Cleanup to move BuckyBalls prototype to own class file

This commit is contained in:
Philip Rosedale 2014-01-02 17:02:04 -08:00
parent b9d68ec087
commit 2ad3aea729
8 changed files with 217 additions and 872 deletions

View file

@ -1,9 +0,0 @@
//
// BuckyBalls.cpp
// hifi
//
// Created by Philip on 1/2/14.
//
//
#include "BuckyBalls.h"

View file

@ -1,14 +0,0 @@
//
// BuckyBalls.h
// hifi
//
// Created by Philip on 1/2/14.
//
//
#ifndef __hifi__BuckyBalls__
#define __hifi__BuckyBalls__
#include <iostream>
#endif /* defined(__hifi__BuckyBalls__) */

View file

@ -0,0 +1,162 @@
//
// BuckyBalls.cpp
// hifi
//
// Created by Philip on 1/2/14.
//
//
#include "BuckyBalls.h"
#include "Util.h"
#include "world.h"
const int NUM_ELEMENTS = 3;
const float RANGE_BBALLS = 0.5f;
const float SIZE_BBALLS = 0.02f;
const float CORNER_BBALLS = 2.f;
const float GRAVITY_BBALLS = -0.25f;
const float BBALLS_ATTRACTION_DISTANCE = SIZE_BBALLS / 2.f;
const float COLLISION_RADIUS = 0.01f;
const float INITIAL_VELOCITY = 0.3f;
glm::vec3 colors[NUM_ELEMENTS];
// Make some bucky balls for the avatar
BuckyBalls::BuckyBalls() {
_bballIsGrabbed[0] = 0;
_bballIsGrabbed[1] = 0;
colors[0] = glm::vec3(0.13f, 0.55f, 0.13f);
colors[1] = glm::vec3(0.64f, 0.16f, 0.16f);
colors[2] = glm::vec3(0.31f, 0.58f, 0.80f);
qDebug("Creating buckyballs...\n");
for (int i = 0; i < NUM_BBALLS; i++) {
_bballPosition[i] = CORNER_BBALLS + randVector() * RANGE_BBALLS;
int element = (rand() % NUM_ELEMENTS);
if (element == 0) {
_bballRadius[i] = SIZE_BBALLS;
_bballColor[i] = colors[0];
} else if (element == 1) {
_bballRadius[i] = SIZE_BBALLS / 2.f;
_bballColor[i] = colors[1];
} else {
_bballRadius[i] = SIZE_BBALLS * 2.f;
_bballColor[i] = colors[2];
}
_bballColliding[i] = 0.f;
_bballElement[i] = element;
if (_bballElement[i] != 1) {
_bballVelocity[i] = randVector() * INITIAL_VELOCITY;
} else {
_bballVelocity[i] = glm::vec3(0);
}
}
}
void BuckyBalls::grab(PalmData& palm, const glm::vec3& fingerTipPosition, glm::quat avatarOrientation, float deltaTime) {
float penetration;
glm::vec3 diff;
if (palm.getControllerButtons() & BUTTON_FWD) {
if (!_bballIsGrabbed[palm.getSixenseID()]) {
// Look for a ball to grab
for (int i = 0; i < NUM_BBALLS; i++) {
diff = _bballPosition[i] - fingerTipPosition;
penetration = glm::length(diff) - (_bballRadius[i] + COLLISION_RADIUS);
if (penetration < 0.f) {
_bballIsGrabbed[palm.getSixenseID()] = i;
}
}
}
if (_bballIsGrabbed[palm.getSixenseID()]) {
// If ball being grabbed, move with finger
diff = _bballPosition[_bballIsGrabbed[palm.getSixenseID()]] - fingerTipPosition;
penetration = glm::length(diff) - (_bballRadius[_bballIsGrabbed[palm.getSixenseID()]] + COLLISION_RADIUS);
_bballPosition[_bballIsGrabbed[palm.getSixenseID()]] -= glm::normalize(diff) * penetration;
glm::vec3 fingerTipVelocity = avatarOrientation * palm.getTipVelocity();
if (_bballElement[_bballIsGrabbed[palm.getSixenseID()]] != 1) {
_bballVelocity[_bballIsGrabbed[palm.getSixenseID()]] = fingerTipVelocity;
}
_bballPosition[_bballIsGrabbed[palm.getSixenseID()]] = fingerTipPosition;
_bballColliding[_bballIsGrabbed[palm.getSixenseID()]] = 1.f;
}
} else {
_bballIsGrabbed[palm.getSixenseID()] = 0;
}
}
const float COLLISION_BLEND_RATE = 0.5f;
const float ATTRACTION_BLEND_RATE = 0.9f;
const float ATTRACTION_VELOCITY_BLEND_RATE = 0.10f;
void BuckyBalls::simulate(float deltaTime) {
// Look for collisions
for (int i = 0; i < NUM_BBALLS; i++) {
if (_bballElement[i] != 1) {
// For 'interacting' elements, look for other balls to interact with
for (int j = 0; j < NUM_BBALLS; j++) {
if (i != j) {
glm::vec3 diff = _bballPosition[i] - _bballPosition[j];
float penetration = glm::length(diff) - (_bballRadius[i] + _bballRadius[j]);
if (penetration < 0.f) {
// Colliding - move away and transfer velocity
_bballPosition[i] -= glm::normalize(diff) * penetration * COLLISION_BLEND_RATE;
if (glm::dot(_bballVelocity[i], diff) < 0.f) {
_bballVelocity[i] = _bballVelocity[i] * (1.f - COLLISION_BLEND_RATE) +
glm::reflect(_bballVelocity[i], glm::normalize(diff)) * COLLISION_BLEND_RATE;
}
}
else if ((penetration > EPSILON) && (penetration < BBALLS_ATTRACTION_DISTANCE)) {
// If they get close to each other, bring them together with magnetic force
_bballPosition[i] -= glm::normalize(diff) * penetration * ATTRACTION_BLEND_RATE;
// Also make their velocities more similar
_bballVelocity[i] = _bballVelocity[i] * (1.f - ATTRACTION_VELOCITY_BLEND_RATE) + _bballVelocity[j] * ATTRACTION_VELOCITY_BLEND_RATE;
}
}
}
}
}
// Update position and bounce on walls
const float BBALL_CONTINUOUS_DAMPING = 0.00f;
const float BBALL_WALL_COLLISION_DAMPING = 0.2f;
const float COLLISION_DECAY_RATE = 0.8f;
for (int i = 0; i < NUM_BBALLS; i++) {
_bballPosition[i] += _bballVelocity[i] * deltaTime;
if (_bballElement[i] != 1) {
_bballVelocity[i].y += GRAVITY_BBALLS * deltaTime;
}
_bballVelocity[i] -= _bballVelocity[i] * BBALL_CONTINUOUS_DAMPING * deltaTime;
for (int j = 0; j < 3; j++) {
if ((_bballPosition[i][j] + _bballRadius[i]) > (CORNER_BBALLS + RANGE_BBALLS)) {
_bballPosition[i][j] = (CORNER_BBALLS + RANGE_BBALLS) - _bballRadius[i];
_bballVelocity[i][j] *= -(1.f - BBALL_WALL_COLLISION_DAMPING);
}
if ((_bballPosition[i][j] - _bballRadius[i]) < (CORNER_BBALLS -RANGE_BBALLS)) {
_bballPosition[i][j] = (CORNER_BBALLS -RANGE_BBALLS) + _bballRadius[i];
_bballVelocity[i][j] *= -(1.f - BBALL_WALL_COLLISION_DAMPING);
}
}
_bballColliding[i] *= COLLISION_DECAY_RATE;
if (_bballColliding[i] < 0.1f) {
_bballColliding[i] = 0.f;
}
}
}
void BuckyBalls::render() {
for (int i = 0; i < NUM_BBALLS; i++) {
if (_bballColliding[i] > 0.f) {
const float GRAB_BRIGHTEN = 1.15f;
glColor3f(_bballColor[i].x * GRAB_BRIGHTEN, _bballColor[i].y * GRAB_BRIGHTEN, _bballColor[i].z * GRAB_BRIGHTEN);
} else {
glColor3f(_bballColor[i].x, _bballColor[i].y, _bballColor[i].z);
}
glPushMatrix();
glTranslatef(_bballPosition[i].x, _bballPosition[i].y, _bballPosition[i].z);
glutSolidSphere(_bballRadius[i], 15, 15);
glPopMatrix();
}
}

