Merge branch 'master' of https://github.com/highfidelity/hifi into dependancy_manager

This commit is contained in:
Atlante45 2014-12-13 01:18:33 -08:00
commit 28786721a6
58 changed files with 606 additions and 5116 deletions

View file

@ -22,6 +22,7 @@
#include <NodeList.h>
#include <PacketHeaders.h>
#include <SharedUtil.h>
#include <ShutdownEventListener.h>
#include <SoundCache.h>
#include "AssignmentFactory.h"
@ -38,7 +39,6 @@ int hifiSockAddrMeta = qRegisterMetaType<HifiSockAddr>("HifiSockAddr");
AssignmentClient::AssignmentClient(int &argc, char **argv) :
QCoreApplication(argc, argv),
_shutdownEventListener(this),
_assignmentServerHostname(DEFAULT_ASSIGNMENT_SERVER_HOSTNAME),
_localASPortSharedMem(NULL)
{
@ -49,8 +49,12 @@ AssignmentClient::AssignmentClient(int &argc, char **argv) :
setApplicationName("assignment-client");
QSettings::setDefaultFormat(QSettings::IniFormat);
installNativeEventFilter(&_shutdownEventListener);
connect(&_shutdownEventListener, SIGNAL(receivedCloseEvent()), SLOT(quit()));
// setup a shutdown event listener to handle SIGTERM or WM_CLOSE for us
#ifdef _WIN32
installNativeEventFilter(&ShutdownEventListener::getInstance());
#else
ShutdownEventListener::getInstance();
#endif
// set the logging target to the the CHILD_TARGET_NAME
LogHandler::getInstance().setTargetName(ASSIGNMENT_CLIENT_TARGET_NAME);

View file

@ -14,7 +14,6 @@
#include <QtCore/QCoreApplication>
#include "ShutdownEventListener.h"
#include "ThreadedAssignment.h"
class QSharedMemory;
@ -34,7 +33,6 @@ private slots:
private:
Assignment _requestAssignment;
static SharedAssignmentPointer _currentAssignment;
ShutdownEventListener _shutdownEventListener;
QString _assignmentServerHostname;
HifiSockAddr _assignmentServerSocket;
QSharedMemory* _localASPortSharedMem;

View file

@ -12,6 +12,7 @@
#include <signal.h>
#include <LogHandler.h>
#include <ShutdownEventListener.h>
#include "AssignmentClientMonitor.h"
@ -19,24 +20,19 @@ const char* NUM_FORKS_PARAMETER = "-n";
const QString ASSIGNMENT_CLIENT_MONITOR_TARGET_NAME = "assignment-client-monitor";
void signalHandler(int param){
// get the qApp and cast it to an AssignmentClientMonitor
AssignmentClientMonitor* app = qobject_cast<AssignmentClientMonitor*>(qApp);
// tell it to stop the child processes and then go down
app->stopChildProcesses();
app->quit();
}
AssignmentClientMonitor::AssignmentClientMonitor(int &argc, char **argv, int numAssignmentClientForks) :
QCoreApplication(argc, argv)
{
// be a signal handler for SIGTERM so we can stop our children when we get it
signal(SIGTERM, signalHandler);
{
// start the Logging class with the parent's target name
LogHandler::getInstance().setTargetName(ASSIGNMENT_CLIENT_MONITOR_TARGET_NAME);
// setup a shutdown event listener to handle SIGTERM or WM_CLOSE for us
#ifdef _WIN32
installNativeEventFilter(&ShutdownEventListener::getInstance());
#else
ShutdownEventListener::getInstance();
#endif
_childArguments = arguments();
// remove the parameter for the number of forks so it isn't passed to the child forked processes
@ -52,6 +48,10 @@ AssignmentClientMonitor::AssignmentClientMonitor(int &argc, char **argv, int num
}
}
AssignmentClientMonitor::~AssignmentClientMonitor() {
stopChildProcesses();
}
void AssignmentClientMonitor::stopChildProcesses() {
QList<QPointer<QProcess> >::Iterator it = _childProcesses.begin();

View file

@ -24,6 +24,7 @@ class AssignmentClientMonitor : public QCoreApplication {
Q_OBJECT
public:
AssignmentClientMonitor(int &argc, char **argv, int numAssignmentClientForks);
~AssignmentClientMonitor();
void stopChildProcesses();
private slots:

View file

@ -29,6 +29,7 @@
#include <LogUtils.h>
#include <PacketHeaders.h>
#include <SharedUtil.h>
#include <ShutdownEventListener.h>
#include <UUID.h>
#include "DomainServerNodeData.h"
@ -41,7 +42,6 @@ const QString ICE_SERVER_DEFAULT_HOSTNAME = "ice.highfidelity.io";
DomainServer::DomainServer(int argc, char* argv[]) :
QCoreApplication(argc, argv),
_shutdownEventListener(this),
_httpManager(DOMAIN_SERVER_HTTP_PORT, QString("%1/resources/web/").arg(QCoreApplication::applicationDirPath()), this),
_httpsManager(NULL),
_allAssignments(),
@ -70,8 +70,12 @@ DomainServer::DomainServer(int argc, char* argv[]) :
_settingsManager.setupConfigMap(arguments());
installNativeEventFilter(&_shutdownEventListener);
connect(&_shutdownEventListener, SIGNAL(receivedCloseEvent()), SLOT(quit()));
// setup a shutdown event listener to handle SIGTERM or WM_CLOSE for us
#ifdef _WIN32
installNativeEventFilter(&ShutdownEventListener::getInstance());
#else
ShutdownEventListener::getInstance();
#endif
qRegisterMetaType<DomainServerWebSessionData>("DomainServerWebSessionData");
qRegisterMetaTypeStreamOperators<DomainServerWebSessionData>("DomainServerWebSessionData");

View file

@ -27,7 +27,6 @@
#include "DomainServerSettingsManager.h"
#include "DomainServerWebSessionData.h"
#include "ShutdownEventListener.h"
#include "WalletTransaction.h"
#include "PendingAssignedNodeData.h"
@ -125,8 +124,6 @@ private:
QJsonObject jsonForSocket(const HifiSockAddr& socket);
QJsonObject jsonObjectForNode(const SharedNodePointer& node);
ShutdownEventListener _shutdownEventListener;
HTTPManager _httpManager;
HTTPSManager* _httpsManager;

