remove old kinematic CharacterController

This commit is contained in:
Andrew Meadows 2015-04-07 16:29:52 -07:00
parent 40c94fa00e
commit 2ccc25e380
2 changed files with 0 additions and 1112 deletions

View file

@ -1,931 +0,0 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2008 Erwin Coumans http://bulletphysics.com
2015.03.25 -- modified by Andrew Meadows andrew@highfidelity.io
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software.
If you use this software in a product, an acknowledgment in the product documentation would be appreciated
but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "BulletCollision/CollisionDispatch/btGhostObject.h"
#include "BulletUtil.h"
#include "CharacterController.h"
const uint32_t PENDING_FLAG_ADD_TO_SIMULATION = 1U << 0;
const uint32_t PENDING_FLAG_REMOVE_FROM_SIMULATION = 1U << 1;
const uint32_t PENDING_FLAG_UPDATE_SHAPE = 1U << 2;
const uint32_t PENDING_FLAG_JUMP = 1U << 3;
// static helper method
static btVector3 getNormalizedVector(const btVector3& v) {
// NOTE: check the length first, then normalize
// --> avoids assert when trying to normalize zero-length vectors
btScalar vLength = v.length();
if (vLength < FLT_EPSILON) {
return btVector3(0.0f, 0.0f, 0.0f);
}
btVector3 n = v;
n /= vLength;
return n;
}
class btKinematicClosestNotMeRayResultCallback : public btCollisionWorld::ClosestRayResultCallback {
public:
btKinematicClosestNotMeRayResultCallback (btCollisionObject* me) :
btCollisionWorld::ClosestRayResultCallback(btVector3(0.0f, 0.0f, 0.0f), btVector3(0.0f, 0.0f, 0.0f)) {
_me = me;
}
virtual btScalar addSingleResult(btCollisionWorld::LocalRayResult& rayResult,bool normalInWorldSpace) {
if (rayResult.m_collisionObject == _me) {
return 1.0f;
}
return ClosestRayResultCallback::addSingleResult (rayResult, normalInWorldSpace);
}
protected:
btCollisionObject* _me;
};
class btKinematicClosestNotMeConvexResultCallback : public btCollisionWorld::ClosestConvexResultCallback {
public:
btKinematicClosestNotMeConvexResultCallback(btCollisionObject* me, const btVector3& up, btScalar minSlopeDot)
: btCollisionWorld::ClosestConvexResultCallback(btVector3(0.0, 0.0, 0.0), btVector3(0.0, 0.0, 0.0))
, _me(me)
, _up(up)
, _minSlopeDot(minSlopeDot)
{
}
virtual btScalar addSingleResult(btCollisionWorld::LocalConvexResult& convexResult, bool normalInWorldSpace) {
if (convexResult.m_hitCollisionObject == _me) {
return btScalar(1.0);
}
if (!convexResult.m_hitCollisionObject->hasContactResponse()) {
return btScalar(1.0);
}
btVector3 hitNormalWorld;
if (normalInWorldSpace) {
hitNormalWorld = convexResult.m_hitNormalLocal;
} else {
///need to transform normal into worldspace
hitNormalWorld = convexResult.m_hitCollisionObject->getWorldTransform().getBasis()*convexResult.m_hitNormalLocal;
}
// Note: hitNormalWorld points into character, away from object
// and _up points opposite to movement
btScalar dotUp = _up.dot(hitNormalWorld);
if (dotUp < _minSlopeDot) {
return btScalar(1.0);
}
return ClosestConvexResultCallback::addSingleResult(convexResult, normalInWorldSpace);
}
protected:
btCollisionObject* _me;
const btVector3 _up;
btScalar _minSlopeDot;
};
class StepDownConvexResultCallback : public btCollisionWorld::ClosestConvexResultCallback {
// special convex sweep callback for character during the stepDown() phase
public:
StepDownConvexResultCallback(btCollisionObject* me,
const btVector3& up,
const btVector3& start,
const btVector3& step,
const btVector3& pushDirection,
btScalar minSlopeDot,
btScalar radius,
btScalar halfHeight)
: btCollisionWorld::ClosestConvexResultCallback(btVector3(0.0, 0.0, 0.0), btVector3(0.0, 0.0, 0.0))
, _me(me)
, _up(up)
, _start(start)
, _step(step)
, _pushDirection(pushDirection)
, _minSlopeDot(minSlopeDot)
, _radius(radius)
, _halfHeight(halfHeight)
{
}
virtual btScalar addSingleResult(btCollisionWorld::LocalConvexResult& convexResult, bool normalInWorldSpace) {
if (convexResult.m_hitCollisionObject == _me) {
return btScalar(1.0);
}
if (!convexResult.m_hitCollisionObject->hasContactResponse()) {
return btScalar(1.0);
}
btVector3 hitNormalWorld;
if (normalInWorldSpace) {
hitNormalWorld = convexResult.m_hitNormalLocal;
} else {
///need to transform normal into worldspace
hitNormalWorld = convexResult.m_hitCollisionObject->getWorldTransform().getBasis() * convexResult.m_hitNormalLocal;
}
// Note: hitNormalWorld points into character, away from object
// and _up points opposite to movement
btScalar dotUp = _up.dot(hitNormalWorld);
if (dotUp < _minSlopeDot) {
if (hitNormalWorld.dot(_pushDirection) > 0.0f) {
// ignore hits that push in same direction as character is moving
// which helps character NOT snag when stepping off ledges
return btScalar(1.0f);
}
// compute the angle between "down" and the line from character center to "hit" point
btVector3 fractionalStep = convexResult.m_hitFraction * _step;
btVector3 localHit = convexResult.m_hitPointLocal - _start + fractionalStep;
btScalar angle = localHit.angle(-_up);
// compute a maxAngle based on size of _step
btVector3 side(_radius, - (_halfHeight - _step.length() + fractionalStep.dot(_up)), 0.0f);
btScalar maxAngle = side.angle(-_up);
// Ignore hits that are larger than maxAngle. Effectively what is happening here is:
// we're ignoring hits at contacts that have non-vertical normals... if they hit higher
// than the character's "feet". Ignoring the contact allows the character to slide down
// for these hits. In other words, vertical walls against the character's torso will
// not prevent them from "stepping down" to find the floor.