View file

@ -0,0 +1,47 @@
//
// BuckyBalls.h
// hifi
//
// Created by Philip on 1/2/14.
//
//
#ifndef __hifi__BuckyBalls__
#define __hifi__BuckyBalls__
#include <iostream>
#include <glm/glm.hpp>
#include <HandData.h>
#include <SharedUtil.h>
#include "GeometryUtil.h"
#include "InterfaceConfig.h"
#include "Util.h"
const int NUM_BBALLS = 200;
class BuckyBalls {
public:
BuckyBalls();
void grab(PalmData& palm, const glm::vec3& fingerTipPosition, glm::quat avatarOrientation, float deltaTime);
void simulate(float deltaTime);
void render();
private:
glm::vec3 _bballPosition[NUM_BBALLS];
glm::vec3 _bballVelocity[NUM_BBALLS];
glm::vec3 _bballColor[NUM_BBALLS];
float _bballRadius[NUM_BBALLS];
float _bballColliding[NUM_BBALLS];
int _bballElement[NUM_BBALLS];
int _bballIsGrabbed[2];
};
#endif /* defined(__hifi__BuckyBalls__) */

View file

@ -1,547 +0,0 @@
//
// ParticleSystem.cpp
// hifi
//
// Created by Jeffrey on July 10, 2013
//
#include <glm/glm.hpp>
#include "InterfaceConfig.h"
#include <SharedUtil.h>
#include "ParticleSystem.h"
#include "Application.h"
const float DEFAULT_PARTICLE_RADIUS = 0.01f;
const float DEFAULT_PARTICLE_BOUNCE = 1.0f;
const float DEFAULT_PARTICLE_AIR_FRICTION = 2.0f;
const float DEFAULT_PARTICLE_LIFESPAN = 1.0f;
const int DEFAULT_PARTICLE_SPHERE_RESOLUTION = 6;
const float DEFAULT_EMITTER_RENDER_LENGTH = 0.2f;
const float DEFAULT_PARTICLE_CONNECT_DISTANCE = 0.03f;
ParticleSystem::ParticleSystem() {
_timer = 0.0f;
_numEmitters = 0;
_upDirection = glm::vec3(0.0f, 1.0f, 0.0f); // default
for (unsigned int emitterIndex = 0; emitterIndex < MAX_EMITTERS; emitterIndex++) {
Emitter * e = &_emitter[emitterIndex];
e->active = false;
e->position = glm::vec3(0.0f, 0.0f, 0.0f);
e->previousPosition = glm::vec3(0.0f, 0.0f, 0.0f);
e->direction = glm::vec3(0.0f, 1.0f, 0.0f);
e->visible = false;
e->particleResolution = DEFAULT_PARTICLE_SPHERE_RESOLUTION;
e->particleLifespan = DEFAULT_PARTICLE_LIFESPAN;
e->showingBaseParticle = false;
e->emitReserve = 0.0;
e->thrust = 0.0f;
e->rate = 0.0f;
e->currentParticle = 0;
e->particleRenderStyle = PARTICLE_RENDER_STYLE_SPHERE;
e->numParticlesEmittedThisTime = 0;
e->maxParticleConnectDistance = DEFAULT_PARTICLE_CONNECT_DISTANCE;
for (int lifeStage = 0; lifeStage < NUM_PARTICLE_LIFE_STAGES; lifeStage++) {
setParticleAttributesToDefault(&_emitter[emitterIndex].particleAttributes[lifeStage]);
}
};
for (unsigned int p = 0; p < MAX_PARTICLES; p++) {
_particle[p].alive = false;
_particle[p].age = 0.0f;
_particle[p].radius = 0.0f;
_particle[p].emitterIndex = 0;
_particle[p].previousParticle = NULL_PARTICLE;
_particle[p].position = glm::vec3(0.0f, 0.0f, 0.0f);
_particle[p].velocity = glm::vec3(0.0f, 0.0f, 0.0f);
}
}
int ParticleSystem::addEmitter() {
if (_numEmitters < MAX_EMITTERS) {
_numEmitters ++;
return _numEmitters - 1;
}
return NULL_EMITTER;
}
void ParticleSystem::simulate(float deltaTime) {
_timer += deltaTime;
// update emitters
for (int emitterIndex = 0; emitterIndex < _numEmitters; emitterIndex++) {
assert(emitterIndex <= MAX_EMITTERS);
if (_emitter[emitterIndex].active) {
updateEmitter(emitterIndex, deltaTime);
}
}
// update particles
for (int p = 0; p < MAX_PARTICLES; p++) {
if (_particle[p].alive) {
if (_particle[p].age > _emitter[_particle[p].emitterIndex].particleLifespan) {
killParticle(p);
} else {
updateParticle(p, deltaTime);
}
}
}
}
void ParticleSystem::updateEmitter(int emitterIndex, float deltaTime) {
_emitter[emitterIndex].emitReserve += _emitter[emitterIndex].rate * deltaTime;
_emitter[emitterIndex].numParticlesEmittedThisTime = (int)_emitter[emitterIndex].emitReserve;
_emitter[emitterIndex].emitReserve -= _emitter[emitterIndex].numParticlesEmittedThisTime;
for (int p = 0; p < _emitter[emitterIndex].numParticlesEmittedThisTime; p++) {
float timeFraction = (float)p / (float)_emitter[emitterIndex].numParticlesEmittedThisTime;
createParticle(emitterIndex, timeFraction);
}
}
void ParticleSystem::createParticle(int e, float timeFraction) {
float maxConnectDistSqr = _emitter[e].maxParticleConnectDistance * _emitter[e].maxParticleConnectDistance;
for (unsigned int p = 0; p < MAX_PARTICLES; p++) {
if (!_particle[p].alive) {
_particle[p].emitterIndex = e;
_particle[p].alive = true;
_particle[p].age = 0.0f;
_particle[p].velocity = _emitter[e].direction * _emitter[e].thrust;
_particle[p].position = _emitter[e].previousPosition + timeFraction * (_emitter[e].position - _emitter[e].previousPosition);
_particle[p].radius = _emitter[e].particleAttributes[PARTICLE_LIFESTAGE_0].radius;
_particle[p].color = _emitter[e].particleAttributes[PARTICLE_LIFESTAGE_0].color;
_particle[p].previousParticle = NULL_PARTICLE;
Particle& prev = _particle[_emitter[e].currentParticle];
if (prev.alive) {
if (prev.emitterIndex == e) {
glm::vec3 diff = prev.position - _particle[p].position;
float sqrDist = glm::dot(diff, diff);
