glColor4f(0.75f, 0.75f, 0.75f, alpha);
glutSolidSphere(shape->getBoundingRadius(), BALL_SUBDIVISIONS, BALL_SUBDIVISIONS);
} else if (shape->getType() == Shape::CAPSULE_SHAPE) {
} else if (shape->getType() == CAPSULE_SHAPE) {
CapsuleShape* capsule = static_cast<CapsuleShape*>(shape);
// draw a blue sphere at the capsule endpoint

View file

@ -1503,7 +1503,7 @@ FBXGeometry extractFBXGeometry(const FBXNode& node, const QVariantHash& mapping)
joint.inverseBindRotation = joint.inverseDefaultRotation;
joint.name = model.name;
joint.shapePosition = glm::vec3(0.f);
joint.shapeType = Shape::UNKNOWN_SHAPE;
joint.shapeType = UNKNOWN_SHAPE;
geometry.joints.append(joint);
geometry.jointIndices.insert(model.name, geometry.joints.size());
@ -1848,10 +1848,10 @@ FBXGeometry extractFBXGeometry(const FBXNode& node, const QVariantHash& mapping)
if (collideLikeCapsule) {
joint.shapeRotation = rotationBetween(defaultCapsuleAxis, jointShapeInfo.boneBegin);
joint.shapePosition = 0.5f * jointShapeInfo.boneBegin;
joint.shapeType = Shape::CAPSULE_SHAPE;
joint.shapeType = CAPSULE_SHAPE;
} else {
// collide the joint like a sphere
joint.shapeType = Shape::SPHERE_SHAPE;
joint.shapeType = SPHERE_SHAPE;
if (jointShapeInfo.numVertices > 0) {
jointShapeInfo.averageVertex /= (float)jointShapeInfo.numVertices;
joint.shapePosition = jointShapeInfo.averageVertex;
@ -1872,7 +1872,7 @@ FBXGeometry extractFBXGeometry(const FBXNode& node, const QVariantHash& mapping)
// The shape is further from both joint endpoints than the endpoints are from each other
// which probably means the model has a bad transform somewhere. We disable this shape
// by setting its type to UNKNOWN_SHAPE.
joint.shapeType = Shape::UNKNOWN_SHAPE;
joint.shapeType = UNKNOWN_SHAPE;
}
}
}

View file

@ -18,20 +18,20 @@
#include "SharedUtil.h"
CapsuleShape::CapsuleShape() : Shape(Shape::CAPSULE_SHAPE), _radius(0.0f), _halfHeight(0.0f) {}
CapsuleShape::CapsuleShape() : Shape(CAPSULE_SHAPE), _radius(0.0f), _halfHeight(0.0f) {}
CapsuleShape::CapsuleShape(float radius, float halfHeight) : Shape(Shape::CAPSULE_SHAPE),
CapsuleShape::CapsuleShape(float radius, float halfHeight) : Shape(CAPSULE_SHAPE),
_radius(radius), _halfHeight(halfHeight) {
updateBoundingRadius();
}
CapsuleShape::CapsuleShape(float radius, float halfHeight, const glm::vec3& position, const glm::quat& rotation) :
Shape(Shape::CAPSULE_SHAPE, position, rotation), _radius(radius), _halfHeight(halfHeight) {
Shape(CAPSULE_SHAPE, position, rotation), _radius(radius), _halfHeight(halfHeight) {
updateBoundingRadius();
}
CapsuleShape::CapsuleShape(float radius, const glm::vec3& startPoint, const glm::vec3& endPoint) :
Shape(Shape::CAPSULE_SHAPE), _radius(radius), _halfHeight(0.0f) {
Shape(CAPSULE_SHAPE), _radius(radius), _halfHeight(0.0f) {
setEndPoints(startPoint, endPoint);
}

View file

@ -12,8 +12,10 @@
#include "PhysicsEntity.h"
#include "PhysicsSimulation.h"
#include "PlaneShape.h"
#include "Shape.h"
#include "ShapeCollider.h"
#include "SphereShape.h"
PhysicsEntity::PhysicsEntity() :
_translation(0.0f),

View file

@ -16,8 +16,9 @@
#include "PerfStat.h"
#include "PhysicsEntity.h"
#include "Ragdoll.h"
#include "SharedUtil.h"
#include "Shape.h"
#include "ShapeCollider.h"
#include "SharedUtil.h"
int MAX_DOLLS_PER_SIMULATION = 16;
int MAX_ENTITIES_PER_SIMULATION = 64;

View file

@ -15,7 +15,7 @@
const glm::vec3 UNROTATED_NORMAL(0.0f, 1.0f, 0.0f);
PlaneShape::PlaneShape(const glm::vec4& coefficients) :
Shape(Shape::PLANE_SHAPE) {
Shape(PLANE_SHAPE) {
glm::vec3 normal = glm::vec3(coefficients);
_translation = -normal * coefficients.w;