if (angle > maxAngle) {
return btScalar(1.0f);
}
}
btScalar fraction = ClosestConvexResultCallback::addSingleResult(convexResult, normalInWorldSpace);
return fraction;
}
protected:
btCollisionObject* _me;
const btVector3 _up;
btVector3 _start;
btVector3 _step;
btVector3 _pushDirection;
btScalar _minSlopeDot;
btScalar _radius;
btScalar _halfHeight;
};
/*
* Returns the reflection direction of a ray going 'direction' hitting a surface with normal 'normal'
*
* from: http://www-cs-students.stanford.edu/~adityagp/final/node3.html
*/
btVector3 CharacterController::computeReflectionDirection(const btVector3& direction, const btVector3& normal) {
return direction - (btScalar(2.0) * direction.dot(normal)) * normal;
}
/*
* Returns the portion of 'direction' that is parallel to 'normal'
*/
btVector3 CharacterController::parallelComponent(const btVector3& direction, const btVector3& normal) {
btScalar magnitude = direction.dot(normal);
return normal * magnitude;
}
/*
* Returns the portion of 'direction' that is perpindicular to 'normal'
*/
btVector3 CharacterController::perpindicularComponent(const btVector3& direction, const btVector3& normal) {
return direction - parallelComponent(direction, normal);
}
const btVector3 LOCAL_UP_AXIS(0.0f, 1.0f, 0.0f);
const float DEFAULT_GRAVITY = 5.0f;
const float TERMINAL_VELOCITY = 55.0f;
const float JUMP_SPEED = 3.5f;
CharacterController::CharacterController(AvatarData* avatarData) {
assert(avatarData);
_avatarData = avatarData;
_enabled = false;
_ghostObject = NULL;
_convexShape = NULL;
_addedMargin = 0.02f;
_walkDirection.setValue(0.0f,0.0f,0.0f);
_velocityTimeInterval = 0.0f;
_verticalVelocity = 0.0f;
_verticalOffset = 0.0f;
_gravity = DEFAULT_GRAVITY;
_maxFallSpeed = TERMINAL_VELOCITY;
_jumpSpeed = JUMP_SPEED;
_isOnGround = false;
_isJumping = false;
_isHovering = true;
_jumpToHoverStart = 0;
setMaxSlope(btRadians(45.0f));
_lastStepUp = 0.0f;
_pendingFlags = PENDING_FLAG_UPDATE_SHAPE;
updateShapeIfNecessary();
}
CharacterController::~CharacterController() {
delete _ghostObject;
_ghostObject = NULL;
delete _convexShape;
_convexShape = NULL;
// make sure you remove this Character from its DynamicsWorld before reaching this spot
assert(_dynamicsWorld == NULL);
}
btPairCachingGhostObject* CharacterController::getGhostObject() {
return _ghostObject;
}
bool CharacterController::recoverFromPenetration(btCollisionWorld* collisionWorld) {
BT_PROFILE("recoverFromPenetration");
// Here we must refresh the overlapping paircache as the penetrating movement itself or the
// previous recovery iteration might have used setWorldTransform and pushed us into an object
// that is not in the previous cache contents from the last timestep, as will happen if we
// are pushed into a new AABB overlap. Unhandled this means the next convex sweep gets stuck.