if (sqrDist < maxConnectDistSqr) {
_particle[p].previousParticle = _emitter[e].currentParticle;
}
}
}
_emitter[e].currentParticle = p;
break;
}
}
}
void ParticleSystem::killParticle(int p) {
assert(p >= 0);
assert(p < MAX_PARTICLES);
_particle[p].alive = false;
_particle[p].previousParticle = NULL_PARTICLE;
_particle[p].position = _emitter[_particle[p].emitterIndex].position;
_particle[p].velocity = glm::vec3(0.0f, 0.0f, 0.0f);
_particle[p].age = 0.0f;
_particle[p].emitterIndex = NULL_PARTICLE;
_particle[p].color = glm::vec4(0.0f, 0.0f, 0.0f, 0.0f);
_particle[p].radius = 0.0f;
}
void ParticleSystem::setEmitterPosition(int emitterIndex, glm::vec3 position) {
_emitter[emitterIndex].previousPosition = _emitter[emitterIndex].position;
_emitter[emitterIndex].position = position;
}
void ParticleSystem::setParticleAttributes(int emitterIndex, ParticleAttributes attributes) {
for (int lifeStage = 0; lifeStage < NUM_PARTICLE_LIFE_STAGES; lifeStage ++) {
setParticleAttributes(emitterIndex, (ParticleLifeStage)lifeStage, attributes);
}
}
void ParticleSystem::setParticleAttributesToDefault(ParticleAttributes * a) {
a->radius = DEFAULT_PARTICLE_RADIUS;
a->color = glm::vec4(0.0f, 0.0f, 0.0f, 0.0f);
a->bounce = DEFAULT_PARTICLE_BOUNCE;
a->airFriction = DEFAULT_PARTICLE_AIR_FRICTION;
a->gravity = 0.0f;
a->jitter = 0.0f;
a->emitterAttraction = 0.0f;
a->tornadoForce = 0.0f;
a->neighborAttraction = 0.0f;
a->neighborRepulsion = 0.0f;
a->collisionSphereRadius = 0.0f;
a->collisionSpherePosition = glm::vec3(0.0f, 0.0f, 0.0f);
a->usingCollisionSphere = false;
a->collisionPlaneNormal = _upDirection;
a->collisionPlanePosition = glm::vec3(0.0f, 0.0f, 0.0f);
a->usingCollisionPlane = false;
a->modulationAmplitude = 0.0f;
a->modulationRate = 0.0;
a->modulationStyle = COLOR_MODULATION_STYLE_NULL;
}
void ParticleSystem::setParticleAttributes(int emitterIndex, ParticleLifeStage lifeStage, ParticleAttributes attributes) {
assert(lifeStage >= 0);
assert(lifeStage < NUM_PARTICLE_LIFE_STAGES);
ParticleAttributes * a = &_emitter[emitterIndex].particleAttributes[lifeStage];
a->radius = attributes.radius;
a->color = attributes.color;
a->bounce = attributes.bounce;
a->gravity = attributes.gravity;
a->airFriction = attributes.airFriction;
a->jitter = attributes.jitter;
a->emitterAttraction = attributes.emitterAttraction;
a->tornadoForce = attributes.tornadoForce;
a->neighborAttraction = attributes.neighborAttraction;
a->neighborRepulsion = attributes.neighborRepulsion;
a->usingCollisionSphere = attributes.usingCollisionSphere;
a->collisionSpherePosition = attributes.collisionSpherePosition;
a->collisionSphereRadius = attributes.collisionSphereRadius;
a->usingCollisionPlane = attributes.usingCollisionPlane;
a->collisionPlanePosition = attributes.collisionPlanePosition;
a->collisionPlaneNormal = attributes.collisionPlaneNormal;
a->modulationAmplitude = attributes.modulationAmplitude;
a->modulationRate = attributes.modulationRate;
a->modulationStyle = attributes.modulationStyle;
}
void ParticleSystem::updateParticle(int p, float deltaTime) {
Emitter myEmitter = _emitter[_particle[p].emitterIndex];
assert(_particle[p].age <= myEmitter.particleLifespan);
float ageFraction = 0.0f;
int lifeStage = 0;
float lifeStageFraction = 0.0f;
if (_emitter[_particle[p].emitterIndex].particleLifespan > 0.0) {
ageFraction = _particle[p].age / myEmitter.particleLifespan;
lifeStage = (int)(ageFraction * (NUM_PARTICLE_LIFE_STAGES - 1));
lifeStageFraction = ageFraction * (NUM_PARTICLE_LIFE_STAGES - 1) - lifeStage;
// adjust radius
_particle[p].radius
= myEmitter.particleAttributes[lifeStage ].radius * (1.0f - lifeStageFraction)
+ myEmitter.particleAttributes[lifeStage+1].radius * lifeStageFraction;
// apply random jitter
float j = myEmitter.particleAttributes[lifeStage].jitter;
_particle[p].velocity +=
glm::vec3
(
-j * ONE_HALF + j * randFloat(),
-j * ONE_HALF + j * randFloat(),
-j * ONE_HALF + j * randFloat()
) * deltaTime;
// apply attraction to home position
glm::vec3 vectorToHome = myEmitter.position - _particle[p].position;
_particle[p].velocity += vectorToHome * myEmitter.particleAttributes[lifeStage].emitterAttraction * deltaTime;
// apply neighbor attraction
int neighbor = p + 1;
if (neighbor == MAX_PARTICLES) {
neighbor = 0;
}
if (_particle[neighbor].emitterIndex == _particle[p].emitterIndex) {
glm::vec3 vectorToNeighbor = _particle[p].position - _particle[neighbor].position;
_particle[p].velocity -= vectorToNeighbor * myEmitter.particleAttributes[lifeStage].neighborAttraction * deltaTime;
float distanceToNeighbor = glm::length(vectorToNeighbor);
if (distanceToNeighbor > 0.0f) {
_particle[neighbor].velocity += (vectorToNeighbor / (1.0f + distanceToNeighbor * distanceToNeighbor)) * myEmitter.particleAttributes[lifeStage].neighborRepulsion * deltaTime;
}
}
// apply tornado force