View file

@ -1,844 +0,0 @@
//
// audioReflectorTools.js
// hifi
//
// Created by Brad Hefta-Gaub on 2/14/14.
// Copyright (c) 2014 HighFidelity, Inc. All rights reserved.
//
// Tools for manipulating the attributes of the AudioReflector behavior
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
Script.include("libraries/globals.js");
var delayScale = 100.0;
var fanoutScale = 10.0;
var speedScale = 20;
var factorScale = 5.0;
var localFactorScale = 1.0;
var reflectiveScale = 100.0;
var diffusionScale = 100.0;
var absorptionScale = 100.0;
var combFilterScale = 50.0;
var originalScale = 2.0;
var echoesScale = 2.0;
// these three properties are bound together, if you change one, the others will also change
var reflectiveRatio = AudioReflector.getReflectiveRatio();
var diffusionRatio = AudioReflector.getDiffusionRatio();
var absorptionRatio = AudioReflector.getAbsorptionRatio();
var reflectiveThumbX;
var diffusionThumbX;
var absorptionThumbX;
function setReflectiveRatio(reflective) {
var total = diffusionRatio + absorptionRatio + (reflective / reflectiveScale);
diffusionRatio = diffusionRatio / total;
absorptionRatio = absorptionRatio / total;
reflectiveRatio = (reflective / reflectiveScale) / total;
updateRatioValues();
}
function setDiffusionRatio(diffusion) {
var total = (diffusion / diffusionScale) + absorptionRatio + reflectiveRatio;
diffusionRatio = (diffusion / diffusionScale) / total;
absorptionRatio = absorptionRatio / total;
reflectiveRatio = reflectiveRatio / total;
updateRatioValues();
}
function setAbsorptionRatio(absorption) {
var total = diffusionRatio + (absorption / absorptionScale) + reflectiveRatio;
diffusionRatio = diffusionRatio / total;
absorptionRatio = (absorption / absorptionScale) / total;
reflectiveRatio = reflectiveRatio / total;
updateRatioValues();
}
function updateRatioSliders() {
reflectiveThumbX = reflectiveMinThumbX + ((reflectiveMaxThumbX - reflectiveMinThumbX) * reflectiveRatio);
diffusionThumbX = diffusionMinThumbX + ((diffusionMaxThumbX - diffusionMinThumbX) * diffusionRatio);
absorptionThumbX = absorptionMinThumbX + ((absorptionMaxThumbX - absorptionMinThumbX) * absorptionRatio);
Overlays.editOverlay(reflectiveThumb, { x: reflectiveThumbX } );
Overlays.editOverlay(diffusionThumb, { x: diffusionThumbX } );
Overlays.editOverlay(absorptionThumb, { x: absorptionThumbX } );
}
function updateRatioValues() {
AudioReflector.setReflectiveRatio(reflectiveRatio);
AudioReflector.setDiffusionRatio(diffusionRatio);
AudioReflector.setAbsorptionRatio(absorptionRatio);
}
var topY = 250;
var sliderHeight = 35;
var delayY = topY;
topY += sliderHeight;
var delayLabel = Overlays.addOverlay("text", {
x: 40,
y: delayY,
width: 60,
height: sliderHeight,
color: { red: 0, green: 0, blue: 0},
textColor: { red: 255, green: 255, blue: 255},
topMargin: 12,
leftMargin: 5,
text: "Delay:"
});
var delaySlider = Overlays.addOverlay("image", {
// alternate form of expressing bounds
bounds: { x: 100, y: delayY, width: 150, height: sliderHeight},
subImage: { x: 46, y: 0, width: 200, height: 71 },
imageURL: HIFI_PUBLIC_BUCKET + "images/slider.png",
color: { red: 255, green: 255, blue: 255},
alpha: 1
});
var delayMinThumbX = 110;
var delayMaxThumbX = delayMinThumbX + 110;
var delayThumbX = delayMinThumbX + ((delayMaxThumbX - delayMinThumbX) * (AudioReflector.getPreDelay() / delayScale));
var delayThumb = Overlays.addOverlay("image", {
x: delayThumbX,
y: delayY + 9,
width: 18,
height: 17,
imageURL: HIFI_PUBLIC_BUCKET + "images/thumb.png",
color: { red: 255, green: 0, blue: 0},
alpha: 1
});
var fanoutY = topY;
topY += sliderHeight;
var fanoutLabel = Overlays.addOverlay("text", {
x: 40,
y: fanoutY,
width: 60,
height: sliderHeight,
color: { red: 0, green: 0, blue: 0},
textColor: { red: 255, green: 255, blue: 255},
topMargin: 12,
leftMargin: 5,
text: "Fanout:"
});
var fanoutSlider = Overlays.addOverlay("image", {
// alternate form of expressing bounds
bounds: { x: 100, y: fanoutY, width: 150, height: sliderHeight},
subImage: { x: 46, y: 0, width: 200, height: 71 },
imageURL: HIFI_PUBLIC_BUCKET + "images/slider.png",
color: { red: 255, green: 255, blue: 255},
alpha: 1
});
var fanoutMinThumbX = 110;
var fanoutMaxThumbX = fanoutMinThumbX + 110;
var fanoutThumbX = fanoutMinThumbX + ((fanoutMaxThumbX - fanoutMinThumbX) * (AudioReflector.getDiffusionFanout() / fanoutScale));
var fanoutThumb = Overlays.addOverlay("image", {
x: fanoutThumbX,
y: fanoutY + 9,
width: 18,
height: 17,
imageURL: HIFI_PUBLIC_BUCKET + "images/thumb.png",
color: { red: 255, green: 255, blue: 0},
alpha: 1
});
var speedY = topY;
topY += sliderHeight;
var speedLabel = Overlays.addOverlay("text", {
x: 40,
y: speedY,
width: 60,
height: sliderHeight,
color: { red: 0, green: 0, blue: 0},
textColor: { red: 255, green: 255, blue: 255},
topMargin: 6,
leftMargin: 5,
text: "Speed\nin ms/m:"
});
var speedSlider = Overlays.addOverlay("image", {
// alternate form of expressing bounds
bounds: { x: 100, y: speedY, width: 150, height: sliderHeight},
subImage: { x: 46, y: 0, width: 200, height: 71 },
imageURL: HIFI_PUBLIC_BUCKET + "images/slider.png",
color: { red: 255, green: 255, blue: 255},
alpha: 1
});
var speedMinThumbX = 110;
var speedMaxThumbX = speedMinThumbX + 110;
var speedThumbX = speedMinThumbX + ((speedMaxThumbX - speedMinThumbX) * (AudioReflector.getSoundMsPerMeter() / speedScale));
var speedThumb = Overlays.addOverlay("image", {
x: speedThumbX,
y: speedY+9,
width: 18,
height: 17,
imageURL: HIFI_PUBLIC_BUCKET + "images/thumb.png",
color: { red: 0, green: 255, blue: 0},
alpha: 1
});
var factorY = topY;
topY += sliderHeight;
var factorLabel = Overlays.addOverlay("text", {
x: 40,
y: factorY,
width: 60,
height: sliderHeight,
color: { red: 0, green: 0, blue: 0},
textColor: { red: 255, green: 255, blue: 255},
topMargin: 6,
leftMargin: 5,
text: "Attenuation\nFactor:"
});
var factorSlider = Overlays.addOverlay("image", {
// alternate form of expressing bounds
bounds: { x: 100, y: factorY, width: 150, height: sliderHeight},
subImage: { x: 46, y: 0, width: 200, height: 71 },
imageURL: HIFI_PUBLIC_BUCKET + "images/slider.png",
color: { red: 255, green: 255, blue: 255},
alpha: 1
});
var factorMinThumbX = 110;
var factorMaxThumbX = factorMinThumbX + 110;
var factorThumbX = factorMinThumbX + ((factorMaxThumbX - factorMinThumbX) * (AudioReflector.getDistanceAttenuationScalingFactor() / factorScale));
var factorThumb = Overlays.addOverlay("image", {
x: factorThumbX,
y: factorY+9,
width: 18,
height: 17,
imageURL: HIFI_PUBLIC_BUCKET + "images/thumb.png",
color: { red: 0, green: 0, blue: 255},
alpha: 1
});
var localFactorY = topY;
topY += sliderHeight;
var localFactorLabel = Overlays.addOverlay("text", {
x: 40,
y: localFactorY,
width: 60,
height: sliderHeight,
color: { red: 0, green: 0, blue: 0},
textColor: { red: 255, green: 255, blue: 255},
topMargin: 6,
leftMargin: 5,
text: "Local\nFactor:"
});
var localFactorSlider = Overlays.addOverlay("image", {
// alternate form of expressing bounds
bounds: { x: 100, y: localFactorY, width: 150, height: sliderHeight},
subImage: { x: 46, y: 0, width: 200, height: 71 },
imageURL: HIFI_PUBLIC_BUCKET + "images/slider.png",
color: { red: 255, green: 255, blue: 255},
alpha: 1
});
var localFactorMinThumbX = 110;
var localFactorMaxThumbX = localFactorMinThumbX + 110;
var localFactorThumbX = localFactorMinThumbX + ((localFactorMaxThumbX - localFactorMinThumbX) * (AudioReflector.getLocalAudioAttenuationFactor() / localFactorScale));
var localFactorThumb = Overlays.addOverlay("image", {
x: localFactorThumbX,
y: localFactorY+9,
width: 18,
height: 17,
imageURL: HIFI_PUBLIC_BUCKET + "images/thumb.png",
color: { red: 0, green: 128, blue: 128},
alpha: 1
});
var combFilterY = topY;
topY += sliderHeight;
var combFilterLabel = Overlays.addOverlay("text", {
x: 40,
y: combFilterY,
width: 60,
height: sliderHeight,
color: { red: 0, green: 0, blue: 0},
textColor: { red: 255, green: 255, blue: 255},
topMargin: 6,
leftMargin: 5,
text: "Comb Filter\nWindow:"
});
var combFilterSlider = Overlays.addOverlay("image", {
// alternate form of expressing bounds
bounds: { x: 100, y: combFilterY, width: 150, height: sliderHeight},
subImage: { x: 46, y: 0, width: 200, height: 71 },
imageURL: HIFI_PUBLIC_BUCKET + "images/slider.png",
color: { red: 255, green: 255, blue: 255},
alpha: 1
});
var combFilterMinThumbX = 110;
var combFilterMaxThumbX = combFilterMinThumbX + 110;
var combFilterThumbX = combFilterMinThumbX + ((combFilterMaxThumbX - combFilterMinThumbX) * (AudioReflector.getCombFilterWindow() / combFilterScale));
var combFilterThumb = Overlays.addOverlay("image", {
x: combFilterThumbX,
y: combFilterY+9,
width: 18,
height: 17,
imageURL: HIFI_PUBLIC_BUCKET + "images/thumb.png",
color: { red: 128, green: 128, blue: 0},
alpha: 1
});
var reflectiveY = topY;
topY += sliderHeight;
var reflectiveLabel = Overlays.addOverlay("text", {
x: 40,
y: reflectiveY,
width: 60,
height: sliderHeight,
color: { red: 0, green: 0, blue: 0},
textColor: { red: 255, green: 255, blue: 255},
topMargin: 6,
leftMargin: 5,
text: "Reflective\nRatio:"
});
var reflectiveSlider = Overlays.addOverlay("image", {
// alternate form of expressing bounds
bounds: { x: 100, y: reflectiveY, width: 150, height: sliderHeight},
subImage: { x: 46, y: 0, width: 200, height: 71 },
imageURL: HIFI_PUBLIC_BUCKET + "images/slider.png",
color: { red: 255, green: 255, blue: 255},
alpha: 1
});
var reflectiveMinThumbX = 110;
var reflectiveMaxThumbX = reflectiveMinThumbX + 110;
reflectiveThumbX = reflectiveMinThumbX + ((reflectiveMaxThumbX - reflectiveMinThumbX) * AudioReflector.getReflectiveRatio());
var reflectiveThumb = Overlays.addOverlay("image", {
x: reflectiveThumbX,
y: reflectiveY+9,
width: 18,
height: 17,
imageURL: HIFI_PUBLIC_BUCKET + "images/thumb.png",
color: { red: 255, green: 255, blue: 255},
alpha: 1
});
var diffusionY = topY;
topY += sliderHeight;
var diffusionLabel = Overlays.addOverlay("text", {
x: 40,
y: diffusionY,
width: 60,
height: sliderHeight,
color: { red: 0, green: 0, blue: 0},
textColor: { red: 255, green: 255, blue: 255},
topMargin: 6,
leftMargin: 5,
text: "Diffusion\nRatio:"
});
var diffusionSlider = Overlays.addOverlay("image", {
// alternate form of expressing bounds
bounds: { x: 100, y: diffusionY, width: 150, height: sliderHeight},
subImage: { x: 46, y: 0, width: 200, height: 71 },
imageURL: HIFI_PUBLIC_BUCKET + "images/slider.png",
color: { red: 255, green: 255, blue: 255},
alpha: 1
});
var diffusionMinThumbX = 110;
var diffusionMaxThumbX = diffusionMinThumbX + 110;
diffusionThumbX = diffusionMinThumbX + ((diffusionMaxThumbX - diffusionMinThumbX) * AudioReflector.getDiffusionRatio());
var diffusionThumb = Overlays.addOverlay("image", {
x: diffusionThumbX,
y: diffusionY+9,
width: 18,
height: 17,
imageURL: HIFI_PUBLIC_BUCKET + "images/thumb.png",
color: { red: 0, green: 255, blue: 255},
alpha: 1
});
var absorptionY = topY;
topY += sliderHeight;
var absorptionLabel = Overlays.addOverlay("text", {
x: 40,
y: absorptionY,
width: 60,
height: sliderHeight,
color: { red: 0, green: 0, blue: 0},
textColor: { red: 255, green: 255, blue: 255},
topMargin: 6,
leftMargin: 5,
text: "Absorption\nRatio:"
});
var absorptionSlider = Overlays.addOverlay("image", {
// alternate form of expressing bounds
bounds: { x: 100, y: absorptionY, width: 150, height: sliderHeight},
subImage: { x: 46, y: 0, width: 200, height: 71 },
imageURL: HIFI_PUBLIC_BUCKET + "images/slider.png",
color: { red: 255, green: 255, blue: 255},
alpha: 1
});
var absorptionMinThumbX = 110;
var absorptionMaxThumbX = absorptionMinThumbX + 110;
absorptionThumbX = absorptionMinThumbX + ((absorptionMaxThumbX - absorptionMinThumbX) * AudioReflector.getAbsorptionRatio());
var absorptionThumb = Overlays.addOverlay("image", {
x: absorptionThumbX,
y: absorptionY+9,
width: 18,
height: 17,
imageURL: HIFI_PUBLIC_BUCKET + "images/thumb.png",
color: { red: 255, green: 0, blue: 255},
alpha: 1
});
var originalY = topY;
topY += sliderHeight;
var originalLabel = Overlays.addOverlay("text", {
x: 40,
y: originalY,
width: 60,
height: sliderHeight,
color: { red: 0, green: 0, blue: 0},
textColor: { red: 255, green: 255, blue: 255},
topMargin: 6,
leftMargin: 5,
text: "Original\nMix:"
});
var originalSlider = Overlays.addOverlay("image", {
// alternate form of expressing bounds
bounds: { x: 100, y: originalY, width: 150, height: sliderHeight},
subImage: { x: 46, y: 0, width: 200, height: 71 },
imageURL: HIFI_PUBLIC_BUCKET + "images/slider.png",
color: { red: 255, green: 255, blue: 255},
alpha: 1
});
var originalMinThumbX = 110;