View file

@ -22,17 +22,18 @@ class VerletPoint;
const float MAX_SHAPE_MASS = 1.0e18f; // something less than sqrt(FLT_MAX)
const quint8 SPHERE_SHAPE = 0;
const quint8 CAPSULE_SHAPE = 1;
const quint8 PLANE_SHAPE = 2;
const quint8 LIST_SHAPE = 3;
const quint8 UNKNOWN_SHAPE = 4;
class Shape {
public:
static quint32 getNextID() { static quint32 nextID = 0; return ++nextID; }
enum Type{
UNKNOWN_SHAPE = 0,
SPHERE_SHAPE,
CAPSULE_SHAPE,
PLANE_SHAPE,
LIST_SHAPE
};
typedef quint8 Type;
static quint32 getNextID() { static quint32 nextID = 0; return ++nextID; }
Shape() : _type(UNKNOWN_SHAPE), _owningEntity(NULL), _boundingRadius(0.f),
_translation(0.f), _rotation(), _mass(MAX_SHAPE_MASS) {
@ -40,7 +41,7 @@ public:
}
virtual ~Shape() { }
int getType() const { return _type; }
Type getType() const { return _type; }
quint32 getID() const { return _id; }
void setEntity(PhysicsEntity* entity) { _owningEntity = entity; }
@ -95,8 +96,8 @@ protected:
void setBoundingRadius(float radius) { _boundingRadius = radius; }
int _type;
unsigned int _id;
Type _type;
quint32 _id;
PhysicsEntity* _owningEntity;
float _boundingRadius;
glm::vec3 _translation;