glm::vec3 tornadoDirection = glm::cross(vectorToHome, myEmitter.direction);
_particle[p].velocity += tornadoDirection * myEmitter.particleAttributes[lifeStage].tornadoForce * deltaTime;
// apply air friction
float drag = 1.0 - myEmitter.particleAttributes[lifeStage].airFriction * deltaTime;
if (drag < 0.0f) {
_particle[p].velocity = glm::vec3(0.0f, 0.0f, 0.0f);
} else {
_particle[p].velocity *= drag;
}
// apply gravity
_particle[p].velocity -= _upDirection * myEmitter.particleAttributes[lifeStage].gravity * deltaTime;
// update position by velocity
_particle[p].position += _particle[p].velocity;
// collision with the plane surface
if (myEmitter.particleAttributes[lifeStage].usingCollisionPlane) {
glm::vec3 vectorFromParticleToPlanePosition = _particle[p].position - myEmitter.particleAttributes[lifeStage].collisionPlanePosition;
glm::vec3 normal = myEmitter.particleAttributes[lifeStage].collisionPlaneNormal;
float dot = glm::dot(vectorFromParticleToPlanePosition, normal);
if (dot < _particle[p].radius) {
_particle[p].position += normal * (_particle[p].radius - dot);
float planeNormalComponentOfVelocity = glm::dot(_particle[p].velocity, normal);
_particle[p].velocity -= normal * planeNormalComponentOfVelocity * (1.0f + myEmitter.particleAttributes[lifeStage].bounce);
}
}
// collision with sphere
if (myEmitter.particleAttributes[lifeStage].usingCollisionSphere) {
glm::vec3 vectorToSphereCenter = myEmitter.particleAttributes[lifeStage].collisionSpherePosition - _particle[p].position;
float distanceToSphereCenter = glm::length(vectorToSphereCenter);
float combinedRadius = myEmitter.particleAttributes[lifeStage].collisionSphereRadius + _particle[p].radius;
if (distanceToSphereCenter < combinedRadius) {
if (distanceToSphereCenter > 0.0f){
glm::vec3 directionToSphereCenter = vectorToSphereCenter / distanceToSphereCenter;
_particle[p].position = myEmitter.particleAttributes[lifeStage].collisionSpherePosition - directionToSphereCenter * combinedRadius;
}
}
}
}
// adjust color
_particle[p].color
= myEmitter.particleAttributes[lifeStage ].color * (1.0f - lifeStageFraction)
+ myEmitter.particleAttributes[lifeStage+1].color * lifeStageFraction;
// apply color modulation
if (myEmitter.particleAttributes[lifeStage ].modulationAmplitude > 0.0f) {
float redModulation = 0.0f;
float greenModulation = 0.0f;
float bueModulation = 0.0f;
float radian = _timer * myEmitter.particleAttributes[lifeStage ].modulationRate * PI_TIMES_TWO;
if (myEmitter.particleAttributes[lifeStage ].modulationStyle == COLOR_MODULATION_STYLE_LIGHNTESS_PULSE) {
if (sinf(radian) > 0.0f) {
redModulation = myEmitter.particleAttributes[lifeStage].modulationAmplitude;
greenModulation = myEmitter.particleAttributes[lifeStage].modulationAmplitude;
bueModulation = myEmitter.particleAttributes[lifeStage].modulationAmplitude;
}
} else if (myEmitter.particleAttributes[lifeStage].modulationStyle == COLOR_MODULATION_STYLE_LIGHTNESS_WAVE) {
float amp = myEmitter.particleAttributes[lifeStage].modulationAmplitude;
float brightness = amp * ONE_HALF + sinf(radian) * amp * ONE_HALF;
redModulation = brightness;
greenModulation = brightness;
bueModulation = brightness;
} else if (myEmitter.particleAttributes[lifeStage].modulationStyle == COLOR_MODULATION_STYLE_RAINBOW_CYCLE) {
float amp = myEmitter.particleAttributes[lifeStage].modulationAmplitude * ONE_HALF;
redModulation = sinf(radian * RAINBOW_CYCLE_RED_RATE ) * amp;
greenModulation = sinf(radian * RAINBOW_CYCLE_GREEN_RATE) * amp;
bueModulation = sinf(radian * RAINBOW_CYCLE_BLUE_RATE ) * amp;
}
_particle[p].color.r += redModulation;
_particle[p].color.g += greenModulation;
_particle[p].color.b += bueModulation;
_particle[p].color.a = 1.0f;
if (_particle[p].color.r > 1.0f) {_particle[p].color.r = 1.0f;}
if (_particle[p].color.g > 1.0f) {_particle[p].color.g = 1.0f;}
if (_particle[p].color.b > 1.0f) {_particle[p].color.b = 1.0f;}
if (_particle[p].color.a > 1.0f) {_particle[p].color.a = 1.0f;}
if (_particle[p].color.r < 0.0f) {_particle[p].color.r = 0.0f;}
if (_particle[p].color.g < 0.0f) {_particle[p].color.g = 0.0f;}
if (_particle[p].color.b < 0.0f) {_particle[p].color.b = 0.0f;}
if (_particle[p].color.a < 0.0f) {_particle[p].color.a = 0.0f;}
}
// do this at the end...
_particle[p].age += deltaTime;
}
void ParticleSystem::killAllParticles() {
for (int e = 0; e < _numEmitters; e++) {
_emitter[e].currentParticle = NULL_PARTICLE;
_emitter[e].emitReserve = 0.0f;
_emitter[e].previousPosition = _emitter[e].position;
_emitter[e].rate = 0.0f;
_emitter[e].currentParticle = 0;
_emitter[e].numParticlesEmittedThisTime = 0;
}
for (int p = 0; p < MAX_PARTICLES; p++) {
killParticle(p);
}
}
void ParticleSystem::render() {
// render the emitters
for (int e = 0; e < MAX_EMITTERS; e++) {
if (_emitter[e].active) {
if (_emitter[e].showingBaseParticle) {