//
// Do this by calling the broadphase's setAabb with the moved AABB, this will update the broadphase
// paircache and the ghostobject's internal paircache at the same time. /BW
btVector3 minAabb, maxAabb;
_convexShape->getAabb(_ghostObject->getWorldTransform(), minAabb, maxAabb);
collisionWorld->getBroadphase()->setAabb(_ghostObject->getBroadphaseHandle(),
minAabb,
maxAabb,
collisionWorld->getDispatcher());
bool penetration = false;
collisionWorld->getDispatcher()->dispatchAllCollisionPairs(_ghostObject->getOverlappingPairCache(), collisionWorld->getDispatchInfo(), collisionWorld->getDispatcher());
_currentPosition = _ghostObject->getWorldTransform().getOrigin();
btVector3 currentPosition = _currentPosition;
btScalar maxPen = btScalar(0.0);
for (int i = 0; i < _ghostObject->getOverlappingPairCache()->getNumOverlappingPairs(); i++) {
_manifoldArray.resize(0);
btBroadphasePair* collisionPair = &_ghostObject->getOverlappingPairCache()->getOverlappingPairArray()[i];
btCollisionObject* obj0 = static_cast<btCollisionObject*>(collisionPair->m_pProxy0->m_clientObject);
btCollisionObject* obj1 = static_cast<btCollisionObject*>(collisionPair->m_pProxy1->m_clientObject);
if ((obj0 && !obj0->hasContactResponse()) || (obj1 && !obj1->hasContactResponse())) {
continue;
}
if (collisionPair->m_algorithm) {
collisionPair->m_algorithm->getAllContactManifolds(_manifoldArray);
}
for (int j = 0;j < _manifoldArray.size(); j++) {
btPersistentManifold* manifold = _manifoldArray[j];
btScalar directionSign = (manifold->getBody0() == _ghostObject) ? btScalar(1.0) : btScalar(-1.0);
for (int p = 0;p < manifold->getNumContacts(); p++) {
const btManifoldPoint&pt = manifold->getContactPoint(p);
btScalar dist = pt.getDistance();
if (dist < 0.0) {
bool useContact = true;
btVector3 normal = pt.m_normalWorldOnB;
normal *= directionSign; // always points from object to character
btScalar normalDotUp = normal.dot(_currentUp);
if (normalDotUp < _maxSlopeCosine) {
// this contact has a non-vertical normal... might need to ignored
btVector3 collisionPoint;
if (directionSign > 0.0) {
collisionPoint = pt.getPositionWorldOnB();
} else {
collisionPoint = pt.getPositionWorldOnA();
}
// we do math in frame where character base is origin
btVector3 characterBase = currentPosition - (_radius + _halfHeight) * _currentUp;
collisionPoint -= characterBase;
btScalar collisionHeight = collisionPoint.dot(_currentUp);
if (collisionHeight < _lastStepUp) {
// This contact is below the lastStepUp, so we ignore it for penetration resolution,
// otherwise it may prevent the character from getting close enough to find any available
// horizontal foothold that would allow it to climbe the ledge. In other words, we're
// making the character's "feet" soft for collisions against steps, but not floors.
useContact = false;
}
}
if (useContact) {
if (dist < maxPen) {
maxPen = dist;
_floorNormal = normal;
}
const btScalar INCREMENTAL_RESOLUTION_FACTOR = 0.2f;
_currentPosition += normal * (fabsf(dist) * INCREMENTAL_RESOLUTION_FACTOR);
penetration = true;
}
}
}
}
}
btTransform newTrans = _ghostObject->getWorldTransform();
newTrans.setOrigin(_currentPosition);
_ghostObject->setWorldTransform(newTrans);
return penetration;
}
void CharacterController::scanDown(btCollisionWorld* world) {
BT_PROFILE("scanDown");
// we test with downward raycast and if we don't find floor close enough then turn on "hover"
btKinematicClosestNotMeRayResultCallback callback(_ghostObject);
callback.m_collisionFilterGroup = getGhostObject()->getBroadphaseHandle()->m_collisionFilterGroup;
callback.m_collisionFilterMask = getGhostObject()->getBroadphaseHandle()->m_collisionFilterMask;
btVector3 start = _currentPosition;
const btScalar MAX_SCAN_HEIGHT = 20.0f + _halfHeight + _radius; // closest possible floor for disabling hover
const btScalar MIN_HOVER_HEIGHT = 3.0f + _halfHeight + _radius; // distance to floor for enabling hover
btVector3 end = start - MAX_SCAN_HEIGHT * _currentUp;
world->rayTest(start, end, callback);
if (!callback.hasHit()) {
_isHovering = true;
} else if (_isHovering && callback.m_closestHitFraction * MAX_SCAN_HEIGHT < MIN_HOVER_HEIGHT) {
_isHovering = false;
}
}
void CharacterController::stepUp(btCollisionWorld* world) {
BT_PROFILE("stepUp");
// phase 1: up
// compute start and end
btTransform start, end;
start.setIdentity();
start.setOrigin(_currentPosition + _currentUp * (_convexShape->getMargin() + _addedMargin));
_targetPosition = _currentPosition + _currentUp * _stepUpHeight;
end.setIdentity();
end.setOrigin(_targetPosition);
// sweep up
btVector3 sweepDirNegative = - _currentUp;
btKinematicClosestNotMeConvexResultCallback callback(_ghostObject, sweepDirNegative, btScalar(0.7071));
callback.m_collisionFilterGroup = getGhostObject()->getBroadphaseHandle()->m_collisionFilterGroup;
callback.m_collisionFilterMask = getGhostObject()->getBroadphaseHandle()->m_collisionFilterMask;
_ghostObject->convexSweepTest(_convexShape, start, end, callback, world->getDispatchInfo().m_allowedCcdPenetration);
if (callback.hasHit()) {
// we hit something, so zero our vertical velocity
_verticalVelocity = 0.0f;
_verticalOffset = 0.0f;
// Only modify the position if the hit was a slope and not a wall or ceiling.
