splits up Stars.cpp into a module of multiple files

This commit is contained in:
tosh 2013-03-29 10:53:30 +01:00
parent 8300646b33
commit 2b3263e019
12 changed files with 1499 additions and 1221 deletions

File diff suppressed because it is too large Load diff

View file

@ -11,15 +11,17 @@
#include "FieldOfView.h"
namespace starfield { class Controller; }
/**
* Starfield rendering component.
*/
class Stars
{
struct body;
body* ptr_body;
class Stars {
starfield::Controller* _ptrController;
public:
Stars();
~Stars();

View file

@ -0,0 +1,96 @@
//
// starfield/Config.h
// interface
//
// Created by Tobias Schwinger on 3/29/13.
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
//
#ifndef __interface__starfield__Config__
#define __interface__starfield__Config__
#ifndef __interface__Starfield_impl__
#error "This is an implementation file - not intended for direct inclusion."
#endif
//
// Compile time configuration:
//
#ifndef STARFIELD_HEMISPHERE_ONLY
#define STARFIELD_HEMISPHERE_ONLY 0 // set to 1 for hemisphere only
#endif
#ifndef STARFIELD_LOW_MEMORY
#define STARFIELD_LOW_MEMORY 0 // set to 1 not to use 16-bit types
#endif
#ifndef STARFIELD_DEBUG_LOD
#define STARFIELD_DEBUG_LOD 0 // set to 1 to peek behind the scenes
#endif
//
// Dependencies:
//
#include "InterfaceConfig.h"
#include <cstddef>
#include <cfloat>
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cctype>
#include <stdint.h>
#include <new>
#include <vector>
#include <memory>
#include <algorithm>
#include <glm/glm.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <glm/gtc/matrix_inverse.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/matrix_access.hpp>
#include <glm/gtc/swizzle.hpp>
#include "UrlReader.h"
#include "AngleUtils.h"
#include "Radix2InplaceSort.h"
#include "Radix2IntegerScanner.h"
#include "FloodFill.h"
// Namespace configuration:
namespace starfield {
using glm::vec3;
using glm::vec4;
using glm::dot;
using glm::normalize;
using glm::swizzle;
using glm::X;
using glm::Y;
using glm::Z;
using glm::W;
using glm::mat4;
using glm::column;
using glm::row;
using namespace std;
#if STARFIELD_SAVE_MEMORY
typedef uint16_t nuint;
typedef uint32_t wuint;
#else
typedef uint32_t nuint;
typedef uint64_t wuint;
#endif
}
#endif