glColor4f(_particle[0].color.r, _particle[0].color.g, _particle[0].color.b, _particle[0].color.a);
glPushMatrix();
glTranslatef(_emitter[e].position.x, _emitter[e].position.y, _emitter[e].position.z);
glutSolidSphere(_particle[0].radius, _emitter[e].particleResolution, _emitter[e].particleResolution);
glPopMatrix();
}
}
if (_emitter[e].visible) {
renderEmitter(e, DEFAULT_EMITTER_RENDER_LENGTH);
}
};
// render the particles
for (int p = 0; p < MAX_PARTICLES; p++) {
if (_particle[p].alive) {
if (_emitter[_particle[p].emitterIndex].particleLifespan > 0.0) {
renderParticle(p);
}
}
}
}
void ParticleSystem::renderParticle(int p) {
glColor4f(_particle[p].color.r, _particle[p].color.g, _particle[p].color.b, _particle[p].color.a);
if (_emitter[_particle[p].emitterIndex].particleRenderStyle == PARTICLE_RENDER_STYLE_BILLBOARD) {
glm::vec3 cameraPosition = Application::getInstance()->getCamera()->getPosition();
glm::vec3 viewVector = _particle[p].position - cameraPosition;
float distance = glm::length(viewVector);
if (distance >= 0.0f) {
viewVector /= distance;
glm::vec3 up = glm::vec3(viewVector.y, viewVector.z, viewVector.x);
glm::vec3 right = glm::vec3(viewVector.z, viewVector.x, viewVector.y);
glm::vec3 p0 = _particle[p].position - right * _particle[p].radius - up * _particle[p].radius;
glm::vec3 p1 = _particle[p].position + right * _particle[p].radius - up * _particle[p].radius;
glm::vec3 p2 = _particle[p].position + right * _particle[p].radius + up * _particle[p].radius;
glm::vec3 p3 = _particle[p].position - right * _particle[p].radius + up * _particle[p].radius;
glBegin(GL_TRIANGLES);
glVertex3f(p0.x, p0.y, p0.z);
glVertex3f(p1.x, p1.y, p1.z);
glVertex3f(p2.x, p2.y, p2.z);
glEnd();
glBegin(GL_TRIANGLES);
glVertex3f(p0.x, p0.y, p0.z);
glVertex3f(p2.x, p2.y, p2.z);
glVertex3f(p3.x, p3.y, p3.z);
glEnd();
}
} else if (_emitter[_particle[p].emitterIndex].particleRenderStyle == PARTICLE_RENDER_STYLE_SPHERE) {
glPushMatrix();
glTranslatef(_particle[p].position.x, _particle[p].position.y, _particle[p].position.z);
glutSolidSphere(_particle[p].radius, _emitter[_particle[p].emitterIndex].particleResolution, _emitter[_particle[p].emitterIndex].particleResolution);
glPopMatrix();
} else if (_emitter[_particle[p].emitterIndex].particleRenderStyle == PARTICLE_RENDER_STYLE_RIBBON) {
if (_particle[p].previousParticle != NULL_PARTICLE) {
if ((_particle[p].alive)
&& (_particle[_particle[p].previousParticle].alive)
&& (_particle[_particle[p].previousParticle].emitterIndex == _particle[p].emitterIndex)) {
glm::vec3 vectorFromPreviousParticle = _particle[p].position - _particle[_particle[p].previousParticle].position;
float distance = glm::length(vectorFromPreviousParticle);
if (distance > 0.0f) {
vectorFromPreviousParticle /= distance;
glm::vec3 up = glm::normalize(glm::cross(vectorFromPreviousParticle, _upDirection)) * _particle[p].radius;
glm::vec3 right = glm::normalize(glm::cross(up, vectorFromPreviousParticle )) * _particle[p].radius;
glm::vec3 p0Left = _particle[p ].position - right;
glm::vec3 p0Right = _particle[p ].position + right;
glm::vec3 p0Down = _particle[p ].position - up;
glm::vec3 p0Up = _particle[p ].position + up;
glm::vec3 ppLeft = _particle[_particle[p].previousParticle].position - right;
glm::vec3 ppRight = _particle[_particle[p].previousParticle].position + right;
glm::vec3 ppDown = _particle[_particle[p].previousParticle].position - up;
glm::vec3 ppUp = _particle[_particle[p].previousParticle].position + up;
glBegin(GL_TRIANGLES);
glVertex3f(p0Left.x, p0Left.y, p0Left.z );
glVertex3f(p0Right.x, p0Right.y, p0Right.z);
glVertex3f(ppLeft.x, ppLeft.y, ppLeft.z );
glVertex3f(p0Right.x, p0Right.y, p0Right.z);
glVertex3f(ppLeft.x, ppLeft.y, ppLeft.z );
glVertex3f(ppRight.x, ppRight.y, ppRight.z);
glVertex3f(p0Up.x, p0Up.y, p0Up.z );
glVertex3f(p0Down.x, p0Down.y, p0Down.z );
glVertex3f(ppDown.x, ppDown.y, ppDown.z );
glVertex3f(p0Up.x, p0Up.y, p0Up.z );
glVertex3f(ppUp.x, ppUp.y, ppUp.z );
glVertex3f(ppDown.x, ppDown.y, ppDown.z );
glVertex3f(p0Up.x, p0Up.y, p0Left.z );
glVertex3f(p0Right.x, p0Right.y, p0Right.z);
glVertex3f(p0Down.x, p0Down.y, p0Down.z );
glVertex3f(p0Up.x, p0Up.y, p0Left.z );
glVertex3f(p0Left.x, p0Left.y, p0Left.z );
glVertex3f(p0Down.x, p0Down.y, p0Down.z );
glVertex3f(ppUp.x, ppUp.y, ppLeft.z );
glVertex3f(ppRight.x, ppRight.y, ppRight.z);
glVertex3f(ppDown.x, ppDown.y, ppDown.z );
glVertex3f(ppUp.x, ppUp.y, ppLeft.z );
glVertex3f(ppLeft.x, ppLeft.y, ppLeft.z );
glVertex3f(ppDown.x, ppDown.y, ppDown.z );
glEnd();
}
}
}
}
}
void ParticleSystem::renderEmitter(int e, float size) {
glm::vec3 v = _emitter[e].direction * size;
glColor3f(0.4f, 0.4, 0.8);
glBegin(GL_LINES);
glVertex3f(_emitter[e].position.x, _emitter[e].position.y, _emitter[e].position.z);
glVertex3f(_emitter[e].position.x + v.x, _emitter[e].position.y + v.y, _emitter[e].position.z + v.z);
glEnd();
}