View file

@ -15,56 +15,66 @@
#include "GeometryUtil.h"
#include "ShapeCollider.h"
#include "CapsuleShape.h"
#include "ListShape.h"
#include "PlaneShape.h"
#include "SphereShape.h"
// NOTE:
//
// * Large ListShape's are inefficient keep the lists short.
// * Collisions between lists of lists work in theory but are not recommended.
const Shape::Type NUM_SHAPE_TYPES = 5;
const quint8 NUM__DISPATCH_CELLS = NUM_SHAPE_TYPES * NUM_SHAPE_TYPES;
Shape::Type getDispatchKey(Shape::Type typeA, Shape::Type typeB) {
return typeA + NUM_SHAPE_TYPES * typeB;
}
// dummy dispatch for any non-implemented pairings
bool notImplemented(const Shape* shapeA, const Shape* shapeB, CollisionList& collisions) {
return false;
}
// NOTE: hardcode the number of dispatchTable entries (NUM_SHAPE_TYPES ^2)
bool (*dispatchTable[NUM__DISPATCH_CELLS])(const Shape*, const Shape*, CollisionList&);
namespace ShapeCollider {
bool collideShapes(const Shape* shapeA, const Shape* shapeB, CollisionList& collisions) {
// TODO: make a fast lookup for correct method
int typeA = shapeA->getType();
int typeB = shapeB->getType();
if (typeA == Shape::SPHERE_SHAPE) {
const SphereShape* sphereA = static_cast<const SphereShape*>(shapeA);
if (typeB == Shape::SPHERE_SHAPE) {
return sphereSphere(sphereA, static_cast<const SphereShape*>(shapeB), collisions);
} else if (typeB == Shape::CAPSULE_SHAPE) {
return sphereCapsule(sphereA, static_cast<const CapsuleShape*>(shapeB), collisions);
} else if (typeB == Shape::PLANE_SHAPE) {
return spherePlane(sphereA, static_cast<const PlaneShape*>(shapeB), collisions);
}
} else if (typeA == Shape::CAPSULE_SHAPE) {
const CapsuleShape* capsuleA = static_cast<const CapsuleShape*>(shapeA);
if (typeB == Shape::SPHERE_SHAPE) {
return capsuleSphere(capsuleA, static_cast<const SphereShape*>(shapeB), collisions);
} else if (typeB == Shape::CAPSULE_SHAPE) {
return capsuleCapsule(capsuleA, static_cast<const CapsuleShape*>(shapeB), collisions);
} else if (typeB == Shape::PLANE_SHAPE) {
return capsulePlane(capsuleA, static_cast<const PlaneShape*>(shapeB), collisions);
}
} else if (typeA == Shape::PLANE_SHAPE) {
const PlaneShape* planeA = static_cast<const PlaneShape*>(shapeA);
if (typeB == Shape::SPHERE_SHAPE) {
return planeSphere(planeA, static_cast<const SphereShape*>(shapeB), collisions);
} else if (typeB == Shape::CAPSULE_SHAPE) {
return planeCapsule(planeA, static_cast<const CapsuleShape*>(shapeB), collisions);
} else if (typeB == Shape::PLANE_SHAPE) {
return planePlane(planeA, static_cast<const PlaneShape*>(shapeB), collisions);
}
} else if (typeA == Shape::LIST_SHAPE) {
const ListShape* listA = static_cast<const ListShape*>(shapeA);
if (typeB == Shape::SPHERE_SHAPE) {
return listSphere(listA, static_cast<const SphereShape*>(shapeB), collisions);
} else if (typeB == Shape::CAPSULE_SHAPE) {
return listCapsule(listA, static_cast<const CapsuleShape*>(shapeB), collisions);
} else if (typeB == Shape::PLANE_SHAPE) {
return listPlane(listA, static_cast<const PlaneShape*>(shapeB), collisions);
}
// NOTE: the dispatch table must be initialized before the ShapeCollider is used.
void initDispatchTable() {
for (Shape::Type i = 0; i < NUM__DISPATCH_CELLS; ++i) {
dispatchTable[i] = &notImplemented;
}
return false;
// NOTE: no need to update any that are notImplemented, but we leave them
// commented out in the code so that we remember that they exist.
dispatchTable[getDispatchKey(SPHERE_SHAPE, SPHERE_SHAPE)] = &sphereSphere;
dispatchTable[getDispatchKey(SPHERE_SHAPE, CAPSULE_SHAPE)] = &sphereCapsule;
dispatchTable[getDispatchKey(SPHERE_SHAPE, PLANE_SHAPE)] = &spherePlane;
//dispatchTable[getDispatchKey(SPHERE_SHAPE, LIST_SHAPE)] = &notImplemented;
dispatchTable[getDispatchKey(CAPSULE_SHAPE, SPHERE_SHAPE)] = &capsuleSphere;
dispatchTable[getDispatchKey(CAPSULE_SHAPE, CAPSULE_SHAPE)] = &capsuleCapsule;
dispatchTable[getDispatchKey(CAPSULE_SHAPE, PLANE_SHAPE)] = &capsulePlane;
//dispatchTable[getDispatchKey(CAPSULE_SHAPE, LIST_SHAPE)] = &notImplemented;
dispatchTable[getDispatchKey(PLANE_SHAPE, SPHERE_SHAPE)] = &planeSphere;
dispatchTable[getDispatchKey(PLANE_SHAPE, CAPSULE_SHAPE)] = &planeCapsule;
dispatchTable[getDispatchKey(PLANE_SHAPE, PLANE_SHAPE)] = &planePlane;
//dispatchTable[getDispatchKey(PLANE_SHAPE, LIST_SHAPE)] = &notImplemented;
//dispatchTable[getDispatchKey(LIST_SHAPE, SPHERE_SHAPE)] = &notImplemented;
//dispatchTable[getDispatchKey(LIST_SHAPE, CAPSULE_SHAPE)] = &notImplemented;
//dispatchTable[getDispatchKey(LIST_SHAPE, PLANE_SHAPE)] = &notImplemented;
//dispatchTable[getDispatchKey(LIST_SHAPE, LIST_SHAPE)] = &notImplemented;
// all of the UNKNOWN_SHAPE pairings point at notImplemented
}
bool collideShapes(const Shape* shapeA, const Shape* shapeB, CollisionList& collisions) {