if (callback.m_hitNormalWorld.dot(_currentUp) > 0.0f) {
_lastStepUp = _stepUpHeight * callback.m_closestHitFraction;
_currentPosition.setInterpolate3(_currentPosition, _targetPosition, callback.m_closestHitFraction);
} else {
_lastStepUp = _stepUpHeight;
_currentPosition = _targetPosition;
}
} else {
_currentPosition = _targetPosition;
_lastStepUp = _stepUpHeight;
}
}
void CharacterController::updateTargetPositionBasedOnCollision(const btVector3& hitNormal, btScalar tangentMag, btScalar normalMag) {
btVector3 movementDirection = _targetPosition - _currentPosition;
btScalar movementLength = movementDirection.length();
if (movementLength > SIMD_EPSILON) {
movementDirection.normalize();
btVector3 reflectDir = computeReflectionDirection(movementDirection, hitNormal);
reflectDir.normalize();
btVector3 parallelDir, perpindicularDir;
parallelDir = parallelComponent(reflectDir, hitNormal);
perpindicularDir = perpindicularComponent(reflectDir, hitNormal);
_targetPosition = _currentPosition;
//if (tangentMag != 0.0) {
if (0) {
btVector3 parComponent = parallelDir * btScalar(tangentMag * movementLength);
_targetPosition += parComponent;
}
if (normalMag != 0.0) {
btVector3 perpComponent = perpindicularDir * btScalar(normalMag * movementLength);
_targetPosition += perpComponent;
}
}
}
void CharacterController::stepForward(btCollisionWorld* collisionWorld, const btVector3& movement) {
BT_PROFILE("stepForward");
// phase 2: forward
_targetPosition = _currentPosition + movement;
btTransform start, end;
start.setIdentity();
end.setIdentity();
/* TODO: experiment with this to see if we can use this to help direct motion when a floor is available
if (_touchingContact) {
if (_normalizedDirection.dot(_floorNormal) < btScalar(0.0)) {
updateTargetPositionBasedOnCollision(_floorNormal, 1.0f, 1.0f);
}
}*/
// modify shape's margin for the sweeps
btScalar margin = _convexShape->getMargin();
_convexShape->setMargin(margin + _addedMargin);
const btScalar MIN_STEP_DISTANCE_SQUARED = 1.0e-6f;
btVector3 step = _targetPosition - _currentPosition;
btScalar stepLength2 = step.length2();
int maxIter = 10;
while (stepLength2 > MIN_STEP_DISTANCE_SQUARED && maxIter-- > 0) {
start.setOrigin(_currentPosition);
end.setOrigin(_targetPosition);
// sweep forward
btVector3 sweepDirNegative(_currentPosition - _targetPosition);
btKinematicClosestNotMeConvexResultCallback callback(_ghostObject, sweepDirNegative, btScalar(0.0));
callback.m_collisionFilterGroup = _ghostObject->getBroadphaseHandle()->m_collisionFilterGroup;
callback.m_collisionFilterMask = _ghostObject->getBroadphaseHandle()->m_collisionFilterMask;
_ghostObject->convexSweepTest(_convexShape, start, end, callback, collisionWorld->getDispatchInfo().m_allowedCcdPenetration);
if (callback.hasHit()) {
// we hit soemthing!
// Compute new target position by removing portion cut-off by collision, which will produce a new target
// that is the closest approach of the the obstacle plane to the original target.
step = _targetPosition - _currentPosition;
btScalar stepDotNormal = step.dot(callback.m_hitNormalWorld); // we expect this dot to be negative
step += (stepDotNormal * (1.0f - callback.m_closestHitFraction)) * callback.m_hitNormalWorld;
_targetPosition = _currentPosition + step;
stepLength2 = step.length2();
} else {
// we swept to the end without hitting anything
_currentPosition = _targetPosition;
break;
}
}
// restore shape's margin
_convexShape->setMargin(margin);
}
void CharacterController::stepDown(btCollisionWorld* collisionWorld, btScalar dt) {
BT_PROFILE("stepDown");
// phase 3: down
//
// The "stepDown" phase first makes a normal sweep down that cancels the lift from the "stepUp" phase.
// If it hits a ledge then it stops otherwise it makes another sweep down in search of a floor within
// reach of the character's feet.