View file

@ -0,0 +1,382 @@
//
// starfield/Controller.h
// interface
//
// Created by Tobias Schwinger on 3/29/13.
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
//
#ifndef __interface__starfield__Controller__
#define __interface__starfield__Confroller__
#ifndef __interface__Starfield_impl__
#error "This is an implementation file - not intended for direct inclusion."
#endif
//
// Data pipeline
// =============
//
// ->> readInput -(load)--+---- (get brightness & sort) ---> brightness LUT
// | |
// ->> setResolution --+ | >extractBrightnessLevels<
// V |
// (sort by (tile,brightness))
// | |
// ->> setLOD ---+ | >retile< ->> setLOD --> (just parameterize
// V V when enough data on-GPU)
// (filter by max-LOD brightness,
// build tile info for rendering)
// | |
// V >recreateRenderer<
// (set new renderer)/
//
//
// (process), ->> entry point, ---> data flow, >internal routine<
//
// (member functions are ordered by data flow)
//
// Still open
// ==========
//
// o atomics/mutexes need to be added as annotated in the source to allow
// concurrent threads to pull the strings to e.g. have a low priority
// thread run the data pipeline for update -- rendering is wait-free
//
#include "starfield/data/InputVertex.h"
#include "starfield/data/BrightnessLevel.h"
#include "starfield/Loader.h"
#include "starfield/renderer/Renderer.h"
#include "starfield/renderer/VertexOrder.h"
namespace starfield {
class Controller {
InputVertices _seqInput;
unsigned _valTileResolution;
double _valLodFraction;
double _valLodLowWaterMark;
double _valLodHighWaterMark;
double _valLodOveralloc;
size_t _valLodNalloc;
size_t _valLodNrender;
BrightnessLevels _seqLodBrightness;
BrightnessLevel _valLodBrightness;
BrightnessLevel _valLodAllocBrightness;
Renderer* _ptrRenderer;
public:
Controller() :
_valTileResolution(20),
_valLodFraction(1.0),
_valLodLowWaterMark(0.8),
_valLodHighWaterMark(1.0),
_valLodOveralloc(1.2),
_valLodNalloc(0),
_valLodNrender(0),
_valLodBrightness(0),
_valLodAllocBrightness(0),
_ptrRenderer(0l) {
}
bool readInput(const char* url, unsigned limit)
{
InputVertices vertices;
if (! Loader().loadVertices(vertices, url, limit))
return false;
BrightnessLevels brightness;
extractBrightnessLevels(brightness, vertices);
assert(brightness.size() == vertices.size());
for (BrightnessLevels::iterator i =
brightness.begin(); i != brightness.end() - 1; ++i)
{
BrightnessLevels::iterator next = i + 1;
if (next != brightness.end())
assert( *i >= *next );
}
// input is read, now run the entire data pipeline on the new input
{
// TODO input mutex
_seqInput.swap(vertices);
unsigned k = _valTileResolution;
size_t n, nRender;
BrightnessLevel bMin, b;
double rcpChange;
// we'll have to build a new LOD state for a new total N,
// ideally keeping allocation size and number of vertices
{ // TODO lod mutex
size_t newLast = _seqInput.size() - 1;
// reciprocal change N_old/N_new tells us how to scale
// the fractions
rcpChange = min(1.0, double(vertices.size()) / _seqInput.size());
// initialization? use defaults / previously set values
if (rcpChange == 0.0) {
rcpChange = 1.0;
nRender = lrint(_valLodFraction * newLast);
n = min(newLast, size_t(lrint(_valLodOveralloc * nRender)));
} else {
// cannot allocate or render more than we have
n = min(newLast, _valLodNalloc);
nRender = min(newLast, _valLodNrender);
}
// determine new minimum brightness levels
bMin = brightness[n];
b = brightness[nRender];
// adjust n
n = std::upper_bound(
brightness.begin() + n - 1,
brightness.end(),
bMin, GreaterBrightness() ) - brightness.begin();
}
// invoke next stage
try {
this->retile(n, k, b, bMin);
} catch (...) {
// rollback transaction and rethrow
vertices.swap(_seqInput);
throw;
}
// finally publish the new LOD state
{ // TODO lod mutex
_seqLodBrightness.swap(brightness);
_valLodFraction *= rcpChange;
_valLodLowWaterMark *= rcpChange;
_valLodHighWaterMark *= rcpChange;
_valLodOveralloc *= rcpChange;
_valLodNalloc = n;
_valLodNrender = nRender;
_valLodAllocBrightness = bMin;
// keep last, it's accessed asynchronously
_valLodBrightness = b;
}
}
return true;
}
bool setResolution(unsigned k) {
if (k <= 3) {
return false;
}