var originalMaxThumbX = originalMinThumbX + 110;
var originalThumbX = originalMinThumbX + ((originalMaxThumbX - originalMinThumbX) * (AudioReflector.getOriginalSourceAttenuation() / originalScale));
var originalThumb = Overlays.addOverlay("image", {
x: originalThumbX,
y: originalY+9,
width: 18,
height: 17,
imageURL: HIFI_PUBLIC_BUCKET + "images/thumb.png",
color: { red: 128, green: 128, blue: 0},
alpha: 1
});
var echoesY = topY;
topY += sliderHeight;
var echoesLabel = Overlays.addOverlay("text", {
x: 40,
y: echoesY,
width: 60,
height: sliderHeight,
color: { red: 0, green: 0, blue: 0},
textColor: { red: 255, green: 255, blue: 255},
topMargin: 6,
leftMargin: 5,
text: "Echoes\nMix:"
});
var echoesSlider = Overlays.addOverlay("image", {
// alternate form of expressing bounds
bounds: { x: 100, y: echoesY, width: 150, height: sliderHeight},
subImage: { x: 46, y: 0, width: 200, height: 71 },
imageURL: HIFI_PUBLIC_BUCKET + "images/slider.png",
color: { red: 255, green: 255, blue: 255},
alpha: 1
});
var echoesMinThumbX = 110;
var echoesMaxThumbX = echoesMinThumbX + 110;
var echoesThumbX = echoesMinThumbX + ((echoesMaxThumbX - echoesMinThumbX) * (AudioReflector.getEchoesAttenuation() / echoesScale));
var echoesThumb = Overlays.addOverlay("image", {
x: echoesThumbX,
y: echoesY+9,
width: 18,
height: 17,
imageURL: HIFI_PUBLIC_BUCKET + "images/thumb.png",
color: { red: 128, green: 128, blue: 0},
alpha: 1
});
// When our script shuts down, we should clean up all of our overlays
function scriptEnding() {
Overlays.deleteOverlay(factorLabel);
Overlays.deleteOverlay(factorThumb);
Overlays.deleteOverlay(factorSlider);
Overlays.deleteOverlay(combFilterLabel);
Overlays.deleteOverlay(combFilterThumb);
Overlays.deleteOverlay(combFilterSlider);
Overlays.deleteOverlay(localFactorLabel);
Overlays.deleteOverlay(localFactorThumb);
Overlays.deleteOverlay(localFactorSlider);
Overlays.deleteOverlay(speedLabel);
Overlays.deleteOverlay(speedThumb);
Overlays.deleteOverlay(speedSlider);
Overlays.deleteOverlay(delayLabel);
Overlays.deleteOverlay(delayThumb);
Overlays.deleteOverlay(delaySlider);
Overlays.deleteOverlay(fanoutLabel);
Overlays.deleteOverlay(fanoutThumb);
Overlays.deleteOverlay(fanoutSlider);
Overlays.deleteOverlay(reflectiveLabel);
Overlays.deleteOverlay(reflectiveThumb);
Overlays.deleteOverlay(reflectiveSlider);
Overlays.deleteOverlay(diffusionLabel);
Overlays.deleteOverlay(diffusionThumb);
Overlays.deleteOverlay(diffusionSlider);
Overlays.deleteOverlay(absorptionLabel);
Overlays.deleteOverlay(absorptionThumb);
Overlays.deleteOverlay(absorptionSlider);
Overlays.deleteOverlay(echoesLabel);
Overlays.deleteOverlay(echoesThumb);
Overlays.deleteOverlay(echoesSlider);
Overlays.deleteOverlay(originalLabel);
Overlays.deleteOverlay(originalThumb);
Overlays.deleteOverlay(originalSlider);
}
Script.scriptEnding.connect(scriptEnding);
var count = 0;
// Our update() function is called at approximately 60fps, and we will use it to animate our various overlays
function update(deltaTime) {
count++;
}
Script.update.connect(update);
// The slider is handled in the mouse event callbacks.
var movingSliderDelay = false;
var movingSliderFanout = false;
var movingSliderSpeed = false;
var movingSliderFactor = false;
var movingSliderCombFilter = false;
var movingSliderLocalFactor = false;
var movingSliderReflective = false;
var movingSliderDiffusion = false;
var movingSliderAbsorption = false;
var movingSliderOriginal = false;
var movingSliderEchoes = false;
var thumbClickOffsetX = 0;
function mouseMoveEvent(event) {
if (movingSliderDelay) {
newThumbX = event.x - thumbClickOffsetX;
if (newThumbX < delayMinThumbX) {
newThumbX = delayMinThumbX;
}
if (newThumbX > delayMaxThumbX) {
newThumbX = delayMaxThumbX;
}
Overlays.editOverlay(delayThumb, { x: newThumbX } );
var delay = ((newThumbX - delayMinThumbX) / (delayMaxThumbX - delayMinThumbX)) * delayScale;
AudioReflector.setPreDelay(delay);
}
if (movingSliderFanout) {
newThumbX = event.x - thumbClickOffsetX;
if (newThumbX < fanoutMinThumbX) {
newThumbX = fanoutMinThumbX;
}
if (newThumbX > fanoutMaxThumbX) {
newThumbX = fanoutMaxThumbX;
}
Overlays.editOverlay(fanoutThumb, { x: newThumbX } );
var fanout = Math.round(((newThumbX - fanoutMinThumbX) / (fanoutMaxThumbX - fanoutMinThumbX)) * fanoutScale);
AudioReflector.setDiffusionFanout(fanout);
}
if (movingSliderSpeed) {
newThumbX = event.x - thumbClickOffsetX;
if (newThumbX < speedMinThumbX) {
newThumbX = speedMminThumbX;
}
if (newThumbX > speedMaxThumbX) {
newThumbX = speedMaxThumbX;
}
Overlays.editOverlay(speedThumb, { x: newThumbX } );
var speed = ((newThumbX - speedMinThumbX) / (speedMaxThumbX - speedMinThumbX)) * speedScale;
AudioReflector.setSoundMsPerMeter(speed);
}
if (movingSliderFactor) {
newThumbX = event.x - thumbClickOffsetX;
if (newThumbX < factorMinThumbX) {
newThumbX = factorMminThumbX;
}
if (newThumbX > factorMaxThumbX) {
newThumbX = factorMaxThumbX;
}
Overlays.editOverlay(factorThumb, { x: newThumbX } );
var factor = ((newThumbX - factorMinThumbX) / (factorMaxThumbX - factorMinThumbX)) * factorScale;
AudioReflector.setDistanceAttenuationScalingFactor(factor);
}
if (movingSliderCombFilter) {
newThumbX = event.x - thumbClickOffsetX;
if (newThumbX < combFilterMinThumbX) {
newThumbX = combFilterMminThumbX;
}
if (newThumbX > combFilterMaxThumbX) {
newThumbX = combFilterMaxThumbX;
}
Overlays.editOverlay(combFilterThumb, { x: newThumbX } );
var combFilter = ((newThumbX - combFilterMinThumbX) / (combFilterMaxThumbX - combFilterMinThumbX)) * combFilterScale;
AudioReflector.setCombFilterWindow(combFilter);
}
if (movingSliderLocalFactor) {
newThumbX = event.x - thumbClickOffsetX;
if (newThumbX < localFactorMinThumbX) {
newThumbX = localFactorMminThumbX;
}
if (newThumbX > localFactorMaxThumbX) {
newThumbX = localFactorMaxThumbX;
}
Overlays.editOverlay(localFactorThumb, { x: newThumbX } );
var localFactor = ((newThumbX - localFactorMinThumbX) / (localFactorMaxThumbX - localFactorMinThumbX)) * localFactorScale;
AudioReflector.setLocalAudioAttenuationFactor(localFactor);
}
if (movingSliderAbsorption) {
newThumbX = event.x - thumbClickOffsetX;
if (newThumbX < absorptionMinThumbX) {
newThumbX = absorptionMminThumbX;
}
if (newThumbX > absorptionMaxThumbX) {
newThumbX = absorptionMaxThumbX;
}
Overlays.editOverlay(absorptionThumb, { x: newThumbX } );
var absorption = ((newThumbX - absorptionMinThumbX) / (absorptionMaxThumbX - absorptionMinThumbX)) * absorptionScale;
setAbsorptionRatio(absorption);
}
if (movingSliderReflective) {
newThumbX = event.x - thumbClickOffsetX;
if (newThumbX < reflectiveMinThumbX) {
newThumbX = reflectiveMminThumbX;
}
if (newThumbX > reflectiveMaxThumbX) {
newThumbX = reflectiveMaxThumbX;
}
Overlays.editOverlay(reflectiveThumb, { x: newThumbX } );
var reflective = ((newThumbX - reflectiveMinThumbX) / (reflectiveMaxThumbX - reflectiveMinThumbX)) * reflectiveScale;
setReflectiveRatio(reflective);
}
if (movingSliderDiffusion) {
newThumbX = event.x - thumbClickOffsetX;
if (newThumbX < diffusionMinThumbX) {
newThumbX = diffusionMminThumbX;
}
if (newThumbX > diffusionMaxThumbX) {
newThumbX = diffusionMaxThumbX;
}
Overlays.editOverlay(diffusionThumb, { x: newThumbX } );
var diffusion = ((newThumbX - diffusionMinThumbX) / (diffusionMaxThumbX - diffusionMinThumbX)) * diffusionScale;
setDiffusionRatio(diffusion);
}
if (movingSliderEchoes) {
newThumbX = event.x - thumbClickOffsetX;
if (newThumbX < echoesMinThumbX) {
newThumbX = echoesMminThumbX;
}
if (newThumbX > echoesMaxThumbX) {
newThumbX = echoesMaxThumbX;
}
Overlays.editOverlay(echoesThumb, { x: newThumbX } );
var echoes = ((newThumbX - echoesMinThumbX) / (echoesMaxThumbX - echoesMinThumbX)) * echoesScale;
AudioReflector.setEchoesAttenuation(echoes);
}
if (movingSliderOriginal) {
newThumbX = event.x - thumbClickOffsetX;
if (newThumbX < originalMinThumbX) {
newThumbX = originalMminThumbX;
}
if (newThumbX > originalMaxThumbX) {
newThumbX = originalMaxThumbX;
}
Overlays.editOverlay(originalThumb, { x: newThumbX } );
var original = ((newThumbX - originalMinThumbX) / (originalMaxThumbX - originalMinThumbX)) * originalScale;
AudioReflector.setOriginalSourceAttenuation(original);
}
}
// we also handle click detection in our mousePressEvent()
function mousePressEvent(event) {
var clickedOverlay = Overlays.getOverlayAtPoint({x: event.x, y: event.y});
if (clickedOverlay == delayThumb) {
movingSliderDelay = true;
thumbClickOffsetX = event.x - delayThumbX;
}
if (clickedOverlay == fanoutThumb) {
movingSliderFanout = true;
thumbClickOffsetX = event.x - fanoutThumbX;
}
if (clickedOverlay == speedThumb) {
movingSliderSpeed = true;
thumbClickOffsetX = event.x - speedThumbX;
}
if (clickedOverlay == factorThumb) {
movingSliderFactor = true;
thumbClickOffsetX = event.x - factorThumbX;
}
if (clickedOverlay == localFactorThumb) {
movingSliderLocalFactor = true;
thumbClickOffsetX = event.x - localFactorThumbX;
}
if (clickedOverlay == combFilterThumb) {
movingSliderCombFilter = true;
thumbClickOffsetX = event.x - combFilterThumbX;
}
if (clickedOverlay == diffusionThumb) {
movingSliderDiffusion = true;
thumbClickOffsetX = event.x - diffusionThumbX;
}
if (clickedOverlay == absorptionThumb) {
movingSliderAbsorption = true;
thumbClickOffsetX = event.x - absorptionThumbX;
}
if (clickedOverlay == reflectiveThumb) {
movingSliderReflective = true;
thumbClickOffsetX = event.x - reflectiveThumbX;
}
if (clickedOverlay == originalThumb) {
movingSliderOriginal = true;
thumbClickOffsetX = event.x - originalThumbX;
}
if (clickedOverlay == echoesThumb) {
movingSliderEchoes = true;
thumbClickOffsetX = event.x - echoesThumbX;
}
}
function mouseReleaseEvent(event) {
if (movingSliderDelay) {
movingSliderDelay = false;
var delay = ((newThumbX - delayMinThumbX) / (delayMaxThumbX - delayMinThumbX)) * delayScale;
AudioReflector.setPreDelay(delay);
delayThumbX = newThumbX;
}
if (movingSliderFanout) {
movingSliderFanout = false;
var fanout = Math.round(((newThumbX - fanoutMinThumbX) / (fanoutMaxThumbX - fanoutMinThumbX)) * fanoutScale);
AudioReflector.setDiffusionFanout(fanout);
fanoutThumbX = newThumbX;
}
if (movingSliderSpeed) {
movingSliderSpeed = false;
var speed = ((newThumbX - speedMinThumbX) / (speedMaxThumbX - speedMinThumbX)) * speedScale;
AudioReflector.setSoundMsPerMeter(speed);
speedThumbX = newThumbX;
}
if (movingSliderFactor) {
movingSliderFactor = false;
var factor = ((newThumbX - factorMinThumbX) / (factorMaxThumbX - factorMinThumbX)) * factorScale;
AudioReflector.setDistanceAttenuationScalingFactor(factor);
factorThumbX = newThumbX;
}
if (movingSliderCombFilter) {
movingSliderCombFilter = false;
var combFilter = ((newThumbX - combFilterMinThumbX) / (combFilterMaxThumbX - combFilterMinThumbX)) * combFilterScale;
AudioReflector.setCombFilterWindow(combFilter);
combFilterThumbX = newThumbX;
}
if (movingSliderLocalFactor) {
movingSliderLocalFactor = false;
var localFactor = ((newThumbX - localFactorMinThumbX) / (localFactorMaxThumbX - localFactorMinThumbX)) * localFactorScale;
AudioReflector.setLocalAudioAttenuationFactor(localFactor);
localFactorThumbX = newThumbX;
}
if (movingSliderReflective) {
movingSliderReflective = false;
var reflective = ((newThumbX - reflectiveMinThumbX) / (reflectiveMaxThumbX - reflectiveMinThumbX)) * reflectiveScale;
setReflectiveRatio(reflective);
reflectiveThumbX = newThumbX;
updateRatioSliders();
}
if (movingSliderDiffusion) {
movingSliderDiffusion = false;
var diffusion = ((newThumbX - diffusionMinThumbX) / (diffusionMaxThumbX - diffusionMinThumbX)) * diffusionScale;
setDiffusionRatio(diffusion);
diffusionThumbX = newThumbX;
updateRatioSliders();
}
if (movingSliderAbsorption) {
movingSliderAbsorption = false;
var absorption = ((newThumbX - absorptionMinThumbX) / (absorptionMaxThumbX - absorptionMinThumbX)) * absorptionScale;
setAbsorptionRatio(absorption);
absorptionThumbX = newThumbX;
updateRatioSliders();
}
if (movingSliderEchoes) {
movingSliderEchoes = false;
var echoes = ((newThumbX - echoesMinThumbX) / (echoesMaxThumbX - echoesMinThumbX)) * echoesScale;
AudioReflector.setEchoesAttenuation(echoes);
echoesThumbX = newThumbX;
}
if (movingSliderOriginal) {
movingSliderOriginal = false;
var original = ((newThumbX - originalMinThumbX) / (originalMaxThumbX - originalMinThumbX)) * originalScale;
AudioReflector.setOriginalSourceAttenuation(original);
originalThumbX = newThumbX;
}
}
Controller.mouseMoveEvent.connect(mouseMoveEvent);
Controller.mousePressEvent.connect(mousePressEvent);
Controller.mouseReleaseEvent.connect(mouseReleaseEvent);