return (*dispatchTable[shapeA->getType() + NUM_SHAPE_TYPES * shapeB->getType()])(shapeA, shapeB, collisions);
}
static CollisionList tempCollisions(32);
@ -133,20 +143,20 @@ bool collideShapesWithShapes(const QVector<Shape*>& shapesA, const QVector<Shape
}
bool collideShapeWithAACube(const Shape* shapeA, const glm::vec3& cubeCenter, float cubeSide, CollisionList& collisions) {
int typeA = shapeA->getType();
if (typeA == Shape::SPHERE_SHAPE) {
Shape::Type typeA = shapeA->getType();
if (typeA == SPHERE_SHAPE) {
return sphereAACube(static_cast<const SphereShape*>(shapeA), cubeCenter, cubeSide, collisions);
} else if (typeA == Shape::CAPSULE_SHAPE) {
} else if (typeA == CAPSULE_SHAPE) {
return capsuleAACube(static_cast<const CapsuleShape*>(shapeA), cubeCenter, cubeSide, collisions);
} else if (typeA == Shape::LIST_SHAPE) {
} else if (typeA == LIST_SHAPE) {
const ListShape* listA = static_cast<const ListShape*>(shapeA);
bool touching = false;
for (int i = 0; i < listA->size() && !collisions.isFull(); ++i) {
const Shape* subShape = listA->getSubShape(i);
int subType = subShape->getType();
if (subType == Shape::SPHERE_SHAPE) {
if (subType == SPHERE_SHAPE) {
touching = sphereAACube(static_cast<const SphereShape*>(subShape), cubeCenter, cubeSide, collisions) || touching;
} else if (subType == Shape::CAPSULE_SHAPE) {
} else if (subType == CAPSULE_SHAPE) {
touching = capsuleAACube(static_cast<const CapsuleShape*>(subShape), cubeCenter, cubeSide, collisions) || touching;
}
}
@ -155,7 +165,9 @@ bool collideShapeWithAACube(const Shape* shapeA, const glm::vec3& cubeCenter, fl
return false;
}
bool sphereSphere(const SphereShape* sphereA, const SphereShape* sphereB, CollisionList& collisions) {
bool sphereSphere(const Shape* shapeA, const Shape* shapeB, CollisionList& collisions) {
const SphereShape* sphereA = static_cast<const SphereShape*>(shapeA);
const SphereShape* sphereB = static_cast<const SphereShape*>(shapeB);
glm::vec3 BA = sphereB->getTranslation() - sphereA->getTranslation();
float distanceSquared = glm::dot(BA, BA);
float totalRadius = sphereA->getRadius() + sphereB->getRadius();
@ -183,7 +195,9 @@ bool sphereSphere(const SphereShape* sphereA, const SphereShape* sphereB, Collis
return false;
}
bool sphereCapsule(const SphereShape* sphereA, const CapsuleShape* capsuleB, CollisionList& collisions) {
bool sphereCapsule(const Shape* shapeA, const Shape* shapeB, CollisionList& collisions) {
const SphereShape* sphereA = static_cast<const SphereShape*>(shapeA);
const CapsuleShape* capsuleB = static_cast<const CapsuleShape*>(shapeB);
// find sphereA's closest approach to axis of capsuleB
glm::vec3 BA = capsuleB->getTranslation() - sphereA->getTranslation();
glm::vec3 capsuleAxis;
@ -252,7 +266,9 @@ bool sphereCapsule(const SphereShape* sphereA, const CapsuleShape* capsuleB, Col
return false;
}
bool spherePlane(const SphereShape* sphereA, const PlaneShape* planeB, CollisionList& collisions) {
bool spherePlane(const Shape* shapeA, const Shape* shapeB, CollisionList& collisions) {
const SphereShape* sphereA = static_cast<const SphereShape*>(shapeA);
const PlaneShape* planeB = static_cast<const PlaneShape*>(shapeB);
glm::vec3 penetration;
if (findSpherePlanePenetration(sphereA->getTranslation(), sphereA->getRadius(), planeB->getCoefficients(), penetration)) {
CollisionInfo* collision = collisions.getNewCollision();
@ -268,7 +284,9 @@ bool spherePlane(const SphereShape* sphereA, const PlaneShape* planeB, Collision
return false;
}
bool capsuleSphere(const CapsuleShape* capsuleA, const SphereShape* sphereB, CollisionList& collisions) {
bool capsuleSphere(const Shape* shapeA, const Shape* shapeB, CollisionList& collisions) {
const CapsuleShape* capsuleA = static_cast<const CapsuleShape*>(shapeA);
const SphereShape* sphereB = static_cast<const SphereShape*>(shapeB);
// find sphereB's closest approach to axis of capsuleA
glm::vec3 AB = capsuleA->getTranslation() - sphereB->getTranslation();
glm::vec3 capsuleAxis;
@ -409,7 +427,9 @@ bool lineCylinder(const glm::vec3& lineP, const glm::vec3& lineDir,
return true;
}
bool capsuleCapsule(const CapsuleShape* capsuleA, const CapsuleShape* capsuleB, CollisionList& collisions) {
bool capsuleCapsule(const Shape* shapeA, const Shape* shapeB, CollisionList& collisions) {
const CapsuleShape* capsuleA = static_cast<const CapsuleShape*>(shapeA);
const CapsuleShape* capsuleB = static_cast<const CapsuleShape*>(shapeB);
glm::vec3 axisA;
capsuleA->computeNormalizedAxis(axisA);
glm::vec3 axisB;
@ -568,7 +588,9 @@ bool capsuleCapsule(const CapsuleShape* capsuleA, const CapsuleShape* capsuleB,
return false;
}
bool capsulePlane(const CapsuleShape* capsuleA, const PlaneShape* planeB, CollisionList& collisions) {
bool capsulePlane(const Shape* shapeA, const Shape* shapeB, CollisionList& collisions) {