// first sweep for ledge
btVector3 step = (_verticalVelocity * dt - _lastStepUp) * _currentUp;
StepDownConvexResultCallback callback(_ghostObject,
_currentUp,
_currentPosition, step,
_walkDirection,
_maxSlopeCosine,
_radius, _halfHeight);
callback.m_collisionFilterGroup = _ghostObject->getBroadphaseHandle()->m_collisionFilterGroup;
callback.m_collisionFilterMask = _ghostObject->getBroadphaseHandle()->m_collisionFilterMask;
btTransform start, end;
start.setIdentity();
end.setIdentity();
start.setOrigin(_currentPosition);
_targetPosition = _currentPosition + step;
end.setOrigin(_targetPosition);
_ghostObject->convexSweepTest(_convexShape, start, end, callback, collisionWorld->getDispatchInfo().m_allowedCcdPenetration);
_isOnGround = false;
if (callback.hasHit()) {
_currentPosition += callback.m_closestHitFraction * step;
_verticalVelocity = 0.0f;
_verticalOffset = 0.0f;
_isJumping = false;
_isHovering = false;
_isOnGround = true;
} else if (!_isJumping) {
// sweep again for floor within downStep threshold
step = -_stepDownHeight * _currentUp;
StepDownConvexResultCallback callback2 (_ghostObject,
_currentUp,
_currentPosition, step,
_walkDirection,
_maxSlopeCosine,
_radius, _halfHeight);
callback2.m_collisionFilterGroup = _ghostObject->getBroadphaseHandle()->m_collisionFilterGroup;
callback2.m_collisionFilterMask = _ghostObject->getBroadphaseHandle()->m_collisionFilterMask;
_currentPosition = _targetPosition;
_targetPosition = _currentPosition + step;
start.setOrigin(_currentPosition);
end.setOrigin(_targetPosition);
_ghostObject->convexSweepTest(_convexShape, start, end, callback2, collisionWorld->getDispatchInfo().m_allowedCcdPenetration);
if (callback2.hasHit()) {
_currentPosition += callback2.m_closestHitFraction * step;
_verticalVelocity = 0.0f;
_verticalOffset = 0.0f;
_isJumping = false;
_isHovering = false;
_isOnGround = true;
} else {
// nothing to step down on
_lastStepUp = 0.0f;
}
} else {
// we're jumping, and didn't hit anything, so our target position is where we would have fallen to
_currentPosition = _targetPosition;
}
}
void CharacterController::setWalkDirection(const btVector3& walkDirection) {
// This must be implemented to satisfy base-class interface but does nothing.
// Use setVelocityForTimeInterval() instead.
assert(false);
}
void CharacterController::setVelocityForTimeInterval(const btVector3& velocity, btScalar timeInterval) {
_walkDirection = velocity;
_normalizedDirection = getNormalizedVector(_walkDirection);
_velocityTimeInterval += timeInterval;
}
void CharacterController::reset(btCollisionWorld* collisionWorld) {
_verticalVelocity = 0.0;
_verticalOffset = 0.0;
_isOnGround = false;
_isJumping = false;
_isHovering = true;
_walkDirection.setValue(0,0,0);
_velocityTimeInterval = 0.0;
//clear pair cache
btHashedOverlappingPairCache *cache = _ghostObject->getOverlappingPairCache();
while (cache->getOverlappingPairArray().size() > 0) {
cache->removeOverlappingPair(cache->getOverlappingPairArray()[0].m_pProxy0,
cache->getOverlappingPairArray()[0].m_pProxy1,
collisionWorld->getDispatcher());
}
}
void CharacterController::warp(const btVector3& origin) {
btTransform xform;
xform.setIdentity();
xform.setOrigin(origin);
_ghostObject->setWorldTransform(xform);
}
void CharacterController::preStep(btCollisionWorld* collisionWorld) {
BT_PROFILE("preStep");
if (!_enabled) {
return;
}
int numPenetrationLoops = 0;
_touchingContact = false;
while (recoverFromPenetration(collisionWorld)) {
numPenetrationLoops++;
_touchingContact = true;
if (numPenetrationLoops > 4) {
break;
}
}
// the CharacterController algorithm can only change the position,
// so we don't bother to pull the rotation out of the transform
const btTransform& transform = _ghostObject->getWorldTransform();
_currentPosition = transform.getOrigin();
}
void CharacterController::playerStep(btCollisionWorld* collisionWorld, btScalar dt) {
BT_PROFILE("playerStep");
if (!_enabled) {
return; // no motion
}
// Update fall velocity.
if (_isHovering) {
const btScalar MIN_HOVER_VERTICAL_VELOCITY = 0.1f;
if (fabsf(_verticalVelocity) < MIN_HOVER_VERTICAL_VELOCITY) {
_verticalVelocity = 0.0f;
} else {
const btScalar HOVER_RELAXATION_TIMESCALE = 0.8f;
_verticalVelocity *= (1.0f - dt / HOVER_RELAXATION_TIMESCALE);
}
} else {
_verticalVelocity -= _gravity * dt;
if (_verticalVelocity > _jumpSpeed) {
_verticalVelocity = _jumpSpeed;
} else if (_verticalVelocity < -_maxFallSpeed) {
_verticalVelocity = -_maxFallSpeed;
}
}
_verticalOffset = _verticalVelocity * dt;
btTransform xform;
xform = _ghostObject->getWorldTransform();
// the algorithm is as follows:
// (1) step the character up a little bit so that its forward step doesn't hit the floor
// (2) step the character forward
// (3) step the character down looking for new ledges, the original floor, or a floor one step below where we started
scanDown(collisionWorld);
stepUp(collisionWorld);
// compute substep and decrement total interval
btScalar dtMoving = (dt < _velocityTimeInterval) ? dt : _velocityTimeInterval;
_velocityTimeInterval -= dt;
_stepDt += dt;
// stepForward substep
btVector3 move = _walkDirection * dtMoving;
stepForward(collisionWorld, move);
stepDown(collisionWorld, dt);
xform.setOrigin(_currentPosition);
_ghostObject->setWorldTransform(xform);
}
void CharacterController::setMaxFallSpeed(btScalar speed) {
_maxFallSpeed = speed;
}
void CharacterController::setJumpSpeed(btScalar jumpSpeed) {
_jumpSpeed = jumpSpeed;
}
void CharacterController::setMaxJumpHeight(btScalar maxJumpHeight) {
_maxJumpHeight = maxJumpHeight;
}
bool CharacterController::canJump() const {
return _isOnGround;
}
void CharacterController::jump() {
_pendingFlags |= PENDING_FLAG_JUMP;
// check for case where user is holding down "jump" key...