View file

@ -14,3 +14,4 @@ Script.load("selectAudioDevice.js");
Script.load("hydraMove.js");
Script.load("headMove.js");
Script.load("inspect.js");
Script.load("lobby.js");

View file

@ -159,8 +159,8 @@ var toolBar = (function () {
visible: false
});
menuItemWidth = Math.max(Overlays.textWidth(loadURLMenuItem, "Model URL"),
Overlays.textWidth(loadFileMenuItem, "Model File")) + 20;
menuItemWidth = Math.max(Overlays.textSize(loadURLMenuItem, "Model URL").width,
Overlays.textSize(loadFileMenuItem, "Model File").width) + 20;
Overlays.editOverlay(loadURLMenuItem, { width: menuItemWidth });
Overlays.editOverlay(loadFileMenuItem, { width: menuItemWidth });

View file

@ -1191,8 +1191,8 @@ var toolBar = (function () {
visible: false
});
menuItemWidth = Math.max(Overlays.textWidth(loadURLMenuItem, "Model URL"),
Overlays.textWidth(loadFileMenuItem, "Model File")) + 20;
menuItemWidth = Math.max(Overlays.textSize(loadURLMenuItem, "Model URL").width,
Overlays.textSize(loadFileMenuItem, "Model File").width) + 20;
Overlays.editOverlay(loadURLMenuItem, { width: menuItemWidth });
Overlays.editOverlay(loadFileMenuItem, { width: menuItemWidth });

View file

@ -47,6 +47,10 @@ var ORB_SHIFT = { x: 0, y: -1.4, z: -0.8};
var HELMET_ATTACHMENT_URL = HIFI_PUBLIC_BUCKET + "models/attachments/IronManMaskOnly.fbx"
var LOBBY_PANEL_WALL_URL = HIFI_PUBLIC_BUCKET + "models/sets/Lobby/PanelWallForInterface.fbx";
var LOBBY_BLANK_PANEL_TEXTURE_URL = HIFI_PUBLIC_BUCKET + "models/sets/Lobby/Texture.jpg";
var LOBBY_SHELL_URL = HIFI_PUBLIC_BUCKET + "models/sets/Lobby/LobbyShellForInterface.fbx";
var droneSound = SoundCache.getSound(HIFI_PUBLIC_BUCKET + "sounds/Lobby/drone.stereo.raw")
var currentDrone = null;
@ -62,6 +66,21 @@ function textOverlayPosition() {
Vec3.multiply(Quat.getUp(Camera.orientation), TEXT_DISTANCE_DOWN));
}
var panelLocationOrder = [
7, 8, 9, 10, 11, 12, 13,
0, 1, 2, 3, 4, 5, 6,
14, 15, 16, 17, 18, 19, 20
];
// Location index is 0-based
function locationIndexToPanelIndex(locationIndex) {
return panelLocationOrder.indexOf(locationIndex) + 1;
}
// Panel index is 1-based
function panelIndexToLocationIndex(panelIndex) {
return panelLocationOrder[panelIndex - 1];
}
var MAX_NUM_PANELS = 21;
var DRONE_VOLUME = 0.3;
@ -76,14 +95,14 @@ function drawLobby() {
var orbPosition = Vec3.sum(Camera.position, Vec3.multiplyQbyV(towardsMe, ORB_SHIFT));
var panelWallProps = {
url: HIFI_PUBLIC_BUCKET + "models/sets/Lobby/Lobby_v8/forStephen1/PanelWall2.fbx",
url: LOBBY_PANEL_WALL_URL,
position: Vec3.sum(orbPosition, Vec3.multiplyQbyV(towardsMe, panelsCenterShift)),
rotation: towardsMe,
dimensions: panelsDimensions
};
var orbShellProps = {
url: HIFI_PUBLIC_BUCKET + "models/sets/Lobby/Lobby_v8/forStephen1/LobbyShell1.4_LightTag.fbx",
url: LOBBY_SHELL_URL,
position: orbPosition,
rotation: towardsMe,
dimensions: orbDimensions,
@ -143,7 +162,9 @@ function changeLobbyTextures() {
};
for (var j = 0; j < NUM_PANELS; j++) {
textureProp["textures"]["file" + (j + 1)] = "http:" + locations[j].thumbnail_url
var panelIndex = locationIndexToPanelIndex(j);
textureProp["textures"]["file" + panelIndex] = HIFI_PUBLIC_BUCKET + "images/locations/"
+ locations[j].id + "/hifi-location-" + locations[j].id + "_640x360.jpg";
};
Overlays.editOverlay(panelWall, textureProp);
@ -193,7 +214,7 @@ function cleanupLobby() {
panelTexturesReset["textures"] = {};
for (var j = 0; j < MAX_NUM_PANELS; j++) {
panelTexturesReset["textures"]["file" + (j + 1)] = HIFI_PUBLIC_BUCKET + "models/sets/Lobby/LobbyPrototype/Texture.jpg";
panelTexturesReset["textures"]["file" + (j + 1)] = LOBBY_BLANK_PANEL_TEXTURE_URL;
};
Overlays.editOverlay(panelWall, panelTexturesReset);
@ -228,12 +249,13 @@ function actionStartEvent(event) {
var panelStringIndex = panelName.indexOf("Panel");
if (panelStringIndex != -1) {
var panelIndex = parseInt(panelName.slice(5)) - 1;
if (panelIndex < locations.length) {
var actionLocation = locations[panelIndex];
var panelIndex = parseInt(panelName.slice(5));
var locationIndex = panelIndexToLocationIndex(panelIndex);
if (locationIndex < locations.length) {
var actionLocation = locations[locationIndex];
print("Jumping to " + actionLocation.name + " at " + actionLocation.path
+ " in " + actionLocation.domain.name + " after click on panel " + panelIndex);
+ " in " + actionLocation.domain.name + " after click on panel " + panelIndex + " with location index " + locationIndex);
Window.location = actionLocation;
maybeCleanupLobby();
@ -277,9 +299,10 @@ function handleLookAt(pickRay) {
var panelName = result.extraInfo;
var panelStringIndex = panelName.indexOf("Panel");
if (panelStringIndex != -1) {
var panelIndex = parseInt(panelName.slice(5)) - 1;
if (panelIndex < locations.length) {
var actionLocation = locations[panelIndex];
var panelIndex = parseInt(panelName.slice(5));
var locationIndex = panelIndexToLocationIndex(panelIndex);
if (locationIndex < locations.length) {
var actionLocation = locations[locationIndex];
if (actionLocation.description == "") {
Overlays.editOverlay(descriptionText, { text: actionLocation.name, visible: showText });
@ -300,7 +323,7 @@ function handleLookAt(pickRay) {
} else {
currentTestLine = allWords[currentTestWord];
}
var lineLength = Overlays.textWidth(descriptionText, currentTestLine);
var lineLength = Overlays.textSize(descriptionText, currentTestLine).width;
if (lineLength < textWidth || wordsOnLine == 0) {
wordsFormated++;
currentTestWord++;

View file

@ -86,6 +86,7 @@ ChessGame.Board = (function(position, scale) {
modelURL: ChessGame.BOARD.modelURL,
position: this.position,
dimensions: this.dimensions,
rotation: ChessGame.BOARD.rotation,
userData: this.buildUserDataString()
}
this.entity = null;