// fprintf(stderr, "Stars.cpp: setResolution(%d)\n", k);
if (k != _valTileResolution) { // TODO make atomic
// TODO input mutex
unsigned n;
BrightnessLevel b, bMin;
{ // TODO lod mutex
n = _valLodNalloc;
b = _valLodBrightness;
bMin = _valLodAllocBrightness;
}
this->retile(n, k, b, bMin);
return true;
} else {
return false;
}
}
private:
void retile(size_t n, unsigned k,
BrightnessLevel b, BrightnessLevel bMin) {
Tiling tiling(k);
VertexOrder scanner(tiling);
radix2InplaceSort(_seqInput.begin(), _seqInput.end(), scanner);
// fprintf(stderr,
// "Stars.cpp: recreateRenderer(%d, %d, %d, %d)\n", n, k, b, bMin);
recreateRenderer(n, k, b, bMin);
_valTileResolution = k;
}
public:
double changeLOD(double factor, double overalloc, double realloc) {
assert(overalloc >= realloc && realloc >= 0.0);
assert(overalloc <= 1.0 && realloc <= 1.0);
// fprintf(stderr,
// "Stars.cpp: changeLOD(%lf, %lf, %lf)\n", factor, overalloc, realloc);
size_t n, nRender;
BrightnessLevel bMin, b;
double fraction, lwm, hwm;
{ // TODO lod mutex
// acuire a consistent copy of the current LOD state
fraction = _valLodFraction;
lwm = _valLodLowWaterMark;
hwm = _valLodHighWaterMark;
size_t last = _seqLodBrightness.size() - 1;
// apply factor
fraction = max(0.0, min(1.0, fraction * factor));
// calculate allocation size and corresponding brightness
// threshold
double oaFract = std::min(fraction * (1.0 + overalloc), 1.0);
n = lrint(oaFract * last);
bMin = _seqLodBrightness[n];
n = std::upper_bound(
_seqLodBrightness.begin() + n - 1,
_seqLodBrightness.end(),
bMin, GreaterBrightness() ) - _seqLodBrightness.begin();
// also determine number of vertices to render and brightness
nRender = lrint(fraction * last);
// Note: nRender does not have to be accurate
b = _seqLodBrightness[nRender];
// this setting controls the renderer, also keep b as the
// brightness becomes volatile as soon as the mutex is
// released
_valLodBrightness = b; // TODO make atomic
// fprintf(stderr, "Stars.cpp: "
// "fraction = %lf, oaFract = %lf, n = %d, n' = %d, bMin = %d, b = %d\n",
// fraction, oaFract, lrint(oaFract * last)), n, bMin, b);
// will not have to reallocate? set new fraction right away
// (it is consistent with the rest of the state in this case)
if (fraction >= _valLodLowWaterMark
&& fraction <= _valLodHighWaterMark) {
_valLodFraction = fraction;
return fraction;
}
}
// reallocate
{ // TODO input mutex
recreateRenderer(n, _valTileResolution, b, bMin);
// fprintf(stderr, "Stars.cpp: LOD reallocation\n");
// publish new lod state
{ // TODO lod mutex
_valLodNalloc = n;
_valLodNrender = nRender;
_valLodFraction = fraction;
_valLodLowWaterMark = fraction * (1.0 - realloc);
_valLodHighWaterMark = fraction * (1.0 + realloc);
_valLodOveralloc = fraction * (1.0 + overalloc);
_valLodAllocBrightness = bMin;
}
}
return fraction;
}
private:
void recreateRenderer(size_t n, unsigned k,
BrightnessLevel b, BrightnessLevel bMin) {
Renderer* renderer = new Renderer(_seqInput, n, k, b, bMin);
swap(_ptrRenderer, renderer); // TODO make atomic
delete renderer; // will be NULL when was in use
}
public:
void render(float perspective, float angle, mat4 const& orientation) {
// check out renderer
Renderer* renderer = 0l;
swap(_ptrRenderer, renderer); // TODO make atomic
// have it render
if (renderer != 0l) {
BrightnessLevel b = _valLodBrightness; // make atomic
renderer->render(perspective, angle, orientation, b);
}
// check in - or dispose if there is a new one
// TODO make atomic (CAS)
if (! _ptrRenderer) {
_ptrRenderer = renderer;
} else {
delete renderer;
}
}
private:
struct BrightnessSortScanner : Radix2IntegerScanner<BrightnessLevel> {
typedef Radix2IntegerScanner<BrightnessLevel> base;
BrightnessSortScanner() : base(BrightnessBits) { }
bool bit(BrightnessLevel const& k, state_type& s) {
// bit is inverted to achieve descending order
return ! base::bit(k,s);
}
};
static void extractBrightnessLevels(BrightnessLevels& dst,
InputVertices const& src) {
dst.clear();
dst.reserve(src.size());
for (InputVertices::const_iterator i =
src.begin(), e = src.end(); i != e; ++i)
dst.push_back( getBrightness(i->getColor()) );
radix2InplaceSort(dst.begin(), dst.end(), BrightnessSortScanner());
}
};
}
#endif