// we'll eventually tansition to "hover"
if (!_isHovering) {
if (!_isJumping) {
_jumpToHoverStart = usecTimestampNow();
} else {
quint64 now = usecTimestampNow();
const quint64 JUMP_TO_HOVER_PERIOD = USECS_PER_SECOND;
if (now - _jumpToHoverStart > JUMP_TO_HOVER_PERIOD) {
_isHovering = true;
}
}
}
}
void CharacterController::setGravity(btScalar gravity) {
_gravity = gravity;
}
btScalar CharacterController::getGravity() const {
return _gravity;
}
void CharacterController::setMaxSlope(btScalar slopeRadians) {
_maxSlopeRadians = slopeRadians;
_maxSlopeCosine = btCos(slopeRadians);
}
btScalar CharacterController::getMaxSlope() const {
return _maxSlopeRadians;
}
bool CharacterController::onGround() const {
return _isOnGround;
}
void CharacterController::debugDraw(btIDebugDraw* debugDrawer) {
}
void CharacterController::setUpInterpolate(bool value) {
// This method is required by btCharacterControllerInterface, but it does nothing.
// What it used to do was determine whether stepUp() would: stop where it hit the ceiling
// (interpolate = true, and now default behavior) or happily penetrate objects above the avatar.
}
void CharacterController::setLocalBoundingBox(const glm::vec3& corner, const glm::vec3& scale) {
_boxScale = scale;
float x = _boxScale.x;
float z = _boxScale.z;
float radius = 0.5f * sqrtf(0.5f * (x * x + z * z));
float halfHeight = 0.5f * _boxScale.y - radius;
float MIN_HALF_HEIGHT = 0.1f;
if (halfHeight < MIN_HALF_HEIGHT) {
halfHeight = MIN_HALF_HEIGHT;
}
// compare dimensions
float radiusDelta = glm::abs(radius - _radius);
float heightDelta = glm::abs(halfHeight - _halfHeight);
if (radiusDelta < FLT_EPSILON && heightDelta < FLT_EPSILON) {
// shape hasn't changed --> nothing to do
} else {
if (_dynamicsWorld) {
// must REMOVE from world prior to shape update
_pendingFlags |= PENDING_FLAG_REMOVE_FROM_SIMULATION;
}
_pendingFlags |= PENDING_FLAG_UPDATE_SHAPE;
// only need to ADD back when we happen to be enabled
if (_enabled) {
_pendingFlags |= PENDING_FLAG_ADD_TO_SIMULATION;
}
}
// it's ok to change offset immediately -- there are no thread safety issues here
_shapeLocalOffset = corner + 0.5f * _boxScale;
}
bool CharacterController::needsAddition() const {
return (bool)(_pendingFlags & PENDING_FLAG_ADD_TO_SIMULATION);
}
bool CharacterController::needsRemoval() const {
return (bool)(_pendingFlags & PENDING_FLAG_REMOVE_FROM_SIMULATION);
}
void CharacterController::setEnabled(bool enabled) {
if (enabled != _enabled) {
if (enabled) {
// Don't bother clearing REMOVE bit since it might be paired with an UPDATE_SHAPE bit.
// Setting the ADD bit here works for all cases so we don't even bother checking other bits.