View file

@ -80,7 +80,7 @@ function updateTextOverlay() {
var textLines = textText.split("\n");
var maxLineWidth = 0;
for (textLine in textLines) {
var lineWidth = Overlays.textWidth(text, textLines[textLine]);
var lineWidth = Overlays.textSize(text, textLines[textLine]).width;
if (lineWidth > maxLineWidth) {
maxLineWidth = lineWidth;
}
@ -92,7 +92,7 @@ function updateTextOverlay() {
Overlays.editOverlay(text, {text: textText, font: {size: textFontSize}, topMargin: topMargin});
var maxLineWidth = 0;
for (textLine in textLines) {
var lineWidth = Overlays.textWidth(text, textLines[textLine]);
var lineWidth = Overlays.textSize(text, textLines[textLine]).width;
if (lineWidth > maxLineWidth) {
maxLineWidth = lineWidth;
}
@ -122,18 +122,18 @@ keyboard.onKeyRelease = function(event) {
var textLines = textText.split("\n");
var maxLineWidth = 0;
for (textLine in textLines) {
var lineWidth = Overlays.textWidth(textSizeMeasureOverlay, textLines[textLine]);
var lineWidth = Overlays.textSize(textSizeMeasureOverlay, textLines[textLine]).width;
if (lineWidth > maxLineWidth) {
maxLineWidth = lineWidth;
}
}
var usernameLine = "--" + GlobalServices.myUsername;
var usernameWidth = Overlays.textWidth(textSizeMeasureOverlay, usernameLine);
var usernameWidth = Overlays.textSize(textSizeMeasureOverlay, usernameLine).width;
if (maxLineWidth < usernameWidth) {
maxLineWidth = usernameWidth;
} else {
var spaceableWidth = maxLineWidth - usernameWidth;
var spaceWidth = Overlays.textWidth(textSizeMeasureOverlay, " ");
var spaceWidth = Overlays.textSize(textSizeMeasureOverlay, " ").width;
var numberOfSpaces = Math.floor(spaceableWidth / spaceWidth);
for (var i = 0; i < numberOfSpaces; i++) {
usernameLine = " " + usernameLine;

View file

@ -1,21 +0,0 @@
#version 120
//
// passthrough.vert
// vertex shader
//
// Copyright 2013 High Fidelity, Inc.
//
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
attribute float voxelSizeIn;
varying float voxelSize;
void main(void) {
gl_FrontColor = gl_Color;
gl_Position = gl_Vertex; // don't call ftransform(), because we do projection in geometry shader
voxelSize = voxelSizeIn;
}

View file

@ -1,174 +0,0 @@
#version 120
//
// point_size.vert
// vertex shader
//
// Copyright 2013 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
attribute float voxelSizeIn;
varying float voxelSize;
uniform float viewportWidth;
uniform float viewportHeight;
uniform vec3 cameraPosition;
// Bit codes for faces
const int NONE = 0;
const int RIGHT = 1;
const int LEFT = 2;
const int BOTTOM = 4;
const int BOTTOM_RIGHT = BOTTOM + RIGHT;
const int BOTTOM_LEFT = BOTTOM + LEFT;
const int TOP = 8;
const int TOP_RIGHT = TOP + RIGHT;
const int TOP_LEFT = TOP + LEFT;
const int NEAR = 16;
const int NEAR_RIGHT = NEAR + RIGHT;
const int NEAR_LEFT = NEAR + LEFT;
const int NEAR_BOTTOM = NEAR + BOTTOM;
const int NEAR_BOTTOM_RIGHT = NEAR + BOTTOM + RIGHT;
const int NEAR_BOTTOM_LEFT = NEAR + BOTTOM + LEFT;
const int NEAR_TOP = NEAR + TOP;
const int NEAR_TOP_RIGHT = NEAR + TOP + RIGHT;
const int NEAR_TOP_LEFT = NEAR + TOP + LEFT;
const int FAR = 32;
const int FAR_RIGHT = FAR + RIGHT;
const int FAR_LEFT = FAR + LEFT;
const int FAR_BOTTOM = FAR + BOTTOM;
const int FAR_BOTTOM_RIGHT = FAR + BOTTOM + RIGHT;
const int FAR_BOTTOM_LEFT = FAR + BOTTOM + LEFT;
const int FAR_TOP = FAR + TOP;
const int FAR_TOP_RIGHT = FAR + TOP + RIGHT;
const int FAR_TOP_LEFT = FAR + TOP + LEFT;
// If we know the position of the camera relative to the voxel, we can a priori know the vertices that make the visible hull
// polygon. This also tells us which two vertices are known to make the longest possible distance between any pair of these
// vertices for the projected polygon. This is a visibleFaces table based on this knowledge.
void main(void) {
// Note: the gl_Vertex in this case are in "world coordinates" meaning they've already been scaled to TREE_SCALE
// this is also true for voxelSizeIn.
vec4 bottomNearRight = gl_Vertex;
vec4 topFarLeft = (gl_Vertex + vec4(voxelSizeIn, voxelSizeIn, voxelSizeIn, 0.0));
int visibleFaces = NONE;
// In order to use our visibleFaces "table" (implemented as if statements) below, we need to encode the 6-bit code to
// orient camera relative to the 6 defining faces of the voxel. Based on camera position relative to the bottomNearRight
// corner and the topFarLeft corner, we can calculate which hull and therefore which two vertices are furthest apart
// linearly once projected
if (cameraPosition.x < bottomNearRight.x) {
visibleFaces += RIGHT;
}
if (cameraPosition.x > topFarLeft.x) {
visibleFaces += LEFT;
}
if (cameraPosition.y < bottomNearRight.y) {
visibleFaces += BOTTOM;
}
if (cameraPosition.y > topFarLeft.y) {
visibleFaces += TOP;
}
if (cameraPosition.z < bottomNearRight.z) {
visibleFaces += NEAR;
}
if (cameraPosition.z > topFarLeft.z) {
visibleFaces += FAR;
}
vec4 cornerAdjustOne;
vec4 cornerAdjustTwo;
if (visibleFaces == RIGHT) {
cornerAdjustOne = vec4(0,0,0,0) * voxelSizeIn;
cornerAdjustTwo = vec4(0,1,1,0) * voxelSizeIn;
} else if (visibleFaces == LEFT) {
cornerAdjustOne = vec4(1,0,0,0) * voxelSizeIn;
cornerAdjustTwo = vec4(1,1,1,0) * voxelSizeIn;
} else if (visibleFaces == BOTTOM) {
cornerAdjustOne = vec4(0,0,0,0) * voxelSizeIn;
cornerAdjustTwo = vec4(1,0,1,0) * voxelSizeIn;
} else if (visibleFaces == TOP) {
cornerAdjustOne = vec4(0,1,0,0) * voxelSizeIn;
cornerAdjustTwo = vec4(1,1,1,0) * voxelSizeIn;
} else if (visibleFaces == NEAR) {
cornerAdjustOne = vec4(0,0,0,0) * voxelSizeIn;
cornerAdjustTwo = vec4(1,1,0,0) * voxelSizeIn;
} else if (visibleFaces == FAR) {
cornerAdjustOne = vec4(0,0,1,0) * voxelSizeIn;
cornerAdjustTwo = vec4(1,1,1,0) * voxelSizeIn;
} else if (visibleFaces == NEAR_BOTTOM_LEFT ||
visibleFaces == FAR_TOP ||
visibleFaces == FAR_TOP_RIGHT) {
cornerAdjustOne = vec4(0,1,0,0) * voxelSizeIn;
cornerAdjustTwo = vec4(1,0,1,0) * voxelSizeIn;
} else if (visibleFaces == FAR_TOP_LEFT ||
visibleFaces == NEAR_RIGHT ||
visibleFaces == NEAR_BOTTOM ||
visibleFaces == NEAR_BOTTOM_RIGHT) {
cornerAdjustOne = vec4(0,0,1,0) * voxelSizeIn;
cornerAdjustTwo = vec4(1,1,0,0) * voxelSizeIn;
} else if (visibleFaces == NEAR_TOP_RIGHT ||
visibleFaces == FAR_LEFT ||
visibleFaces == FAR_BOTTOM_LEFT ||
visibleFaces == BOTTOM_RIGHT ||
visibleFaces == TOP_LEFT) {
cornerAdjustOne = vec4(1,0,0,0) * voxelSizeIn;
cornerAdjustTwo = vec4(0,1,1,0) * voxelSizeIn;
// Everything else...
//} else if (visibleFaces == BOTTOM_LEFT ||
// visibleFaces == TOP_RIGHT ||
// visibleFaces == NEAR_LEFT ||
// visibleFaces == FAR_RIGHT ||
// visibleFaces == NEAR_TOP ||
// visibleFaces == NEAR_TOP_LEFT ||
// visibleFaces == FAR_BOTTOM ||
// visibleFaces == FAR_BOTTOM_RIGHT) {
} else {
cornerAdjustOne = vec4(0,0,0,0) * voxelSizeIn;
cornerAdjustTwo = vec4(1,1,1,0) * voxelSizeIn;
}
// Determine our corners
vec4 cornerOne = gl_Vertex + cornerAdjustOne;
vec4 cornerTwo = gl_Vertex + cornerAdjustTwo;
// Find their model view projections
vec4 cornerOneMVP = gl_ModelViewProjectionMatrix * cornerOne;
vec4 cornerTwoMVP = gl_ModelViewProjectionMatrix * cornerTwo;
// Map to x, y screen coordinates
vec2 cornerOneScreen = vec2(cornerOneMVP.x / cornerOneMVP.w, cornerOneMVP.y / cornerOneMVP.w);
if (cornerOneMVP.w < 0) {
cornerOneScreen.x = -cornerOneScreen.x;
cornerOneScreen.y = -cornerOneScreen.y;
}
vec2 cornerTwoScreen = vec2(cornerTwoMVP.x / cornerTwoMVP.w, cornerTwoMVP.y / cornerTwoMVP.w);
if (cornerTwoMVP.w < 0) {
cornerTwoScreen.x = -cornerTwoScreen.x;
cornerTwoScreen.y = -cornerTwoScreen.y;
}
// Find the distance between them in pixels
float voxelScreenWidth = abs(cornerOneScreen.x - cornerTwoScreen.x) * viewportWidth / 2.0;
float voxelScreenHeight = abs(cornerOneScreen.y - cornerTwoScreen.y) * viewportHeight / 2.0;
float voxelScreenLength = sqrt(voxelScreenHeight * voxelScreenHeight + voxelScreenWidth * voxelScreenWidth);
// Find the center of the voxel
vec4 centerVertex = gl_Vertex;
float halfSizeIn = voxelSizeIn / 2;
centerVertex += vec4(halfSizeIn, halfSizeIn, halfSizeIn, 0.0);
vec4 center = gl_ModelViewProjectionMatrix * centerVertex;
// Finally place the point at the center of the voxel, with a size equal to the maximum screen length
gl_Position = center;
gl_PointSize = voxelScreenLength;
gl_FrontColor = gl_Color;
}