View file

@ -0,0 +1,180 @@
//
// starfield/Loader.h
// interface
//
// Created by Tobias Schwinger on 3/29/13.
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
//
#ifndef __interface__starfield__Loader__
#define __interface__starfield__Loader__
#ifndef __interface__Starfield_impl__
#error "This is an implementation file - not intended for direct inclusion."
#endif
#include "Config.h"
#include "starfield/data/InputVertex.h"
#include "starfield/data/BrightnessLevel.h"
namespace starfield {
class Loader : UrlReader {
InputVertices* _ptrVertices;
unsigned _valLimit;
unsigned _valLineNo;
char const* _strUrl;
unsigned _valRecordsRead;
BrightnessLevel _valMinBrightness;
public:
bool loadVertices(
InputVertices& destination, char const* url, unsigned limit)
{
_ptrVertices = & destination;
_valLimit = limit;
#if STARFIELD_SAVE_MEMORY
if (_valLimit == 0 || _valLimit > 60000u)
_valLimit = 60000u;
#endif
_strUrl = url; // in case we fail early
if (! UrlReader::readUrl(url, *this))
{
fprintf(stderr, "%s:%d: %s\n",
_strUrl, _valLineNo, getError());
return false;
}
fprintf(stderr, "Stars.cpp: read %d vertices, using %d\n",
_valRecordsRead, _ptrVertices->size());
return true;
}
protected:
friend class UrlReader;
void begin(char const* url,
char const* type,
int64_t size,
int64_t stardate) {
_valLineNo = 0u;
_strUrl = url; // new value in http redirect
_valRecordsRead = 0u;
_ptrVertices->clear();
_ptrVertices->reserve(_valLimit);
// fprintf(stderr, "Stars.cpp: loader begin %s\n", url);
}
size_t transfer(char* input, size_t bytes) {
size_t consumed = 0u;
char const* end = input + bytes;
char* line, * next = input;
for (;;) {
// advance to next line
for (; next != end && isspace(*next); ++next);
consumed = next - input;
line = next;
++_valLineNo;
for (; next != end && *next != '\n' && *next != '\r'; ++next);
if (next == end)
return consumed;
*next++ = '\0';
// skip comments
if (*line == '\\' || *line == '/' || *line == ';')
continue;
// parse
float azi, alt;
unsigned c;
if (sscanf(line, " %f %f #%x", & azi, & alt, & c) == 3) {
if (spaceFor( getBrightness(c) )) {
storeVertex(azi, alt, c);
}
++_valRecordsRead;
} else {
fprintf(stderr, "Stars.cpp:%d: Bad input from %s\n",
_valLineNo, _strUrl);
}
}
return consumed;
}
void end(bool ok)
{ }
private:
bool atLimit() { return _valLimit > 0u && _valRecordsRead >= _valLimit; }
bool spaceFor(BrightnessLevel b) {
if (! atLimit()) {
return true;
}
// just reached the limit? -> establish a minimum heap and
// remember the brightness at its top
if (_valRecordsRead == _valLimit) {
// fprintf(stderr, "Stars.cpp: vertex limit reached -> heap mode\n");
make_heap(
_ptrVertices->begin(), _ptrVertices->end(),
GreaterBrightness() );
_valMinBrightness = getBrightness(
_ptrVertices->begin()->getColor() );
}
// not interested? say so
if (_valMinBrightness >= b)
return false;
// otherwise free up space for the new vertex
pop_heap(
_ptrVertices->begin(), _ptrVertices->end(),
GreaterBrightness() );
_ptrVertices->pop_back();
return true;
}
void storeVertex(float azi, float alt, unsigned color) {
_ptrVertices->push_back(InputVertex(azi, alt, color));
if (atLimit()) {
push_heap(
_ptrVertices->begin(), _ptrVertices->end(),
GreaterBrightness() );
_valMinBrightness = getBrightness(
_ptrVertices->begin()->getColor() );
}
}
};
} // anonymous namespace
#endif

View file

@ -0,0 +1,64 @@
//
// starfield/data/BrightnessLevel.h
// interface
//
// Created by Tobias Schwinger on 3/29/13.
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
//
#ifndef __interface__starfield__data__BrightnessLevel__
#define __interface__starfield__data__BrightnessLevel__
#ifndef __interface__Starfield_impl__
#error "This is an implementation file - not intended for direct inclusion."
#endif
#include "starfield/Config.h"
#include "starfield/data/InputVertex.h"
#include "starfield/data/GpuVertex.h"
namespace starfield {
typedef nuint BrightnessLevel;
#if STARFIELD_SAVE_MEMORY
const unsigned BrightnessBits = 16u;
#else
const unsigned BrightnessBits = 18u;
#endif
const BrightnessLevel BrightnessMask = (1u << (BrightnessBits)) - 1u;
typedef std::vector<BrightnessLevel> BrightnessLevels;
BrightnessLevel getBrightness(unsigned c) {
unsigned r = (c >> 16) & 0xff;
unsigned g = (c >> 8) & 0xff;
unsigned b = c & 0xff;
#if STARFIELD_SAVE_MEMORY
return BrightnessLevel((r*r+g*g+b*b) >> 2);
#else
return BrightnessLevel(r*r+g*g+b*b);
#endif
}
struct GreaterBrightness {
bool operator()(InputVertex const& lhs, InputVertex const& rhs) const {
return getBrightness(lhs.getColor())
> getBrightness(rhs.getColor());
}
bool operator()(BrightnessLevel lhs, GpuVertex const& rhs) const {
return lhs > getBrightness(rhs.getColor());;
}
bool operator()(BrightnessLevel lhs, BrightnessLevel rhs) const {
return lhs > rhs;
}
};
} // anonymous namespace
#endif

View file

@ -0,0 +1,53 @@
//
// starfield/data/GpuVertex.h
// interface
//
// Created by Tobias Schwinger on 3/29/13.
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
//
#ifndef __interface__starfield__data__GpuVertex__
#define __interface__starfield__data__GpuVertex__
#ifndef __interface__Starfield_impl__
#error "This is an implementation file - not intended for direct inclusion."
#endif
#include "starfield/data/InputVertex.h"
namespace starfield {
class GpuVertex {
unsigned _valColor;
float _valX;
float _valY;
float _valZ;
public:
GpuVertex() { }
GpuVertex(InputVertex const& in) {
_valColor = in.getColor();
float azi = in.getAzimuth();
float alt = in.getAltitude();
// ground vector in x/z plane...
float gx = sin(azi);
float gz = -cos(azi);
// ...elevated in y direction by altitude
float exz = cos(alt);
_valX = gx * exz;
_valY = sin(alt);
_valZ = gz * exz;
}
unsigned getColor() const { return _valColor; }
};
} // anonymous namespace
#endif