const CapsuleShape* capsuleA = static_cast<const CapsuleShape*>(shapeA);
const PlaneShape* planeB = static_cast<const PlaneShape*>(shapeB);
glm::vec3 start, end, penetration;
capsuleA->getStartPoint(start);
capsuleA->getEndPoint(end);
@ -588,7 +610,9 @@ bool capsulePlane(const CapsuleShape* capsuleA, const PlaneShape* planeB, Collis
return false;
}
bool planeSphere(const PlaneShape* planeA, const SphereShape* sphereB, CollisionList& collisions) {
bool planeSphere(const Shape* shapeA, const Shape* shapeB, CollisionList& collisions) {
const PlaneShape* planeA = static_cast<const PlaneShape*>(shapeA);
const SphereShape* sphereB = static_cast<const SphereShape*>(shapeB);
glm::vec3 penetration;
if (findSpherePlanePenetration(sphereB->getTranslation(), sphereB->getRadius(), planeA->getCoefficients(), penetration)) {
CollisionInfo* collision = collisions.getNewCollision();
@ -605,7 +629,9 @@ bool planeSphere(const PlaneShape* planeA, const SphereShape* sphereB, Collision
return false;
}
bool planeCapsule(const PlaneShape* planeA, const CapsuleShape* capsuleB, CollisionList& collisions) {
bool planeCapsule(const Shape* shapeA, const Shape* shapeB, CollisionList& collisions) {
const PlaneShape* planeA = static_cast<const PlaneShape*>(shapeA);
const CapsuleShape* capsuleB = static_cast<const CapsuleShape*>(shapeB);
glm::vec3 start, end, penetration;
capsuleB->getStartPoint(start);
capsuleB->getEndPoint(end);
@ -625,110 +651,118 @@ bool planeCapsule(const PlaneShape* planeA, const CapsuleShape* capsuleB, Collis
return false;
}
bool planePlane(const PlaneShape* planeA, const PlaneShape* planeB, CollisionList& collisions) {
bool planePlane(const Shape* shapeA, const Shape* shapeB, CollisionList& collisions) {
// technically, planes always collide unless they're parallel and not coincident; however, that's
// not going to give us any useful information
return false;
}
bool sphereList(const SphereShape* sphereA, const ListShape* listB, CollisionList& collisions) {
bool sphereList(const Shape* shapeA, const Shape* shapeB, CollisionList& collisions) {
bool touching = false;
const ListShape* listB = static_cast<const ListShape*>(shapeB);
for (int i = 0; i < listB->size() && !collisions.isFull(); ++i) {
const Shape* subShape = listB->getSubShape(i);
int subType = subShape->getType();
if (subType == Shape::SPHERE_SHAPE) {
touching = sphereSphere(sphereA, static_cast<const SphereShape*>(subShape), collisions) || touching;
} else if (subType == Shape::CAPSULE_SHAPE) {
touching = sphereCapsule(sphereA, static_cast<const CapsuleShape*>(subShape), collisions) || touching;
} else if (subType == Shape::PLANE_SHAPE) {
touching = spherePlane(sphereA, static_cast<const PlaneShape*>(subShape), collisions) || touching;
if (subType == SPHERE_SHAPE) {
touching = sphereSphere(shapeA, subShape, collisions) || touching;
} else if (subType == CAPSULE_SHAPE) {
touching = sphereCapsule(shapeA, subShape, collisions) || touching;
} else if (subType == PLANE_SHAPE) {
touching = spherePlane(shapeA, subShape, collisions) || touching;
}
}
return touching;
}
bool capsuleList(const CapsuleShape* capsuleA, const ListShape* listB, CollisionList& collisions) {
bool capsuleList(const Shape* shapeA, const Shape* shapeB, CollisionList& collisions) {
bool touching = false;
const ListShape* listB = static_cast<const ListShape*>(shapeB);
for (int i = 0; i < listB->size() && !collisions.isFull(); ++i) {
const Shape* subShape = listB->getSubShape(i);
int subType = subShape->getType();
if (subType == Shape::SPHERE_SHAPE) {
touching = capsuleSphere(capsuleA, static_cast<const SphereShape*>(subShape), collisions) || touching;
} else if (subType == Shape::CAPSULE_SHAPE) {
touching = capsuleCapsule(capsuleA, static_cast<const CapsuleShape*>(subShape), collisions) || touching;
} else if (subType == Shape::PLANE_SHAPE) {
touching = capsulePlane(capsuleA, static_cast<const PlaneShape*>(subShape), collisions) || touching;
if (subType == SPHERE_SHAPE) {
touching = capsuleSphere(shapeA, subShape, collisions) || touching;
} else if (subType == CAPSULE_SHAPE) {
touching = capsuleCapsule(shapeA, subShape, collisions) || touching;
} else if (subType == PLANE_SHAPE) {
touching = capsulePlane(shapeA, subShape, collisions) || touching;
}
}
return touching;
}
bool planeList(const PlaneShape* planeA, const ListShape* listB, CollisionList& collisions) {
bool planeList(const Shape* shapeA, const Shape* shapeB, CollisionList& collisions) {
bool touching = false;
const ListShape* listB = static_cast<const ListShape*>(shapeB);
for (int i = 0; i < listB->size() && !collisions.isFull(); ++i) {
const Shape* subShape = listB->getSubShape(i);
int subType = subShape->getType();
if (subType == Shape::SPHERE_SHAPE) {