View file

@ -1,87 +0,0 @@
#version 120
#extension GL_ARB_geometry_shader4 : enable
//
// voxel.geom
// geometry shader
//
// Copyright 2013 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
//
// VOXEL GEOMETRY SHADER
//
// Input: gl_VerticesIn/gl_PositionIn
// GL_POINTS
// Assumes vertex shader has not transformed coordinates
// Each gl_PositionIn is the corner of voxel
// varying voxelSize - which is the voxel size
//
// Note: In vertex shader doesn't do any transform. Therefore passing the 3D world coordinates xyz to us
//
// Output: GL_TRIANGLE_STRIP
//
// Issues:
// how do we need to handle lighting of these colors??
// how do we handle normals?
// check for size=0 and don't output the primitive
//
varying in float voxelSize[1];
const int VERTICES_PER_FACE = 4;
const int COORD_PER_VERTEX = 3;
const int COORD_PER_FACE = COORD_PER_VERTEX * VERTICES_PER_FACE;
void faceOfVoxel(vec4 corner, float scale, float[COORD_PER_FACE] facePoints, vec4 color, vec4 normal) {
for (int v = 0; v < VERTICES_PER_FACE; v++ ) {
vec4 vertex = corner;
for (int c = 0; c < COORD_PER_VERTEX; c++ ) {
int cIndex = c + (v * COORD_PER_VERTEX);
vertex[c] += (facePoints[cIndex] * scale);
}
gl_FrontColor = color * (gl_LightModel.ambient + gl_LightSource[0].ambient +
gl_LightSource[0].diffuse * max(0.0, dot(normal, gl_LightSource[0].position)));
gl_Position = gl_ModelViewProjectionMatrix * vertex;
EmitVertex();
}
EndPrimitive();
}
void main() {
//increment variable
int i;
vec4 corner;
float scale;
float bottomFace[COORD_PER_FACE] = float[COORD_PER_FACE]( 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1 );
float topFace[COORD_PER_FACE] = float[COORD_PER_FACE]( 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1 );
float rightFace[COORD_PER_FACE] = float[COORD_PER_FACE]( 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1 );
float leftFace[COORD_PER_FACE] = float[COORD_PER_FACE]( 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1 );
float frontFace[COORD_PER_FACE] = float[COORD_PER_FACE]( 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0 );
float backFace[COORD_PER_FACE] = float[COORD_PER_FACE]( 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1 );
vec4 bottomNormal = vec4(0.0, -1, 0.0, 0.0);
vec4 topNormal = vec4(0.0, 1, 0.0, 0.0);
vec4 rightNormal = vec4( -1, 0.0, 0.0, 0.0);
vec4 leftNormal = vec4( 1, 0.0, 0.0, 0.0);
vec4 frontNormal = vec4(0.0, 0.0, -1, 0.0);
vec4 backNormal = vec4(0.0, 0.0, 1, 0.0);
for(i = 0; i < gl_VerticesIn; i++) {
corner = gl_PositionIn[i];
scale = voxelSize[i];
faceOfVoxel(corner, scale, bottomFace, gl_FrontColorIn[i], bottomNormal);
faceOfVoxel(corner, scale, topFace, gl_FrontColorIn[i], topNormal );
faceOfVoxel(corner, scale, rightFace, gl_FrontColorIn[i], rightNormal );
faceOfVoxel(corner, scale, leftFace, gl_FrontColorIn[i], leftNormal );
faceOfVoxel(corner, scale, frontFace, gl_FrontColorIn[i], frontNormal );
faceOfVoxel(corner, scale, backFace, gl_FrontColorIn[i], backNormal );
}
}

View file

@ -37,6 +37,7 @@
#include <QOpenGLFramebufferObject>
#include <QObject>
#include <QWheelEvent>
#include <QScreen>
#include <QSettings>
#include <QShortcut>
#include <QTimer>
@ -141,6 +142,7 @@ Application::Application(int& argc, char** argv, QElapsedTimer &startup_time) :
QApplication(argc, argv),
_window(new MainWindow(desktop())),
_glWidget(new GLCanvas()),
_toolWindow(NULL),
_nodeThread(new QThread(this)),
_datagramProcessor(),
_undoStack(),
@ -415,9 +417,6 @@ Application::Application(int& argc, char** argv, QElapsedTimer &startup_time) :
_previousScriptLocation = _settings->value("LastScriptLocation", QVariant("")).toString();
}
connect(_window, &MainWindow::windowGeometryChanged,
_runningScriptsWidget, &RunningScriptsWidget::setBoundary);
_trayIcon->show();
// set the local loopback interface for local sounds from audio scripts
@ -1917,8 +1916,6 @@ void Application::init() {
_deferredLightingEffect.init();
_glowEffect.init();
_ambientOcclusionEffect.init();
_voxelShader.init();
_pointShader.init();
// TODO: move _myAvatar out of Application. Move relevant code to MyAvataar or AvatarManager
_avatarManager.init();
@ -1989,8 +1986,6 @@ void Application::init() {
// Set up VoxelSystem after loading preferences so we can get the desired max voxel count
_voxels.setMaxVoxels(Menu::getInstance()->getMaxVoxels());
_voxels.setUseVoxelShader(false);
_voxels.setVoxelsAsPoints(false);
_voxels.setDisableFastVoxelPipeline(false);
_voxels.init();
@ -2034,17 +2029,6 @@ void Application::init() {
connect(_rearMirrorTools, SIGNAL(shrinkView()), SLOT(shrinkMirrorView()));
connect(_rearMirrorTools, SIGNAL(resetView()), SLOT(resetSensors()));
// set up our audio reflector
_audioReflector.setMyAvatar(getAvatar());
_audioReflector.setVoxels(_voxels.getTree());
_audioReflector.setAudio(getAudio());
_audioReflector.setAvatarManager(&_avatarManager);
connect(getAudio(), &Audio::processInboundAudio, &_audioReflector, &AudioReflector::processInboundAudio,Qt::DirectConnection);
connect(getAudio(), &Audio::processLocalAudio, &_audioReflector, &AudioReflector::processLocalAudio,Qt::DirectConnection);
connect(getAudio(), &Audio::preProcessOriginalInboundAudio, &_audioReflector,
&AudioReflector::preProcessOriginalInboundAudio,Qt::DirectConnection);
connect(getAudio(), &Audio::muteToggled, AudioDeviceScriptingInterface::getInstance(),
&AudioDeviceScriptingInterface::muteToggled, Qt::DirectConnection);
@ -2297,13 +2281,14 @@ void Application::updateCursor(float deltaTime) {
PerformanceWarning warn(showWarnings, "Application::updateCursor()");
bool hideMouse = false;
bool underMouse = _glWidget->underMouse();
bool underMouse = QGuiApplication::topLevelAt(QCursor::pos()) ==
Application::getInstance()->getWindow()->windowHandle();
static const int HIDE_CURSOR_TIMEOUT = 3 * USECS_PER_SECOND; // 3 second
int elapsed = usecTimestampNow() - _lastMouseMove;
if ((elapsed > HIDE_CURSOR_TIMEOUT && underMouse) ||
if ((elapsed > HIDE_CURSOR_TIMEOUT) ||
(OculusManager::isConnected() && Menu::getInstance()->isOptionChecked(MenuOption::EnableVRMode))) {
hideMouse = true;
hideMouse = underMouse;
}
setCursorVisible(!hideMouse);
@ -2717,6 +2702,29 @@ bool Application::isHMDMode() const {
}
}
QRect Application::getDesirableApplicationGeometry() {
QRect applicationGeometry = getWindow()->geometry();
// If our parent window is on the HMD, then don't use it's geometry, instead use
// the "main screen" geometry.
HMDToolsDialog* hmdTools = Menu::getInstance()->getHMDToolsDialog();
if (hmdTools && hmdTools->hasHMDScreen()) {
QScreen* hmdScreen = hmdTools->getHMDScreen();
QWindow* appWindow = getWindow()->windowHandle();
QScreen* appScreen = appWindow->screen();
// if our app's screen is the hmd screen, we don't want to place the
// running scripts widget on it. So we need to pick a better screen.
// we will use the screen for the HMDTools since it's a guarenteed
// better screen.
if (appScreen == hmdScreen) {
QScreen* betterScreen = hmdTools->windowHandle()->screen();
applicationGeometry = betterScreen->geometry();
}
}
return applicationGeometry;
}
/////////////////////////////////////////////////////////////////////////////////////
// loadViewFrustum()
//
@ -3064,12 +3072,6 @@ void Application::displaySide(Camera& whichCamera, bool selfAvatarOnly, RenderAr
glColor3f(1,0,0);
_geometryCache.renderSphere(originSphereRadius, 15, 15);
// draw the audio reflector overlay
{
PerformanceTimer perfTimer("audio");
_audioReflector.render();
}
// Draw voxels
if (Menu::getInstance()->isOptionChecked(MenuOption::Voxels)) {
PerformanceTimer perfTimer("voxels");
@ -3997,7 +3999,6 @@ void Application::registerScriptEngineWithApplicationServices(ScriptEngine* scri
scriptEngine->registerGlobalObject("AudioDevice", AudioDeviceScriptingInterface::getInstance());
scriptEngine->registerGlobalObject("AnimationCache", &_animationCache);
scriptEngine->registerGlobalObject("SoundCache", &SoundCache::getInstance());
scriptEngine->registerGlobalObject("AudioReflector", &_audioReflector);
scriptEngine->registerGlobalObject("Account", AccountScriptingInterface::getInstance());
scriptEngine->registerGlobalObject("Metavoxels", &_metavoxels);

View file

@ -42,7 +42,6 @@
#include "MainWindow.h"
#include "Audio.h"
#include "AudioReflector.h"
#include "Camera.h"
#include "DatagramProcessor.h"
#include "Environment.h"
@ -65,9 +64,7 @@
#include "renderer/DeferredLightingEffect.h"
#include "renderer/GeometryCache.h"
#include "renderer/GlowEffect.h"
#include "renderer/PointShader.h"
#include "renderer/TextureCache.h"
#include "renderer/VoxelShader.h"
#include "scripting/ControllerScriptingInterface.h"
#include "ui/BandwidthDialog.h"
#include "ui/BandwidthMeter.h"
@ -193,7 +190,6 @@ public:
bool isThrottleRendering() const { return _glWidget->isThrottleRendering(); }
MyAvatar* getAvatar() { return _myAvatar; }
Audio* getAudio() { return &_audio; }
const AudioReflector* getAudioReflector() const { return &_audioReflector; }
Camera* getCamera() { return &_myCamera; }
ViewFrustum* getViewFrustum() { return &_viewFrustum; }
ViewFrustum* getDisplayViewFrustum() { return &_displayViewFrustum; }
@ -297,8 +293,6 @@ public:
NodeBounds& getNodeBoundsDisplay() { return _nodeBoundsDisplay; }
VoxelShader& getVoxelShader() { return _voxelShader; }
PointShader& getPointShader() { return _pointShader; }
FileLogger* getLogger() { return _logger; }
glm::vec2 getViewportDimensions() const { return glm::vec2(_glWidget->getDeviceWidth(), _glWidget->getDeviceHeight()); }
@ -327,6 +321,9 @@ public:
// rendering of several elements depend on that
// TODO: carry that information on the Camera as a setting
bool isHMDMode() const;
QRect getDesirableApplicationGeometry();
RunningScriptsWidget* getRunningScriptsWidget() { return _runningScriptsWidget; }
signals:
@ -588,8 +585,6 @@ private:
DeferredLightingEffect _deferredLightingEffect;
GlowEffect _glowEffect;
AmbientOcclusionEffect _ambientOcclusionEffect;
VoxelShader _voxelShader;
PointShader _pointShader;
Audio _audio;
@ -635,7 +630,6 @@ private:
Overlays _overlays;
ApplicationOverlay _applicationOverlay;
AudioReflector _audioReflector;
RunningScriptsWidget* _runningScriptsWidget;
QHash<QString, ScriptEngine*> _scriptEnginesHash;
bool _runningScriptsWidgetWasVisible;