_pendingFlags |= PENDING_FLAG_ADD_TO_SIMULATION;
_isHovering = true;
_verticalVelocity = 0.0f;
} else {
if (_dynamicsWorld) {
_pendingFlags |= PENDING_FLAG_REMOVE_FROM_SIMULATION;
}
_pendingFlags &= ~ PENDING_FLAG_ADD_TO_SIMULATION;
_isOnGround = false;
}
_enabled = enabled;
}
}
void CharacterController::setDynamicsWorld(btDynamicsWorld* world) {
if (_dynamicsWorld != world) {
if (_dynamicsWorld) {
if (_ghostObject) {
_dynamicsWorld->removeCollisionObject(_ghostObject);
_dynamicsWorld->removeAction(this);
}
_dynamicsWorld = NULL;
}
if (world && _ghostObject) {
_dynamicsWorld = world;
_pendingFlags &= ~ PENDING_FLAG_JUMP;
_dynamicsWorld->addCollisionObject(_ghostObject,
btBroadphaseProxy::CharacterFilter,
btBroadphaseProxy::StaticFilter | btBroadphaseProxy::DefaultFilter);
_dynamicsWorld->addAction(this);
reset(_dynamicsWorld);
}
}
if (_dynamicsWorld) {
if (_pendingFlags & PENDING_FLAG_UPDATE_SHAPE) {
// shouldn't fall in here, but if we do make sure both ADD and REMOVE bits are still set
_pendingFlags |= PENDING_FLAG_ADD_TO_SIMULATION | PENDING_FLAG_REMOVE_FROM_SIMULATION;
} else {
_pendingFlags &= ~PENDING_FLAG_ADD_TO_SIMULATION;
}
} else {
_pendingFlags &= ~ PENDING_FLAG_REMOVE_FROM_SIMULATION;
}
}
void CharacterController::updateShapeIfNecessary() {
if (_pendingFlags & PENDING_FLAG_UPDATE_SHAPE) {
assert(!(_pendingFlags & PENDING_FLAG_REMOVE_FROM_SIMULATION));
_pendingFlags &= ~ PENDING_FLAG_UPDATE_SHAPE;
// make sure there is NO pending removal from simulation at this point
// (don't want to delete _ghostObject out from under the simulation)
// delete shape and GhostObject
delete _ghostObject;
_ghostObject = NULL;
delete _convexShape;
_convexShape = NULL;
// compute new dimensions from avatar's bounding box
float x = _boxScale.x;
float z = _boxScale.z;
_radius = 0.5f * sqrtf(0.5f * (x * x + z * z));
_halfHeight = 0.5f * _boxScale.y - _radius;
float MIN_HALF_HEIGHT = 0.1f;
if (_halfHeight < MIN_HALF_HEIGHT) {
_halfHeight = MIN_HALF_HEIGHT;
}
// NOTE: _shapeLocalOffset is already computed
if (_radius > 0.0f) {
// create new ghost
_ghostObject = new btPairCachingGhostObject();
_ghostObject->setWorldTransform(btTransform(glmToBullet(_avatarData->getOrientation()),
glmToBullet(_avatarData->getPosition())));
// stepHeight affects the heights of ledges that the character can ascend
_stepUpHeight = _radius + 0.25f * _halfHeight + 0.1f;
_stepDownHeight = _radius;
// create new shape
_convexShape = new btCapsuleShape(_radius, 2.0f * _halfHeight);
_ghostObject->setCollisionShape(_convexShape);
_ghostObject->setCollisionFlags(btCollisionObject::CF_CHARACTER_OBJECT);
} else {
// TODO: handle this failure case
}
}
}
void CharacterController::preSimulation(btScalar timeStep) {
BT_PROFILE("preSimulation");
if (_enabled && _dynamicsWorld) {
glm::quat rotation = _avatarData->getOrientation();
_currentUp = quatRotate(glmToBullet(rotation), LOCAL_UP_AXIS);
glm::vec3 position = _avatarData->getPosition() + rotation * _shapeLocalOffset;
btVector3 walkVelocity = glmToBullet(_avatarData->getVelocity());
_ghostObject->setWorldTransform(btTransform(glmToBullet(rotation), glmToBullet(position)));
setVelocityForTimeInterval(walkVelocity, timeStep);
if (_pendingFlags & PENDING_FLAG_JUMP) {
_pendingFlags &= ~ PENDING_FLAG_JUMP;
if (canJump()) {
_verticalVelocity = _jumpSpeed;
_isJumping = true;
}
}
// remember last position so we can throttle the total motion from the next step
_lastPosition = position;
_stepDt = 0.0f;
}
}
void CharacterController::postSimulation() {
BT_PROFILE("postSimulation");
if (_enabled && _ghostObject) {
const btTransform& avatarTransform = _ghostObject->getWorldTransform();
glm::quat rotation = bulletToGLM(avatarTransform.getRotation());
glm::vec3 position = bulletToGLM(avatarTransform.getOrigin());
// cap the velocity of the step so that the character doesn't POP! so hard on steps
glm::vec3 finalStep = position - _lastPosition;
btVector3 finalVelocity = _walkDirection;
finalVelocity += _verticalVelocity * _currentUp;
const btScalar MAX_RESOLUTION_SPEED = 5.0f; // m/sec
btScalar maxStepLength = glm::max(MAX_RESOLUTION_SPEED, 2.0f * finalVelocity.length()) * _stepDt;
btScalar stepLength = glm::length(finalStep);
if (stepLength > maxStepLength) {
position = _lastPosition + (maxStepLength / stepLength) * finalStep;
// NOTE: we don't need to move ghostObject to throttled position unless
// we want to support do async ray-traces/collision-queries against character
}
_avatarData->setOrientation(rotation);
_avatarData->setPosition(position - rotation * _shapeLocalOffset);
}
}

View file

@ -1,181 +0,0 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2008 Erwin Coumans http://bulletphysics.com
2015.03.25 -- modified by Andrew Meadows andrew@highfidelity.io
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software.
If you use this software in a product, an acknowledgment in the product documentation would be appreciated but
is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef hifi_CharacterController_h
#define hifi_CharacterController_h
#include <AvatarData.h>
#include <btBulletDynamicsCommon.h>
#include <BulletDynamics/Character/btCharacterControllerInterface.h>
#include <BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h>
class btConvexShape;
class btCollisionWorld;
class btCollisionDispatcher;
class btPairCachingGhostObject;
///CharacterController is a custom version of btKinematicCharacterController
///btKinematicCharacterController is an object that supports a sliding motion in a world.