touching = planeSphere(planeA, static_cast<const SphereShape*>(subShape), collisions) || touching;
} else if (subType == Shape::CAPSULE_SHAPE) {
touching = planeCapsule(planeA, static_cast<const CapsuleShape*>(subShape), collisions) || touching;
} else if (subType == Shape::PLANE_SHAPE) {
touching = planePlane(planeA, static_cast<const PlaneShape*>(subShape), collisions) || touching;
if (subType == SPHERE_SHAPE) {
touching = planeSphere(shapeA, subShape, collisions) || touching;
} else if (subType == CAPSULE_SHAPE) {
touching = planeCapsule(shapeA, subShape, collisions) || touching;
} else if (subType == PLANE_SHAPE) {
touching = planePlane(shapeA, subShape, collisions) || touching;
}
}
return touching;
}
bool listSphere(const ListShape* listA, const SphereShape* sphereB, CollisionList& collisions) {
bool listSphere(const Shape* shapeA, const Shape* shapeB, CollisionList& collisions) {
bool touching = false;
const ListShape* listA = static_cast<const ListShape*>(shapeA);
for (int i = 0; i < listA->size() && !collisions.isFull(); ++i) {
const Shape* subShape = listA->getSubShape(i);
int subType = subShape->getType();
if (subType == Shape::SPHERE_SHAPE) {
touching = sphereSphere(static_cast<const SphereShape*>(subShape), sphereB, collisions) || touching;
} else if (subType == Shape::CAPSULE_SHAPE) {
touching = capsuleSphere(static_cast<const CapsuleShape*>(subShape), sphereB, collisions) || touching;
} else if (subType == Shape::PLANE_SHAPE) {
touching = planeSphere(static_cast<const PlaneShape*>(subShape), sphereB, collisions) || touching;
if (subType == SPHERE_SHAPE) {
touching = sphereSphere(subShape, shapeB, collisions) || touching;
} else if (subType == CAPSULE_SHAPE) {
touching = capsuleSphere(subShape, shapeB, collisions) || touching;
} else if (subType == PLANE_SHAPE) {
touching = planeSphere(subShape, shapeB, collisions) || touching;
}
}
return touching;
}
bool listCapsule(const ListShape* listA, const CapsuleShape* capsuleB, CollisionList& collisions) {
bool listCapsule(const Shape* shapeA, const Shape* shapeB, CollisionList& collisions) {
bool touching = false;
const ListShape* listA = static_cast<const ListShape*>(shapeA);
for (int i = 0; i < listA->size() && !collisions.isFull(); ++i) {
const Shape* subShape = listA->getSubShape(i);
int subType = subShape->getType();
if (subType == Shape::SPHERE_SHAPE) {
touching = sphereCapsule(static_cast<const SphereShape*>(subShape), capsuleB, collisions) || touching;
} else if (subType == Shape::CAPSULE_SHAPE) {
touching = capsuleCapsule(static_cast<const CapsuleShape*>(subShape), capsuleB, collisions) || touching;
} else if (subType == Shape::PLANE_SHAPE) {
touching = planeCapsule(static_cast<const PlaneShape*>(subShape), capsuleB, collisions) || touching;
if (subType == SPHERE_SHAPE) {
touching = sphereCapsule(subShape, shapeB, collisions) || touching;
} else if (subType == CAPSULE_SHAPE) {
touching = capsuleCapsule(subShape, shapeB, collisions) || touching;
} else if (subType == PLANE_SHAPE) {
touching = planeCapsule(subShape, shapeB, collisions) || touching;
}
}
return touching;
}
bool listPlane(const ListShape* listA, const PlaneShape* planeB, CollisionList& collisions) {
bool listPlane(const Shape* shapeA, const Shape* shapeB, CollisionList& collisions) {
bool touching = false;
const ListShape* listA = static_cast<const ListShape*>(shapeA);
for (int i = 0; i < listA->size() && !collisions.isFull(); ++i) {
const Shape* subShape = listA->getSubShape(i);
int subType = subShape->getType();
if (subType == Shape::SPHERE_SHAPE) {
touching = spherePlane(static_cast<const SphereShape*>(subShape), planeB, collisions) || touching;
} else if (subType == Shape::CAPSULE_SHAPE) {
touching = capsulePlane(static_cast<const CapsuleShape*>(subShape), planeB, collisions) || touching;
} else if (subType == Shape::PLANE_SHAPE) {
touching = planePlane(static_cast<const PlaneShape*>(subShape), planeB, collisions) || touching;
if (subType == SPHERE_SHAPE) {
touching = spherePlane(subShape, shapeB, collisions) || touching;
} else if (subType == CAPSULE_SHAPE) {
touching = capsulePlane(subShape, shapeB, collisions) || touching;
} else if (subType == PLANE_SHAPE) {
touching = planePlane(subShape, shapeB, collisions) || touching;
}
}
return touching;
}
bool listList(const ListShape* listA, const ListShape* listB, CollisionList& collisions) {
bool listList(const Shape* shapeA, const Shape* shapeB, CollisionList& collisions) {
bool touching = false;
const ListShape* listA = static_cast<const ListShape*>(shapeA);
const ListShape* listB = static_cast<const ListShape*>(shapeB);
for (int i = 0; i < listA->size() && !collisions.isFull(); ++i) {
const Shape* subShape = listA->getSubShape(i);
for (int j = 0; j < listB->size() && !collisions.isFull(); ++j) {