View file

@ -0,0 +1,51 @@
//
// starfield/data/InputVertex.h
// interface
//
// Created by Tobias Schwinger on 3/29/13.
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
//
#ifndef __interface__starfield__data__InputVertex__
#define __interface__starfield__data__InputVertex__
#ifndef __interface__Starfield_impl__
#error "This is an implementation file - not intended for direct inclusion."
#endif
#include "starfield/Config.h"
namespace starfield {
class InputVertex {
unsigned _valColor;
float _valAzimuth;
float _valAltitude;
public:
InputVertex(float azimuth, float altitude, unsigned color) {
_valColor = color >> 16 & 0xffu | color & 0xff00u |
color << 16 & 0xff0000u | 0xff000000u;
azimuth = angleConvert<Degrees,Radians>(azimuth);
altitude = angleConvert<Degrees,Radians>(altitude);
angleHorizontalPolar<Radians>(azimuth, altitude);
_valAzimuth = azimuth;
_valAltitude = altitude;
}
float getAzimuth() const { return _valAzimuth; }
float getAltitude() const { return _valAltitude; }
unsigned getColor() const { return _valColor; }
};
typedef std::vector<InputVertex> InputVertices;
} // anonymous namespace
#endif

View file

@ -0,0 +1,37 @@
//
// starfield/data/Tile.h
// interface
//
// Created by Tobias Schwinger on 3/22/13.
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
//
#ifndef __interface__starfield__data__Tile__
#define __interface__starfield__data__Tile__
#ifndef __interface__Starfield_impl__
#error "This is an implementation file - not intended for direct inclusion."
#endif
#include "starfield/Config.h"
#include "starfield/data/BrightnessLevel.h"
namespace starfield {
struct Tile {
nuint offset;
nuint count;
BrightnessLevel lod;
nuint flags;
static uint16_t const checked = 1;
static uint16_t const visited = 2;
static uint16_t const render = 4;
};
} // anonymous namespace
#endif