View file

@ -103,10 +103,6 @@ Audio::Audio(QObject* parent) :
_gverb(NULL),
_iconColor(1.0f),
_iconPulseTimeReference(usecTimestampNow()),
_processSpatialAudio(false),
_spatialAudioStart(0),
_spatialAudioFinish(0),
_spatialAudioRingBuffer(NETWORK_BUFFER_LENGTH_SAMPLES_STEREO, true), // random access mode
_scopeEnabled(false),
_scopeEnabledPause(false),
_scopeInputOffset(0),
@ -838,13 +834,6 @@ void Audio::handleAudioInput() {
_lastInputLoudness = 0;
}
// at this point we have clean monoAudioSamples, which match our target output...
// this is what we should send to our interested listeners
if (_processSpatialAudio && !_muted && !_isStereoInput && _audioOutput) {
QByteArray monoInputData((char*)networkAudioSamples, NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL * sizeof(int16_t));
emit processLocalAudio(_spatialAudioStart, monoInputData, _desiredInputFormat);
}
if (!_isStereoInput && _proceduralAudioOutput) {
processProceduralAudio(networkAudioSamples, NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL);
}
@ -984,35 +973,11 @@ void Audio::processReceivedSamples(const QByteArray& inputBuffer, QByteArray& ou
outputBuffer.resize(numDeviceOutputSamples * sizeof(int16_t));
const int16_t* receivedSamples;
if (_processSpatialAudio) {
unsigned int sampleTime = _spatialAudioStart;
QByteArray buffer = inputBuffer;
// copy the samples we'll resample from the ring buffer - this also
// pushes the read pointer of the ring buffer forwards
//receivedAudioStreamPopOutput.readSamples(receivedSamples, numNetworkOutputSamples);
// Accumulate direct transmission of audio from sender to receiver
bool includeOriginal = true; // Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingIncludeOriginal)
if (includeOriginal) {
emit preProcessOriginalInboundAudio(sampleTime, buffer, _desiredOutputFormat);
addSpatialAudioToBuffer(sampleTime, buffer, numNetworkOutputSamples);
}
// Send audio off for spatial processing
emit processInboundAudio(sampleTime, buffer, _desiredOutputFormat);
// copy the samples we'll resample from the spatial audio ring buffer - this also
// pushes the read pointer of the spatial audio ring buffer forwards
_spatialAudioRingBuffer.readSamples(_outputProcessingBuffer, numNetworkOutputSamples);
// Advance the start point for the next packet of audio to arrive
_spatialAudioStart += numNetworkOutputSamples / _desiredOutputFormat.channelCount();
receivedSamples = _outputProcessingBuffer;
} else {
// copy the samples we'll resample from the ring buffer - this also
// pushes the read pointer of the ring buffer forwards
//receivedAudioStreamPopOutput.readSamples(receivedSamples, numNetworkOutputSamples);
receivedSamples = reinterpret_cast<const int16_t*>(inputBuffer.data());
}
receivedSamples = reinterpret_cast<const int16_t*>(inputBuffer.data());
// copy the packet from the RB to the output
linearResampling(receivedSamples,
@ -1123,68 +1088,7 @@ void Audio::sendDownstreamAudioStatsPacket() {
nodeList->writeDatagram(packet, dataAt - packet, audioMixer);
}
// NOTE: numSamples is the total number of single channel samples, since callers will always call this with stereo
// data we know that we will have 2x samples for each stereo time sample at the format's sample rate
void Audio::addSpatialAudioToBuffer(unsigned int sampleTime, const QByteArray& spatialAudio, unsigned int numSamples) {
// Calculate the number of remaining samples available. The source spatial audio buffer will get
// clipped if there are insufficient samples available in the accumulation buffer.
unsigned int remaining = _spatialAudioRingBuffer.getSampleCapacity() - _spatialAudioRingBuffer.samplesAvailable();
// Locate where in the accumulation buffer the new samples need to go
if (sampleTime >= _spatialAudioFinish) {
if (_spatialAudioStart == _spatialAudioFinish) {
// Nothing in the spatial audio ring buffer yet, Just do a straight copy, clipping if necessary
unsigned int sampleCount = (remaining < numSamples) ? remaining : numSamples;
if (sampleCount) {
_spatialAudioRingBuffer.writeSamples((int16_t*)spatialAudio.data(), sampleCount);
}
_spatialAudioFinish = _spatialAudioStart + sampleCount / _desiredOutputFormat.channelCount();
} else {
// Spatial audio ring buffer already has data, but there is no overlap with the new sample.
// Compute the appropriate time delay and pad with silence until the new start time.
unsigned int delay = sampleTime - _spatialAudioFinish;
unsigned int delayCount = delay * _desiredOutputFormat.channelCount();
unsigned int silentCount = (remaining < delayCount) ? remaining : delayCount;
if (silentCount) {
_spatialAudioRingBuffer.addSilentSamples(silentCount);
}
// Recalculate the number of remaining samples
remaining -= silentCount;
unsigned int sampleCount = (remaining < numSamples) ? remaining : numSamples;
// Copy the new spatial audio to the accumulation ring buffer
if (sampleCount) {
_spatialAudioRingBuffer.writeSamples((int16_t*)spatialAudio.data(), sampleCount);
}
_spatialAudioFinish += (sampleCount + silentCount) / _desiredOutputFormat.channelCount();
}
} else {
// There is overlap between the spatial audio buffer and the new sample, mix the overlap
// Calculate the offset from the buffer's current read position, which should be located at _spatialAudioStart
unsigned int offset = (sampleTime - _spatialAudioStart) * _desiredOutputFormat.channelCount();
unsigned int mixedSamplesCount = (_spatialAudioFinish - sampleTime) * _desiredOutputFormat.channelCount();
mixedSamplesCount = (mixedSamplesCount < numSamples) ? mixedSamplesCount : numSamples;
const int16_t* spatial = reinterpret_cast<const int16_t*>(spatialAudio.data());
for (unsigned int i = 0; i < mixedSamplesCount; i++) {
int existingSample = _spatialAudioRingBuffer[i + offset];
int newSample = spatial[i];
int sumOfSamples = existingSample + newSample;
_spatialAudioRingBuffer[i + offset] = static_cast<int16_t>(glm::clamp<int>(sumOfSamples,
std::numeric_limits<short>::min(), std::numeric_limits<short>::max()));
}
// Copy the remaining unoverlapped spatial audio to the spatial audio buffer, if any
unsigned int nonMixedSampleCount = numSamples - mixedSamplesCount;
nonMixedSampleCount = (remaining < nonMixedSampleCount) ? remaining : nonMixedSampleCount;
if (nonMixedSampleCount) {
_spatialAudioRingBuffer.writeSamples((int16_t*)spatialAudio.data() + mixedSamplesCount, nonMixedSampleCount);
// Extend the finish time by the amount of unoverlapped samples
_spatialAudioFinish += nonMixedSampleCount / _desiredOutputFormat.channelCount();
}
}
}
bool Audio::mousePressEvent(int x, int y) {
if (_iconBounds.contains(x, y)) {
@ -1264,16 +1168,6 @@ void Audio::selectAudioSourceSine440() {
_noiseSourceEnabled = !_toneSourceEnabled;
}
void Audio::toggleAudioSpatialProcessing() {
// spatial audio disabled for now
_processSpatialAudio = false; //!_processSpatialAudio;
if (_processSpatialAudio) {
_spatialAudioStart = 0;
_spatialAudioFinish = 0;
_spatialAudioRingBuffer.reset();
}
}
// Take a pointer to the acquired microphone input samples and add procedural sounds
void Audio::addProceduralSounds(int16_t* monoInput, int numSamples) {
float sample;
@ -1995,11 +1889,6 @@ bool Audio::switchOutputToAudioDevice(const QAudioDeviceInfo& outputDeviceInfo)
_timeSinceLastReceived.start();
// setup spatial audio ringbuffer
int numFrameSamples = _outputFormat.sampleRate() * _desiredOutputFormat.channelCount();
_spatialAudioRingBuffer.resizeForFrameSize(numFrameSamples);
_spatialAudioStart = _spatialAudioFinish = 0;
supportedFormat = true;
}
}

View file

@ -115,8 +115,6 @@ public:
int getNetworkSampleRate() { return SAMPLE_RATE; }
int getNetworkBufferLengthSamplesPerChannel() { return NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL; }
bool getProcessSpatialAudio() const { return _processSpatialAudio; }
float getInputRingBufferMsecsAvailable() const;
float getInputRingBufferAverageMsecsAvailable() const { return (float)_inputRingBufferMsecsAvailableStats.getWindowAverage(); }
@ -131,7 +129,6 @@ public slots:
void addReceivedAudioToStream(const QByteArray& audioByteArray);
void parseAudioStreamStatsPacket(const QByteArray& packet);
void parseAudioEnvironmentData(const QByteArray& packet);
void addSpatialAudioToBuffer(unsigned int sampleTime, const QByteArray& spatialAudio, unsigned int numSamples);
void handleAudioInput();
void reset();
void resetStats();
@ -145,7 +142,6 @@ public slots:
void toggleScopePause();
void toggleStats();
void toggleStatsShowInjectedStreams();
void toggleAudioSpatialProcessing();
void toggleStereoInput();
void selectAudioScopeFiveFrames();
void selectAudioScopeTwentyFrames();
@ -254,11 +250,6 @@ private:
float _iconColor;
qint64 _iconPulseTimeReference;
bool _processSpatialAudio; /// Process received audio by spatial audio hooks
unsigned int _spatialAudioStart; /// Start of spatial audio interval (in sample rate time base)
unsigned int _spatialAudioFinish; /// End of spatial audio interval (in sample rate time base)
AudioRingBuffer _spatialAudioRingBuffer; /// Spatially processed audio
// Process procedural audio by
// 1. Echo to the local procedural output device
// 2. Mix with the audio input