View file

@ -1,143 +0,0 @@
//
// ParticleSystem.h
// hifi
//
// Created by Jeffrey on July 10, 2013
//
#ifndef hifi_ParticleSystem_h
#define hifi_ParticleSystem_h
#include <glm/gtc/quaternion.hpp>
const int NULL_EMITTER = -1;
const int NULL_PARTICLE = -1;
const int MAX_EMITTERS = 100;
const int MAX_PARTICLES = 5000;
const float RAINBOW_CYCLE_RED_RATE = 0.5f;
const float RAINBOW_CYCLE_GREEN_RATE = 0.7f;
const float RAINBOW_CYCLE_BLUE_RATE = 1.0f;
enum ParticleRenderStyle
{
PARTICLE_RENDER_STYLE_SPHERE = 0,
PARTICLE_RENDER_STYLE_BILLBOARD,
PARTICLE_RENDER_STYLE_RIBBON,
NUM_PARTICLE_RENDER_STYLES
};
enum ColorModulationStyle
{
COLOR_MODULATION_STYLE_NULL = -1,
COLOR_MODULATION_STYLE_LIGHNTESS_PULSE,
COLOR_MODULATION_STYLE_LIGHTNESS_WAVE,
COLOR_MODULATION_STYLE_RAINBOW_CYCLE,
NUM_COLOR_MODULATION_STYLES
};
enum ParticleLifeStage
{
PARTICLE_LIFESTAGE_0 = 0,
PARTICLE_LIFESTAGE_1,
PARTICLE_LIFESTAGE_2,
PARTICLE_LIFESTAGE_3,
NUM_PARTICLE_LIFE_STAGES
};
class ParticleSystem {
public:
struct ParticleAttributes {
float radius; // radius of the particle
glm::vec4 color; // color (rgba) of the particle
float bounce; // how much reflection when the particle collides with floor/ground
float gravity; // force opposite of up direction
float airFriction; // continual dampening of velocity
float jitter; // random forces on velocity
float emitterAttraction; // an attraction to the emitter position
float tornadoForce; // force perpendicular to direction axis
float neighborAttraction; // causes particle to be pulled towards next particle in list
float neighborRepulsion; // causes particle to be repelled by previous particle in list
bool usingCollisionSphere; // set to true to allow collision with a sphere
glm::vec3 collisionSpherePosition; // position of the collision sphere
float collisionSphereRadius; // radius of the collision sphere
bool usingCollisionPlane; // set to true to allow collision with a plane
glm::vec3 collisionPlanePosition; // reference position of the collision plane
glm::vec3 collisionPlaneNormal; // the surface normal of the collision plane
float modulationAmplitude; // sets the degree (from 0 to 1) of the modulating effect
float modulationRate; // the period of modulation, in seconds
ColorModulationStyle modulationStyle; // to choose between color modulation styles
};
// public methods...
ParticleSystem();
int addEmitter(); // add (create new) emitter and get its unique id
void simulate(float deltaTime);
void killAllParticles();
void render();
void setUpDirection(glm::vec3 upDirection) {_upDirection = upDirection;} // tell particle system which direction is up
void setParticleAttributesToDefault(ParticleAttributes * attributes); // set these attributes to their default values
void setParticleAttributes (int emitterIndex, ParticleAttributes attributes); // set attributes for whole life of particles
void setParticleAttributes (int emitterIndex, ParticleLifeStage lifeStage, ParticleAttributes attributes); // set attributes for this life stage
void setEmitterPosition (int emitterIndex, glm::vec3 position );
void setEmitterActive (int emitterIndex, bool active ) {_emitter[emitterIndex].active = active; }
void setEmitterParticleResolution (int emitterIndex, int resolution ) {_emitter[emitterIndex].particleResolution = resolution; }
void setEmitterDirection (int emitterIndex, glm::vec3 direction ) {_emitter[emitterIndex].direction = direction; }
void setShowingEmitter (int emitterIndex, bool showing ) {_emitter[emitterIndex].visible = showing; }
void setEmitterParticleLifespan (int emitterIndex, float lifespan ) {_emitter[emitterIndex].particleLifespan = lifespan; }
void setParticleRenderStyle (int emitterIndex, ParticleRenderStyle renderStyle ) {_emitter[emitterIndex].particleRenderStyle = renderStyle; }
void setEmitterThrust (int emitterIndex, float thrust ) {_emitter[emitterIndex].thrust = thrust; }
void setEmitterRate (int emitterIndex, float rate ) {_emitter[emitterIndex].rate = rate; }
void setShowingEmitterBaseParticle(int emitterIndex, bool showing ) {_emitter[emitterIndex].showingBaseParticle = showing; }
private:
struct Particle {
bool alive; // is the particle active?
glm::vec3 position; // position
glm::vec3 velocity; // velocity
glm::vec4 color; // color (rgba)
float age; // age in seconds
float radius; // radius
int emitterIndex; // which emitter created this particle?
int previousParticle; // the last particle that this particle's emitter emitted;
};
struct Emitter {
bool active; // if false, the emitter is disabled - allows for easy switching on and off
glm::vec3 position; // the position of the emitter in world coordinates
glm::vec3 previousPosition; // the position of the emitter in the previous time step
glm::vec3 direction; // a normalized vector used as an axis for particle emission and other effects
bool visible; // whether or not a line is shown indicating the emitter (indicating its direction)
float particleLifespan; // how long the particle shall live, in seconds
int particleResolution; // for sphere-based particles
float emitReserve; // baed on 'rate', this is the number of particles that need to be emitted at a given time step
int numParticlesEmittedThisTime; //the integer number of particles to emit at the preent time step
float thrust; // the initial velocity upon emitting along the emitter direction
float rate; // currently, how many particles emitted during a simulation time step
bool showingBaseParticle; // if true, a copy of particle 0 is shown on the emitter position
int currentParticle; // the index of the most recently-emitted particle
ParticleAttributes particleAttributes[NUM_PARTICLE_LIFE_STAGES]; // the attributes of particles emitted from this emitter
ParticleRenderStyle particleRenderStyle;
float maxParticleConnectDistance; // past this, don't connect the particles.
};
glm::vec3 _upDirection;
Emitter _emitter[MAX_EMITTERS];
Particle _particle[MAX_PARTICLES];
int _numEmitters;
float _timer;
// private methods
void updateEmitter(int emitterIndex, float deltaTime);
void updateParticle(int index, float deltaTime);
void createParticle(int e, float timeFraction);
void killParticle(int p);
void renderEmitter(int emitterIndex, float size);
void renderParticle(int p);
};
#endif