View file

@ -0,0 +1,495 @@
//
// starfield/renderer/Renderer.h
// interface
//
// Created by Tobias Schwinger on 3/22/13.
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
//
#ifndef __interface__starfield__renderer__Renderer__
#define __interface__starfield__renderer__Renderer__
#ifndef __interface__Starfield_impl__
#error "This is an implementation file - not intended for direct inclusion."
#endif
#include "starfield/Config.h"
#include "starfield/data/InputVertex.h"
#include "starfield/data/BrightnessLevel.h"
#include "starfield/data/Tile.h"
#include "starfield/data/GpuVertex.h"
#include "Tiling.h"
//
// FOV culling
// ===========
//
// As stars can be thought of as at infinity distance, the field of view only
// depends on perspective and rotation:
//
// _----_ <-- visible stars
// from above +-near-+ - -
// \ / |
// near width: \ / | cos(p/2)
// 2sin(p/2) \/ _
// center
//
//
// Now it is important to note that a change in altitude maps uniformly to a
// distance on a sphere. This is NOT the case for azimuthal angles: In this
// case a factor of 'cos(alt)' (the orbital radius) applies:
//
//
// |<-cos alt ->| | |<-|<----->|->| d_azi cos(alt)
// |
// __--* | --------- -
// __-- * | | | ^ d_alt
// __-- alt) * | | | v
// --------------*- | ------------- -
// |
// side view | tile on sphere
//
//
// This lets us find a worst-case (Eigen) angle from the center to the edge
// of a tile as
//
// hypot( 0.5 d_alt, 0.5 d_azi cos(alt_absmin) ).
//
// This angle must be added to 'p' (the perspective angle) in order to find
// an altered near plane for the culling decision.
//
namespace starfield {
class Renderer {
GpuVertex* _arrData;
Tile* _arrTile;
GLint* _arrBatchOffs;
GLsizei* _arrBatchCount;
GLuint _hndVertexArray;
Tiling _objTiling;
unsigned* _itrOutIndex;
vec3 _vecWxform;
float _valHalfPersp;
BrightnessLevel _valMinBright;
public:
Renderer(InputVertices const& src,
size_t n,
unsigned k,
BrightnessLevel b,
BrightnessLevel bMin) :
_arrData(0l),
_arrTile(0l),
_objTiling(k) {
this->glAlloc();
Tiling tiling(k);
size_t nTiles = tiling.getTileCount();
_arrData = new GpuVertex[n];
_arrTile = new Tile[nTiles + 1];
_arrBatchOffs = new GLint[nTiles];
_arrBatchCount = new GLsizei[nTiles];
prepareVertexData(src, n, tiling, b, bMin);
this->glUpload(n);
}
~Renderer()
{
delete[] _arrData;
delete[] _arrTile;
delete[] _arrBatchCount;
delete[] _arrBatchOffs;
this->glFree();
}
void render(float perspective,
float aspect,
mat4 const& orientation,
BrightnessLevel minBright)
{
// fprintf(stderr, "
// Stars.cpp: rendering at minimal brightness %d\n", minBright);
float halfPersp = perspective * 0.5f;
// determine dimensions based on a sought screen diagonal
//
// ww + hh = dd
// a = h / w => h = wa
// ww + ww aa = dd
// ww = dd / (1 + aa)
float diag = 2.0f * std::sin(halfPersp);
float near = std::cos(halfPersp);
float hw = 0.5f * sqrt(diag * diag / (1.0f + aspect * aspect));
float hh = hw * aspect;
// cancel all translation
mat4 matrix = orientation;
matrix[3][0] = 0.0f;
matrix[3][1] = 0.0f;
matrix[3][2] = 0.0f;
// extract local z vector
vec3 ahead = swizzle<X,Y,Z>( column(matrix, 2) );
float azimuth = atan2(ahead.x,-ahead.z) + Radians::pi();
float altitude = atan2(-ahead.y, hypot(ahead.x, ahead.z));
angleHorizontalPolar<Radians>(azimuth, altitude);
#if STARFIELD_HEMISPHERE_ONLY
altitude = std::max(0.0f, altitude);
#endif
unsigned tileIndex =
_objTiling.getTileIndex(azimuth, altitude);
// fprintf(stderr, "Stars.cpp: starting on tile #%d\n", tileIndex);
#if STARFIELD_DEBUG_LOD
mat4 matrix_debug = glm::translate(
glm::frustum(-hw,hw, -hh,hh, near,10.0f),
vec3(0.0f, 0.0f, -4.0f)) * glm::affineInverse(matrix);
#endif
matrix = glm::frustum(-hw,hw, -hh,hh, near,10.0f)
* glm::affineInverse(matrix);
this->_itrOutIndex = (unsigned*) _arrBatchOffs;
this->_vecWxform = swizzle<X,Y,Z>(row(matrix, 3));
this->_valHalfPersp = halfPersp;
this->_valMinBright = minBright;
floodFill(_arrTile + tileIndex, TileSelection(*this,
_arrTile, _arrTile + _objTiling.getTileCount(),
(Tile**) _arrBatchCount));
#if STARFIELD_DEBUG_LOD
# define matrix matrix_debug
#endif
this->glBatch(glm::value_ptr(matrix), prepareBatch(
(unsigned*) _arrBatchOffs, _itrOutIndex) );
#if STARFIELD_DEBUG_LOD
# undef matrix
#endif
}
private: // renderer construction
void prepareVertexData(InputVertices const& src,
size_t n, // <-- at bMin and brighter
Tiling const& tiling,
BrightnessLevel b,
BrightnessLevel bMin) {
size_t nTiles = tiling.getTileCount();
size_t vertexIndex = 0u, currTileIndex = 0u, count_active = 0u;
_arrTile[0].offset = 0u;
_arrTile[0].lod = b;
_arrTile[0].flags = 0u;
for (InputVertices::const_iterator i =
src.begin(), e = src.end(); i != e; ++i) {
BrightnessLevel bv = getBrightness(i->getColor());
// filter by alloc brightness
if (bv >= bMin) {
size_t tileIndex = tiling.getTileIndex(
i->getAzimuth(), i->getAltitude());
assert(tileIndex >= currTileIndex);
// moved on to another tile? -> flush
if (tileIndex != currTileIndex) {
Tile* t = _arrTile + currTileIndex;
Tile* tLast = _arrTile + tileIndex;
// set count of active vertices (upcoming lod)
t->count = count_active;
// generate skipped, empty tiles
for(size_t offs = vertexIndex; ++t != tLast ;) {
t->offset = offs, t->count = 0u,
t->lod = b, t->flags = 0u;
}