///It uses a ghost object and convex sweep test to test for upcoming collisions. This is combined with discrete collision detection to recover from penetrations.
///Interaction between btKinematicCharacterController and dynamic rigid bodies needs to be explicity implemented by the user.
ATTRIBUTE_ALIGNED16(class) CharacterController : public btCharacterControllerInterface
{
protected:
///this is the desired walk direction, set by the user
btVector3 _walkDirection;
btVector3 _normalizedDirection;
//some internal variables
btVector3 _currentPosition;
btVector3 _currentUp;
btVector3 _targetPosition;
glm::vec3 _lastPosition;
btVector3 _floorNormal; // points from object to character
glm::vec3 _shapeLocalOffset;
glm::vec3 _boxScale; // used to compute capsule shape
AvatarData* _avatarData = NULL;
btPairCachingGhostObject* _ghostObject = NULL;
btConvexShape* _convexShape;//is also in _ghostObject, but it needs to be convex, so we store it here to avoid upcast
btScalar _radius;
btScalar _halfHeight;
btScalar _verticalVelocity;
btScalar _verticalOffset; // fall distance from velocity this frame
btScalar _maxFallSpeed;
btScalar _jumpSpeed;
btScalar _maxJumpHeight;
btScalar _maxSlopeRadians; // Slope angle that is set (used for returning the exact value)
btScalar _maxSlopeCosine; // Cosine equivalent of _maxSlopeRadians (calculated once when set, for optimization)
btScalar _gravity;
btScalar _stepUpHeight; // height of stepUp prior to stepForward
btScalar _stepDownHeight; // height of stepDown
btScalar _addedMargin;//@todo: remove this and fix the code
btScalar _lastStepUp;
///keep track of the contact manifolds
btManifoldArray _manifoldArray;
bool _touchingContact;
bool _enabled;
bool _isOnGround;
bool _isJumping;
bool _isHovering;
quint64 _jumpToHoverStart;
btScalar _velocityTimeInterval;
btScalar _stepDt;
uint32_t _pendingFlags;
btDynamicsWorld* _dynamicsWorld = NULL;
btVector3 computeReflectionDirection(const btVector3& direction, const btVector3& normal);
btVector3 parallelComponent(const btVector3& direction, const btVector3& normal);
btVector3 perpindicularComponent(const btVector3& direction, const btVector3& normal);
bool recoverFromPenetration(btCollisionWorld* collisionWorld);
void scanDown(btCollisionWorld* collisionWorld);
void stepUp(btCollisionWorld* collisionWorld);
void updateTargetPositionBasedOnCollision(const btVector3& hit_normal, btScalar tangentMag = btScalar(0.0), btScalar normalMag = btScalar(1.0));
void stepForward(btCollisionWorld* collisionWorld, const btVector3& walkMove);
void stepDown(btCollisionWorld* collisionWorld, btScalar dt);
void createShapeAndGhost();
public:
BT_DECLARE_ALIGNED_ALLOCATOR();
CharacterController(AvatarData* avatarData);
~CharacterController();
///btActionInterface interface
virtual void updateAction(btCollisionWorld* collisionWorld, btScalar deltaTime) {
preStep(collisionWorld);
playerStep(collisionWorld, deltaTime);
}
///btActionInterface interface
void debugDraw(btIDebugDraw* debugDrawer);
/// This should probably be called setPositionIncrementPerSimulatorStep.
/// This is neither a direction nor a velocity, but the amount to
/// increment the position each simulation iteration, regardless
/// of dt.
/// This call will reset any velocity set by setVelocityForTimeInterval().
virtual void setWalkDirection(const btVector3& walkDirection);
/// Caller provides a velocity with which the character should move for
/// the given time period. After the time period, velocity is reset
/// to zero.
/// This call will reset any walk direction set by setWalkDirection().
/// Negative time intervals will result in no motion.
virtual void setVelocityForTimeInterval(const btVector3& velocity,
btScalar timeInterval);
virtual void reset(btCollisionWorld* collisionWorld );
virtual void warp(const btVector3& origin);
virtual void preStep(btCollisionWorld* collisionWorld);
virtual void playerStep(btCollisionWorld* collisionWorld, btScalar dt);
virtual bool canJump() const;
virtual void jump();
virtual bool onGround() const;
void setMaxFallSpeed(btScalar speed);
void setJumpSpeed(btScalar jumpSpeed);
void setMaxJumpHeight(btScalar maxJumpHeight);
void setGravity(btScalar gravity);
btScalar getGravity() const;
/// The max slope determines the maximum angle that the controller can walk up.
/// The slope angle is measured in radians.
void setMaxSlope(btScalar slopeRadians);
btScalar getMaxSlope() const;
btPairCachingGhostObject* getGhostObject();
void setUpInterpolate(bool value);
bool needsRemoval() const;
bool needsAddition() const;
void setEnabled(bool enabled);
bool isEnabled() const { return _enabled; }
void setDynamicsWorld(btDynamicsWorld* world);
void setLocalBoundingBox(const glm::vec3& corner, const glm::vec3& scale);
bool needsShapeUpdate() const;
void updateShapeIfNecessary();
void preSimulation(btScalar timeStep);
void postSimulation();
};
#endif // hifi_CharacterController_h