View file

@ -19,13 +19,7 @@
using namespace std;
const float RANGE_BBALLS = 0.5f;
const float SIZE_BBALLS = 0.02f;
const float CORNER_BBALLS = 2.f;
const float GRAVITY_BBALLS = -0.25f;
const float BBALLS_ATTRACTION_DISTANCE = SIZE_BBALLS / 2.f;
const float FINGERTIP_COLLISION_RADIUS = SIZE_BBALLS / 2.f;
const float FINGERTIP_COLLISION_RADIUS = 0.01;
const float FINGERTIP_VOXEL_SIZE = 0.05;
const int TOY_BALL_HAND = 1;
const float TOY_BALL_RADIUS = 0.05f;
@ -71,35 +65,6 @@ Hand::Hand(Avatar* owningAvatar) :
_whichBallColor[i] = 0;
}
_lastControllerButtons = 0;
// Make some bucky balls for the avatar
_bballIsGrabbed[0] = 0;
_bballIsGrabbed[1] = 0;
if (_owningAvatar && _owningAvatar->getOwningNode() == NULL) {
printf("Creating buckyballs...\n");
for (int i = 0; i < NUM_BBALLS; i++) {
_bballPosition[i] = CORNER_BBALLS + randVector() * RANGE_BBALLS;
int element = (rand() % 3);
if (element == 0) {
_bballRadius[i] = SIZE_BBALLS;
_bballColor[i] = glm::vec3(0.13f, 0.55f, 0.13f);
} else if (element == 1) {
_bballRadius[i] = SIZE_BBALLS / 2.f;
_bballColor[i] = glm::vec3(0.64f, 0.16f, 0.16f);
} else {
_bballRadius[i] = SIZE_BBALLS * 2.f;
_bballColor[i] = glm::vec3(0.31f, 0.58f, 0.80f);
}
_bballColliding[i] = 0.f;
_bballElement[i] = element;
if (_bballElement[i] != 1) {
_bballVelocity[i] = randVector() * 0.3f;
} else {
_bballVelocity[i] = glm::vec3(0);
}
}
}
}
void Hand::init() {
@ -115,111 +80,6 @@ void Hand::init() {
void Hand::reset() {
}
void Hand::grabBuckyBalls(PalmData& palm, const glm::vec3& fingerTipPosition, float deltaTime) {
float penetration;
glm::vec3 diff;
if (palm.getControllerButtons() & BUTTON_FWD) {
if (!_bballIsGrabbed[palm.getSixenseID()]) {
// Look for a ball to grab
for (int i = 0; i < NUM_BBALLS; i++) {
diff = _bballPosition[i] - fingerTipPosition;
penetration = glm::length(diff) - (_bballRadius[i] + FINGERTIP_COLLISION_RADIUS);
if (penetration < 0.f) {
_bballIsGrabbed[palm.getSixenseID()] = i;
}
}
}
if (_bballIsGrabbed[palm.getSixenseID()]) {
// If ball being grabbed, move with finger
diff = _bballPosition[_bballIsGrabbed[palm.getSixenseID()]] - fingerTipPosition;
penetration = glm::length(diff) - (_bballRadius[_bballIsGrabbed[palm.getSixenseID()]] + FINGERTIP_COLLISION_RADIUS);
_bballPosition[_bballIsGrabbed[palm.getSixenseID()]] -= glm::normalize(diff) * penetration;
glm::vec3 fingerTipVelocity = _owningAvatar->getOrientation() * palm.getTipVelocity();
if (_bballElement[_bballIsGrabbed[palm.getSixenseID()]] != 1) {
_bballVelocity[_bballIsGrabbed[palm.getSixenseID()]] = fingerTipVelocity;
}
_bballPosition[_bballIsGrabbed[palm.getSixenseID()]] = fingerTipPosition;
_bballColliding[_bballIsGrabbed[palm.getSixenseID()]] = 1.f;
}
} else {
_bballIsGrabbed[palm.getSixenseID()] = 0;
}
}
const float COLLISION_BLEND_RATE = 0.5f;
const float ATTRACTION_BLEND_RATE = 0.9f;
const float ATTRACTION_VELOCITY_BLEND_RATE = 0.10f;
void Hand::simulateBuckyBalls(float deltaTime) {
// Look for collisions
for (int i = 0; i < NUM_BBALLS; i++) {
if (_bballElement[i] != 1) {
// For 'interacting' elements, look for other balls to interact with
for (int j = 0; j < NUM_BBALLS; j++) {
if (i != j) {
glm::vec3 diff = _bballPosition[i] - _bballPosition[j];
float penetration = glm::length(diff) - (_bballRadius[i] + _bballRadius[j]);
if (penetration < 0.f) {
// Colliding - move away and transfer velocity
_bballPosition[i] -= glm::normalize(diff) * penetration * COLLISION_BLEND_RATE;
if (glm::dot(_bballVelocity[i], diff) < 0.f) {
_bballVelocity[i] = _bballVelocity[i] * (1.f - COLLISION_BLEND_RATE) +
glm::reflect(_bballVelocity[i], glm::normalize(diff)) * COLLISION_BLEND_RATE;
}
}
else if ((penetration > EPSILON) && (penetration < BBALLS_ATTRACTION_DISTANCE)) {
// If they get close to each other, bring them together with magnetic force
_bballPosition[i] -= glm::normalize(diff) * penetration * ATTRACTION_BLEND_RATE;
// Also make their velocities more similar