// initialize next (as far as possible here)
tLast->offset = vertexIndex;
tLast->lod = b;
tLast->flags = 0u;
currTileIndex = tileIndex;
count_active = 0u;
}
if (bv >= b)
++count_active;
// fprintf(stderr, "Stars.cpp: Vertex %d on tile #%d\n", vertexIndex, tileIndex);
// write converted vertex
_arrData[vertexIndex++] = *i;
}
}
assert(vertexIndex == n);
// flush last tile (see above)
Tile* t = _arrTile + currTileIndex;
t->count = count_active;
for (Tile* e = _arrTile + nTiles + 1; ++t != e;) {
t->offset = vertexIndex, t->count = 0u,
t->lod = b, t->flags = 0;
}
}
private: // FOV culling / LOD
class TileSelection;
friend class Renderer::TileSelection;
class TileSelection {
Renderer& _refRenderer;
Tile** const _arrStack;
Tile** _itrStack;
Tile const* const _arrTile;
Tile const* const _itrTilesEnd;
public:
TileSelection(Renderer& renderer, Tile const* tiles,
Tile const* tiles_end, Tile** stack) :
_refRenderer(renderer),
_arrStack(stack),
_itrStack(stack),
_arrTile(tiles),
_itrTilesEnd(tiles_end) {
}
protected:
// flood fill strategy
bool select(Tile* t) {
if (t < _arrTile || t >= _itrTilesEnd ||
!! (t->flags & Tile::visited)) {
return false;
}
if (! (t->flags & Tile::checked)) {
if (_refRenderer.visitTile(t))
t->flags |= Tile::render;
}
return !! (t->flags & Tile::render);
}
void process(Tile* t) {
t->flags |= Tile::visited;
}
void right(Tile*& cursor) const { cursor += 1; }
void left(Tile*& cursor) const { cursor -= 1; }
void up(Tile*& cursor) const { cursor += yStride(); }
void down(Tile*& cursor) const { cursor -= yStride(); }
void defer(Tile* t) { *_itrStack++ = t; }
bool deferred(Tile*& cursor) {
if (_itrStack != _arrStack) {
cursor = *--_itrStack;
return true;
}
return false;
}
private:
unsigned yStride() const {
return _refRenderer._objTiling.getAzimuthalTiles();
}
};
bool visitTile(Tile* t) {
unsigned index = t - _arrTile;
*_itrOutIndex++ = index;
if (! tileVisible(t, index)) {
return false;
}
if (t->lod != _valMinBright) {
updateVertexCount(t, _valMinBright);
}
return true;
}
bool tileVisible(Tile* t, unsigned i) {
float slice = _objTiling.getSliceAngle();
unsigned stride = _objTiling.getAzimuthalTiles();
float azimuth = (i % stride) * slice;
float altitude = (i / stride) * slice - Radians::half_pi();
float gx = sin(azimuth);
float gz = -cos(azimuth);
float exz = cos(altitude);
vec3 tileCenter = vec3(gx * exz, sin(altitude), gz * exz);
float w = dot(_vecWxform, tileCenter);
float halfSlice = 0.5f * slice;
float daz = halfSlice * cos(abs(altitude) - halfSlice);
float dal = halfSlice;
float near = cos(_valHalfPersp + sqrt(daz*daz+dal*dal));
// fprintf(stderr, "Stars.cpp: checking tile #%d, w = %f, near = %f\n", i, w, near);
return w > near;
}
void updateVertexCount(Tile* t, BrightnessLevel minBright) {
// a growing number of stars needs to be rendereed when the
// minimum brightness decreases
// perform a binary search in the so found partition for the
// new vertex count of this tile
GpuVertex const* start = _arrData + t[0].offset;
GpuVertex const* end = _arrData + t[1].offset;
assert(end >= start);
if (start == end)
return;
if (t->lod < minBright)
end = start + t->count;
else
start += (t->count > 0 ? t->count - 1 : 0);
end = std::upper_bound(
start, end, minBright, GreaterBrightness());
assert(end >= _arrData + t[0].offset);
t->count = end - _arrData - t[0].offset;
t->lod = minBright;
}
unsigned prepareBatch(unsigned const* indices,
unsigned const* indicesEnd) {
unsigned nRanges = 0u;
GLint* offs = _arrBatchOffs;
GLsizei* count = _arrBatchCount;
for (unsigned* i = (unsigned*) _arrBatchOffs;
i != indicesEnd; ++i) {
Tile* t = _arrTile + *i;
if ((t->flags & Tile::render) > 0u && t->count > 0u) {
*offs++ = t->offset;
*count++ = t->count;
++nRanges;
}
t->flags = 0;
}
return nRanges;
}
private: // gl API handling
#ifdef __APPLE__
# define glBindVertexArray glBindVertexArrayAPPLE
# define glGenVertexArrays glGenVertexArraysAPPLE
# define glDeleteVertexArrays glDeleteVertexArraysAPPLE
#endif
void glAlloc() {
glGenVertexArrays(1, & _hndVertexArray);
}
void glFree() {
glDeleteVertexArrays(1, & _hndVertexArray);
}
void glUpload(GLsizei n) {
GLuint vbo;
glGenBuffers(1, & vbo);
glBindVertexArray(_hndVertexArray);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glBufferData(GL_ARRAY_BUFFER,
n * sizeof(GpuVertex), _arrData, GL_STATIC_DRAW);
glInterleavedArrays(GL_C4UB_V3F, sizeof(GpuVertex), 0l);
glBindVertexArray(0);
}
void glBatch(GLfloat const* matrix, GLsizei n_ranges) {
// fprintf(stderr, "Stars.cpp: rendering %d-multibatch\n", n_ranges);
// for (int i = 0; i < n_ranges; ++i)
// fprintf(stderr, "Stars.cpp: Batch #%d - %d stars @ %d\n", i,
// _arrBatchOffs[i], _arrBatchCount[i]);
// setup modelview matrix (identity)
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
// set projection matrix
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadMatrixf(matrix);
// render
glBindVertexArray(_hndVertexArray);
glEnable(GL_POINT_SMOOTH);
glHint(GL_POINT_SMOOTH_HINT, GL_NICEST);
glPointSize(1.42f);
glMultiDrawArrays(GL_POINTS,
_arrBatchOffs, _arrBatchCount, n_ranges);
// restore state
glBindVertexArray(0);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
}
#ifdef __APPLE__
# undef glBindVertexArray
# undef glGenVertexArrays
# undef glDeleteVertexArrays
#endif
};
} // anonymous namespace
#endif