View file

@ -14,20 +14,28 @@
#include <QVector>
#include "CapsuleShape.h"
#include "CollisionInfo.h"
#include "ListShape.h"
#include "PlaneShape.h"
#include "SharedUtil.h"
#include "SphereShape.h"
//#include "CapsuleShape.h"
//#include "ListShape.h"
//#include "PlaneShape.h"
//#include "SphereShape.h"
class Shape;
class SphereShape;
class CapsuleShape;
namespace ShapeCollider {
/// MUST CALL this FIRST before using the ShapeCollider
void initDispatchTable();
/// \param shapeA pointer to first shape (cannot be NULL)
/// \param shapeB pointer to second shape (cannot be NULL)
/// \param collisions[out] collision details
/// \return true if shapes collide
bool collideShapes(const Shape* shapeA, const Shape* shapeB, CollisionList& collisions);
bool collideShapesOld(const Shape* shapeA, const Shape* shapeB, CollisionList& collisions);
/// \param shapesA list of shapes
/// \param shapeB list of shapes
@ -49,97 +57,97 @@ namespace ShapeCollider {
/// \param sphereB pointer to second shape (cannot be NULL)
/// \param[out] collisions where to append collision details
/// \return true if shapes collide
bool sphereSphere(const SphereShape* sphereA, const SphereShape* sphereB, CollisionList& collisions);
bool sphereSphere(const Shape* sphereA, const Shape* sphereB, CollisionList& collisions);
/// \param sphereA pointer to first shape (cannot be NULL)
/// \param capsuleB pointer to second shape (cannot be NULL)
/// \param[out] collisions where to append collision details
/// \return true if shapes collide
bool sphereCapsule(const SphereShape* sphereA, const CapsuleShape* capsuleB, CollisionList& collisions);
bool sphereCapsule(const Shape* sphereA, const Shape* capsuleB, CollisionList& collisions);
/// \param sphereA pointer to first shape (cannot be NULL)
/// \param planeB pointer to second shape (cannot be NULL)
/// \param[out] collisions where to append collision details
/// \return true if shapes collide
bool spherePlane(const SphereShape* sphereA, const PlaneShape* planeB, CollisionList& collisions);
bool spherePlane(const Shape* sphereA, const Shape* planeB, CollisionList& collisions);
/// \param capsuleA pointer to first shape (cannot be NULL)
/// \param sphereB pointer to second shape (cannot be NULL)
/// \param[out] collisions where to append collision details
/// \return true if shapes collide
bool capsuleSphere(const CapsuleShape* capsuleA, const SphereShape* sphereB, CollisionList& collisions);
bool capsuleSphere(const Shape* capsuleA, const Shape* sphereB, CollisionList& collisions);
/// \param capsuleA pointer to first shape (cannot be NULL)
/// \param capsuleB pointer to second shape (cannot be NULL)
/// \param[out] collisions where to append collision details
/// \return true if shapes collide
bool capsuleCapsule(const CapsuleShape* capsuleA, const CapsuleShape* capsuleB, CollisionList& collisions);
bool capsuleCapsule(const Shape* capsuleA, const Shape* capsuleB, CollisionList& collisions);
/// \param capsuleA pointer to first shape (cannot be NULL)
/// \param planeB pointer to second shape (cannot be NULL)
/// \param[out] collisions where to append collision details
/// \return true if shapes collide
bool capsulePlane(const CapsuleShape* capsuleA, const PlaneShape* planeB, CollisionList& collisions);
bool capsulePlane(const Shape* capsuleA, const Shape* planeB, CollisionList& collisions);
/// \param planeA pointer to first shape (cannot be NULL)
/// \param sphereB pointer to second shape (cannot be NULL)
/// \param[out] collisions where to append collision details
/// \return true if shapes collide
bool planeSphere(const PlaneShape* planeA, const SphereShape* sphereB, CollisionList& collisions);
bool planeSphere(const Shape* planeA, const Shape* sphereB, CollisionList& collisions);
/// \param planeA pointer to first shape (cannot be NULL)
/// \param capsuleB pointer to second shape (cannot be NULL)
/// \param[out] collisions where to append collision details
/// \return true if shapes collide
bool planeCapsule(const PlaneShape* planeA, const CapsuleShape* capsuleB, CollisionList& collisions);
bool planeCapsule(const Shape* planeA, const Shape* capsuleB, CollisionList& collisions);
/// \param planeA pointer to first shape (cannot be NULL)
/// \param planeB pointer to second shape (cannot be NULL)
/// \param[out] collisions where to append collision details
/// \return true if shapes collide
bool planePlane(const PlaneShape* planeA, const PlaneShape* planeB, CollisionList& collisions);
bool planePlane(const Shape* planeA, const Shape* planeB, CollisionList& collisions);
/// \param sphereA pointer to first shape (cannot be NULL)
/// \param listB pointer to second shape (cannot be NULL)
/// \param[out] collisions where to append collision details
/// \return true if shapes collide
bool sphereList(const SphereShape* sphereA, const ListShape* listB, CollisionList& collisions);
bool sphereList(const Shape* sphereA, const Shape* listB, CollisionList& collisions);
/// \param capuleA pointer to first shape (cannot be NULL)
/// \param listB pointer to second shape (cannot be NULL)
/// \param[out] collisions where to append collision details
/// \return true if shapes collide
bool capsuleList(const CapsuleShape* capsuleA, const ListShape* listB, CollisionList& collisions);
bool capsuleList(const Shape* capsuleA, const Shape* listB, CollisionList& collisions);
/// \param planeA pointer to first shape (cannot be NULL)
/// \param listB pointer to second shape (cannot be NULL)
/// \param[out] collisions where to append collision details
/// \return true if shapes collide
bool planeList(const PlaneShape* planeA, const ListShape* listB, CollisionList& collisions);
bool planeList(const Shape* planeA, const Shape* listB, CollisionList& collisions);
/// \param listA pointer to first shape (cannot be NULL)
/// \param sphereB pointer to second shape (cannot be NULL)
/// \param[out] collisions where to append collision details
/// \return true if shapes collide
bool listSphere(const ListShape* listA, const SphereShape* sphereB, CollisionList& collisions);
bool listSphere(const Shape* listA, const Shape* sphereB, CollisionList& collisions);
/// \param listA pointer to first shape (cannot be NULL)
/// \param capsuleB pointer to second shape (cannot be NULL)
/// \param[out] collisions where to append collision details
/// \return true if shapes collide
bool listCapsule(const ListShape* listA, const CapsuleShape* capsuleB, CollisionList& collisions);
bool listCapsule(const Shape* listA, const Shape* capsuleB, CollisionList& collisions);
/// \param listA pointer to first shape (cannot be NULL)
/// \param planeB pointer to second shape (cannot be NULL)
/// \param[out] collisions where to append collision details
/// \return true if shapes collide
bool listPlane(const ListShape* listA, const PlaneShape* planeB, CollisionList& collisions);
bool listPlane(const Shape* listA, const Shape* planeB, CollisionList& collisions);
/// \param listA pointer to first shape (cannot be NULL)
/// \param capsuleB pointer to second shape (cannot be NULL)
/// \param[out] collisions where to append collision details
/// \return true if shapes collide
bool listList(const ListShape* listA, const ListShape* listB, CollisionList& collisions);
bool listList(const Shape* listA, const Shape* listB, CollisionList& collisions);
/// \param sphereA pointer to sphere (cannot be NULL)
/// \param cubeCenter center of cube