_bballVelocity[i] = _bballVelocity[i] * (1.f - ATTRACTION_VELOCITY_BLEND_RATE) + _bballVelocity[j] * ATTRACTION_VELOCITY_BLEND_RATE;
}
}
}
}
}
// Update position and bounce on walls
const float BBALL_CONTINUOUS_DAMPING = 0.00f;
const float BBALL_WALL_COLLISION_DAMPING = 0.2f;
for (int i = 0; i < NUM_BBALLS; i++) {
_bballPosition[i] += _bballVelocity[i] * deltaTime;
if (_bballElement[i] != 1) {
_bballVelocity[i].y += GRAVITY_BBALLS * deltaTime;
}
_bballVelocity[i] -= _bballVelocity[i] * BBALL_CONTINUOUS_DAMPING * deltaTime;
for (int j = 0; j < 3; j++) {
if ((_bballPosition[i][j] + _bballRadius[i]) > (CORNER_BBALLS + RANGE_BBALLS)) {
_bballPosition[i][j] = (CORNER_BBALLS + RANGE_BBALLS) - _bballRadius[i];
_bballVelocity[i][j] *= -(1.f - BBALL_WALL_COLLISION_DAMPING);
}
if ((_bballPosition[i][j] - _bballRadius[i]) < (CORNER_BBALLS -RANGE_BBALLS)) {
_bballPosition[i][j] = (CORNER_BBALLS -RANGE_BBALLS) + _bballRadius[i];
_bballVelocity[i][j] *= -(1.f - BBALL_WALL_COLLISION_DAMPING);
}
}
_bballColliding[i] *= 0.8f;
if (_bballColliding[i] < 0.1f) {
_bballColliding[i] = 0.f;
}
}
}
void Hand::renderBuckyBalls() {
for (int i = 0; i < NUM_BBALLS; i++) {
if (_bballColliding[i] > 0.f) {
glColor3f(_bballColor[i].x * 1.15f, _bballColor[i].y * 1.15f, _bballColor[i].z * 1.15f);
} else {
glColor3f(_bballColor[i].x, _bballColor[i].y, _bballColor[i].z);
}
glPushMatrix();
glTranslatef(_bballPosition[i].x, _bballPosition[i].y, _bballPosition[i].z);
glutSolidSphere(_bballRadius[i], 15, 15);
//glutSolidCube(_bballRadius[i] * 2.f);
glPopMatrix();
}
}
void Hand::simulateToyBall(PalmData& palm, const glm::vec3& fingerTipPosition, float deltaTime) {
Application* app = Application::getInstance();
ParticleTree* particles = app->getParticles()->getTree();
@ -399,7 +259,7 @@ void Hand::simulate(float deltaTime, bool isMine) {
}
if (isMine) {
simulateBuckyBalls(deltaTime);
_buckyBalls.simulate(deltaTime);
}
const glm::vec3 leapHandsOffsetFromFace(0.0, -0.2, -0.3); // place the hand in front of the face where we can see it
@ -425,7 +285,8 @@ void Hand::simulate(float deltaTime, bool isMine) {
glm::vec3 fingerTipPosition = finger.getTipPosition();
simulateToyBall(palm, fingerTipPosition, deltaTime);
grabBuckyBalls(palm, fingerTipPosition, deltaTime);
_buckyBalls.grab(palm, fingerTipPosition, _owningAvatar->getOrientation(), deltaTime);
if (palm.getControllerButtons() & BUTTON_4) {
_grabDelta += palm.getRawVelocity() * deltaTime;
@ -642,7 +503,7 @@ void Hand::render(bool isMine) {
_renderAlpha = 1.0;
if (isMine) {
renderBuckyBalls();
_buckyBalls.render();
}
if (Menu::getInstance()->isOptionChecked(MenuOption::CollisionProxies)) {

View file

@ -21,6 +21,7 @@
#include <HandData.h>
#include <ParticleEditHandle.h>
#include "BuckyBalls.h"
#include "InterfaceConfig.h"
#include "world.h"
#include "devices/SerialInterface.h"
@ -30,9 +31,6 @@
class Avatar;
class ProgramObject;
const int NUM_BBALLS = 200;
class Hand : public HandData {
public:
Hand(Avatar* owningAvatar);
@ -87,6 +85,8 @@ private:
float _collisionAge;
float _collisionDuration;
BuckyBalls _buckyBalls;
// private methods
void setLeapHands(const std::vector<glm::vec3>& handPositions,
const std::vector<glm::vec3>& handNormals);
@ -100,10 +100,6 @@ private:
void handleVoxelCollision(PalmData* palm, const glm::vec3& fingerTipPosition, VoxelTreeElement* voxel, float deltaTime);
void simulateToyBall(PalmData& palm, const glm::vec3& fingerTipPosition, float deltaTime);
void grabBuckyBalls(PalmData& palm, const glm::vec3& fingerTipPosition, float deltaTime);
void simulateBuckyBalls(float deltaTime);
void renderBuckyBalls();
#define MAX_HANDS 2
bool _toyBallInHand[MAX_HANDS];
@ -121,14 +117,6 @@ private:
Sound _throwSound;
Sound _catchSound;
glm::vec3 _bballPosition[NUM_BBALLS];
glm::vec3 _bballVelocity[NUM_BBALLS];
glm::vec3 _bballColor[NUM_BBALLS];
float _bballRadius[NUM_BBALLS];
float _bballColliding[NUM_BBALLS];
int _bballElement[NUM_BBALLS];
int _bballIsGrabbed[2];
};
#endif