View file

@ -0,0 +1,71 @@
//
// starfield/renderer/Tiling.h
// interface
//
// Created by Tobias Schwinger on 3/22/13.
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
//
#ifndef __interface__starfield__renderer__Tiling__
#define __interface__starfield__renderer__Tiling__
#ifndef __interface__Starfield_impl__
#error "This is an implementation file - not intended for direct inclusion."
#endif
#include "starfield/Config.h"
namespace starfield {
class Tiling {
unsigned _valK;
float _valRcpSlice;
unsigned _valBits;
public:
Tiling(unsigned k) :
_valK(k),
_valRcpSlice(k / Radians::twice_pi()) {
_valBits = ceil(log2(getTileCount()));
}
unsigned getAzimuthalTiles() const { return _valK; }
unsigned getAltitudinalTiles() const { return _valK / 2 + 1; }
unsigned getTileIndexBits() const { return _valBits; }
unsigned getTileCount() const {
return getAzimuthalTiles() * getAltitudinalTiles();
}
unsigned getTileIndex(float azimuth, float altitude) const {
return discreteAzimuth(azimuth) +
_valK * discreteAltitude(altitude);
}
float getSliceAngle() const {
return 1.0f / _valRcpSlice;
}
private:
unsigned discreteAngle(float unsigned_angle) const {
return unsigned(round(unsigned_angle * _valRcpSlice));
}
unsigned discreteAzimuth(float a) const {
return discreteAngle(a) % _valK;
}
unsigned discreteAltitude(float a) const {
return min(getAltitudinalTiles() - 1,
discreteAngle(a + Radians::half_pi()) );
}
};
} // anonymous namespace
#endif

View file

@ -0,0 +1,52 @@
//
// starfield/renderer/VertexOrder.h
// interface
//
// Created by Tobias Schwinger on 3/22/13.
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
//
#ifndef __interface__starfield__renderer__VertexOrder__
#define __interface__starfield__renderer__VertexOrder__
#ifndef __interface__Starfield_impl__
#error "This is an implementation file - not intended for direct inclusion."
#endif
#include "starfield/Config.h"
#include "starfield/data/InputVertex.h"
#include "starfield/renderer/Tiling.h"
namespace starfield {
/**
* Defines the vertex order for the renderer as a bit extractor for
* binary in-place Radix Sort.
*/
class VertexOrder : public Radix2IntegerScanner<unsigned>
{
Tiling _objTiling;
typedef Radix2IntegerScanner<unsigned> base;
public:
explicit VertexOrder(Tiling const& tiling) :
base(tiling.getTileIndexBits() + BrightnessBits),
_objTiling(tiling) {
}
bool bit(InputVertex const& v, state_type const& s) const {
// inspect (tile_index, brightness) tuples
unsigned key = getBrightness(v.getColor()) ^ BrightnessMask;
key |= _objTiling.getTileIndex(
v.getAzimuth(), v.getAltitude()) << BrightnessBits;
return base::bit(key, s);
}
};
} // anonymous namespace
#endif