View file

@ -18,13 +18,13 @@
class SphereShape : public Shape {
public:
SphereShape() : Shape(Shape::SPHERE_SHAPE) {}
SphereShape() : Shape(SPHERE_SHAPE) {}
SphereShape(float radius) : Shape(Shape::SPHERE_SHAPE) {
SphereShape(float radius) : Shape(SPHERE_SHAPE) {
_boundingRadius = radius;
}
SphereShape(float radius, const glm::vec3& position) : Shape(Shape::SPHERE_SHAPE, position) {
SphereShape(float radius, const glm::vec3& position) : Shape(SPHERE_SHAPE, position) {
_boundingRadius = radius;
}

View file

@ -16,7 +16,9 @@
#include <glm/glm.hpp>
#include <glm/gtx/quaternion.hpp>
#include <CapsuleShape.h>
#include <CollisionInfo.h>
#include <PlaneShape.h>
#include <ShapeCollider.h>
#include <SharedUtil.h>
#include <SphereShape.h>
@ -112,6 +114,7 @@ void ShapeColliderTests::sphereTouchesSphere() {
if (!collision) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: null collision" << std::endl;
return;
}
// penetration points from sphereA into sphereB
@ -1298,7 +1301,41 @@ void ShapeColliderTests::rayMissesPlane() {
}
}
void ShapeColliderTests::measureTimeOfCollisionDispatch() {
/* KEEP for future manual testing
// create two non-colliding spheres
float radiusA = 7.0f;
float radiusB = 3.0f;
float alpha = 1.2f;
float beta = 1.3f;
glm::vec3 offsetDirection = glm::normalize(glm::vec3(1.0f, 2.0f, 3.0f));
float offsetDistance = alpha * radiusA + beta * radiusB;
SphereShape sphereA(radiusA, origin);
SphereShape sphereB(radiusB, offsetDistance * offsetDirection);
CollisionList collisions(16);
//int numTests = 1;
quint64 oldTime;
quint64 newTime;
int numTests = 100000000;
{
quint64 startTime = usecTimestampNow();
for (int i = 0; i < numTests; ++i) {
ShapeCollider::collideShapes(&sphereA, &sphereB, collisions);
}
quint64 endTime = usecTimestampNow();
std::cout << numTests << " non-colliding collisions in " << (endTime - startTime) << " usec" << std::endl;
newTime = endTime - startTime;
}
*/
}
void ShapeColliderTests::runAllTests() {
ShapeCollider::initDispatchTable();
//measureTimeOfCollisionDispatch();
sphereMissesSphere();
sphereTouchesSphere();

View file

@ -35,6 +35,8 @@ namespace ShapeColliderTests {
void rayHitsPlane();
void rayMissesPlane();
void measureTimeOfCollisionDispatch();
void runAllTests();
}

View file

@ -757,6 +757,8 @@ void VerletShapeTests::capsuleTouchesCapsule() {
}
void VerletShapeTests::runAllTests() {
ShapeCollider::initDispatchTable();
setSpherePosition();
sphereMissesSphere();
sphereTouchesSphere();