View file

@ -1,868 +0,0 @@
//
// AudioReflector.cpp
// interface
//
// Created by Brad Hefta-Gaub on 4/2/2014
// Copyright (c) 2014 High Fidelity, Inc. All rights reserved.
//
#include <QMutexLocker>
#include "AudioReflector.h"
#include "Menu.h"
const float DEFAULT_PRE_DELAY = 20.0f; // this delay in msecs will always be added to all reflections
const float DEFAULT_MS_DELAY_PER_METER = 3.0f;
const float MINIMUM_ATTENUATION_TO_REFLECT = 1.0f / 256.0f;
const float DEFAULT_DISTANCE_SCALING_FACTOR = 2.0f;
const float MAXIMUM_DELAY_MS = 1000.0 * 20.0f; // stop reflecting after path is this long
const int DEFAULT_DIFFUSION_FANOUT = 5;
const unsigned int ABSOLUTE_MAXIMUM_BOUNCE_COUNT = 10;
const float DEFAULT_LOCAL_ATTENUATION_FACTOR = 0.125;
const float DEFAULT_COMB_FILTER_WINDOW = 0.05f; //ms delay differential to avoid
const float SLIGHTLY_SHORT = 0.999f; // slightly inside the distance so we're on the inside of the reflection point
const float DEFAULT_ABSORPTION_RATIO = 0.125; // 12.5% is absorbed
const float DEFAULT_DIFFUSION_RATIO = 0.125; // 12.5% is diffused
const float DEFAULT_ORIGINAL_ATTENUATION = 1.0f;
const float DEFAULT_ECHO_ATTENUATION = 1.0f;
AudioReflector::AudioReflector(QObject* parent) :
QObject(parent),
_preDelay(DEFAULT_PRE_DELAY),
_soundMsPerMeter(DEFAULT_MS_DELAY_PER_METER),
_distanceAttenuationScalingFactor(DEFAULT_DISTANCE_SCALING_FACTOR),
_localAudioAttenuationFactor(DEFAULT_LOCAL_ATTENUATION_FACTOR),
_combFilterWindow(DEFAULT_COMB_FILTER_WINDOW),
_diffusionFanout(DEFAULT_DIFFUSION_FANOUT),
_absorptionRatio(DEFAULT_ABSORPTION_RATIO),
_diffusionRatio(DEFAULT_DIFFUSION_RATIO),
_originalSourceAttenuation(DEFAULT_ORIGINAL_ATTENUATION),
_allEchoesAttenuation(DEFAULT_ECHO_ATTENUATION),
_withDiffusion(false),
_lastPreDelay(DEFAULT_PRE_DELAY),
_lastSoundMsPerMeter(DEFAULT_MS_DELAY_PER_METER),
_lastDistanceAttenuationScalingFactor(DEFAULT_DISTANCE_SCALING_FACTOR),
_lastLocalAudioAttenuationFactor(DEFAULT_LOCAL_ATTENUATION_FACTOR),
_lastDiffusionFanout(DEFAULT_DIFFUSION_FANOUT),
_lastAbsorptionRatio(DEFAULT_ABSORPTION_RATIO),
_lastDiffusionRatio(DEFAULT_DIFFUSION_RATIO),
_lastDontDistanceAttenuate(false),
_lastAlternateDistanceAttenuate(false)
{
_reflections = 0;
_diffusionPathCount = 0;
_officialAverageAttenuation = _averageAttenuation = 0.0f;
_officialMaxAttenuation = _maxAttenuation = 0.0f;
_officialMinAttenuation = _minAttenuation = 0.0f;
_officialAverageDelay = _averageDelay = 0;
_officialMaxDelay = _maxDelay = 0;
_officialMinDelay = _minDelay = 0;
_inboundEchoesCount = 0;
_inboundEchoesSuppressedCount = 0;
_localEchoesCount = 0;
_localEchoesSuppressedCount = 0;
}
bool AudioReflector::haveAttributesChanged() {
// Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingWithDiffusions);
bool withDiffusion = true;
// Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingDontDistanceAttenuate);
bool dontDistanceAttenuate = false;
//Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingAlternateDistanceAttenuate);
bool alternateDistanceAttenuate = false;
bool attributesChange = (_withDiffusion != withDiffusion
|| _lastPreDelay != _preDelay
|| _lastSoundMsPerMeter != _soundMsPerMeter
|| _lastDistanceAttenuationScalingFactor != _distanceAttenuationScalingFactor
|| _lastDiffusionFanout != _diffusionFanout
|| _lastAbsorptionRatio != _absorptionRatio
|| _lastDiffusionRatio != _diffusionRatio
|| _lastDontDistanceAttenuate != dontDistanceAttenuate
|| _lastAlternateDistanceAttenuate != alternateDistanceAttenuate);
if (attributesChange) {
_withDiffusion = withDiffusion;
_lastPreDelay = _preDelay;
_lastSoundMsPerMeter = _soundMsPerMeter;
_lastDistanceAttenuationScalingFactor = _distanceAttenuationScalingFactor;
_lastDiffusionFanout = _diffusionFanout;
_lastAbsorptionRatio = _absorptionRatio;
_lastDiffusionRatio = _diffusionRatio;
_lastDontDistanceAttenuate = dontDistanceAttenuate;
_lastAlternateDistanceAttenuate = alternateDistanceAttenuate;
}
return attributesChange;
}
void AudioReflector::render() {
// if we're not set up yet, or we're not processing spatial audio, then exit early
if (!_myAvatar || !_audio->getProcessSpatialAudio()) {
return;
}
// use this oportunity to calculate our reflections
calculateAllReflections();
// only render if we've been asked to do so
bool renderPaths = false; // Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingRenderPaths)
if (renderPaths) {
drawRays();
}
}
// delay = 1ms per foot
// = 3ms per meter
float AudioReflector::getDelayFromDistance(float distance) {
float delay = (_soundMsPerMeter * distance);
bool includePreDelay = true; // Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingPreDelay)
if (includePreDelay) {
delay += _preDelay;
}
return delay;
}
// attenuation = from the Audio Mixer
float AudioReflector::getDistanceAttenuationCoefficient(float distance) {
//!Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingDontDistanceAttenuate);
bool doDistanceAttenuation = true;
//!Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingAlternateDistanceAttenuate);
bool originalFormula = true;
float distanceCoefficient = 1.0f;
if (doDistanceAttenuation) {
if (originalFormula) {
const float DISTANCE_SCALE = 2.5f;
const float GEOMETRIC_AMPLITUDE_SCALAR = 0.3f;
const float DISTANCE_LOG_BASE = 2.5f;
const float DISTANCE_SCALE_LOG = logf(DISTANCE_SCALE) / logf(DISTANCE_LOG_BASE);
float distanceSquareToSource = distance * distance;
// calculate the distance coefficient using the distance to this node
distanceCoefficient = powf(GEOMETRIC_AMPLITUDE_SCALAR,
DISTANCE_SCALE_LOG +
(0.5f * logf(distanceSquareToSource) / logf(DISTANCE_LOG_BASE)) - 1);
distanceCoefficient = std::min(1.0f, distanceCoefficient * getDistanceAttenuationScalingFactor());
} else {
// From Fred: If we wanted something that would produce a tail that could go up to 5 seconds in a
// really big room, that would suggest the sound still has to be in the audible after traveling about
// 1500 meters. If its a sound of average volume, we probably have about 30 db, or 5 base2 orders
// of magnitude we can drop down before the sound becomes inaudible. (Thats approximate headroom
// based on a few sloppy assumptions.) So we could try a factor like 1 / (2^(D/300)) for starters.
// 1 / (2^(D/300))
const float DISTANCE_BASE = 2.0f;
const float DISTANCE_DENOMINATOR = 300.0f;
const float DISTANCE_NUMERATOR = 300.0f;
distanceCoefficient = DISTANCE_NUMERATOR / powf(DISTANCE_BASE, (distance / DISTANCE_DENOMINATOR ));
distanceCoefficient = std::min(1.0f, distanceCoefficient * getDistanceAttenuationScalingFactor());
}
}
return distanceCoefficient;
}
glm::vec3 AudioReflector::getFaceNormal(BoxFace face) {
// Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingSlightlyRandomSurfaces);
bool wantSlightRandomness = true;
glm::vec3 faceNormal;
const float MIN_RANDOM_LENGTH = 0.99f;
const float MAX_RANDOM_LENGTH = 1.0f;
const float NON_RANDOM_LENGTH = 1.0f;
float normalLength = wantSlightRandomness ? randFloatInRange(MIN_RANDOM_LENGTH, MAX_RANDOM_LENGTH) : NON_RANDOM_LENGTH;
float remainder = (1.0f - normalLength)/2.0f;
float remainderSignA = randomSign();
float remainderSignB = randomSign();
if (face == MIN_X_FACE) {
faceNormal = glm::vec3(-normalLength, remainder * remainderSignA, remainder * remainderSignB);
} else if (face == MAX_X_FACE) {
faceNormal = glm::vec3(normalLength, remainder * remainderSignA, remainder * remainderSignB);
} else if (face == MIN_Y_FACE) {
faceNormal = glm::vec3(remainder * remainderSignA, -normalLength, remainder * remainderSignB);
} else if (face == MAX_Y_FACE) {
faceNormal = glm::vec3(remainder * remainderSignA, normalLength, remainder * remainderSignB);
} else if (face == MIN_Z_FACE) {
faceNormal = glm::vec3(remainder * remainderSignA, remainder * remainderSignB, -normalLength);
} else if (face == MAX_Z_FACE) {
faceNormal = glm::vec3(remainder * remainderSignA, remainder * remainderSignB, normalLength);
}
return faceNormal;
}
// set up our buffers for our attenuated and delayed samples
const int NUMBER_OF_CHANNELS = 2;
void AudioReflector::injectAudiblePoint(AudioSource source, const AudiblePoint& audiblePoint,
const QByteArray& samples, unsigned int sampleTime, int sampleRate) {
bool wantEarSeparation = true; // Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingSeparateEars);
bool wantStereo = true; // Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingStereoSource);
glm::vec3 rightEarPosition = wantEarSeparation ? _myAvatar->getHead()->getRightEarPosition() :
_myAvatar->getHead()->getPosition();
glm::vec3 leftEarPosition = wantEarSeparation ? _myAvatar->getHead()->getLeftEarPosition() :
_myAvatar->getHead()->getPosition();
int totalNumberOfSamples = samples.size() / sizeof(int16_t);
int totalNumberOfStereoSamples = samples.size() / (sizeof(int16_t) * NUMBER_OF_CHANNELS);
const int16_t* originalSamplesData = (const int16_t*)samples.constData();
QByteArray attenuatedLeftSamples;
QByteArray attenuatedRightSamples;
attenuatedLeftSamples.resize(samples.size());
attenuatedRightSamples.resize(samples.size());
int16_t* attenuatedLeftSamplesData = (int16_t*)attenuatedLeftSamples.data();
int16_t* attenuatedRightSamplesData = (int16_t*)attenuatedRightSamples.data();
// calculate the distance to the ears
float rightEarDistance = glm::distance(audiblePoint.location, rightEarPosition);
float leftEarDistance = glm::distance(audiblePoint.location, leftEarPosition);
float rightEarDelayMsecs = getDelayFromDistance(rightEarDistance) + audiblePoint.delay;
float leftEarDelayMsecs = getDelayFromDistance(leftEarDistance) + audiblePoint.delay;
float averageEarDelayMsecs = (leftEarDelayMsecs + rightEarDelayMsecs) / 2.0f;
bool safeToInject = true; // assume the best
// check to see if this new injection point would be within the comb filter
// suppression window for any of the existing known delays
QMap<float, float>& knownDelays = (source == INBOUND_AUDIO) ? _inboundAudioDelays : _localAudioDelays;
QMap<float, float>::const_iterator lowerBound = knownDelays.lowerBound(averageEarDelayMsecs - _combFilterWindow);
if (lowerBound != knownDelays.end()) {
float closestFound = lowerBound.value();
float deltaToClosest = (averageEarDelayMsecs - closestFound);
if (deltaToClosest > -_combFilterWindow && deltaToClosest < _combFilterWindow) {
safeToInject = false;
}
}
// keep track of any of our suppressed echoes so we can report them in our statistics
if (!safeToInject) {
QVector<float>& suppressedEchoes = (source == INBOUND_AUDIO) ? _inboundEchoesSuppressed : _localEchoesSuppressed;
suppressedEchoes << averageEarDelayMsecs;
} else {
knownDelays[averageEarDelayMsecs] = averageEarDelayMsecs;
_totalDelay += rightEarDelayMsecs + leftEarDelayMsecs;
_delayCount += 2;
_maxDelay = std::max(_maxDelay,rightEarDelayMsecs);
_maxDelay = std::max(_maxDelay,leftEarDelayMsecs);
_minDelay = std::min(_minDelay,rightEarDelayMsecs);
_minDelay = std::min(_minDelay,leftEarDelayMsecs);
int rightEarDelay = rightEarDelayMsecs * sampleRate / MSECS_PER_SECOND;
int leftEarDelay = leftEarDelayMsecs * sampleRate / MSECS_PER_SECOND;
float rightEarAttenuation = audiblePoint.attenuation *
getDistanceAttenuationCoefficient(rightEarDistance + audiblePoint.distance);
float leftEarAttenuation = audiblePoint.attenuation *
getDistanceAttenuationCoefficient(leftEarDistance + audiblePoint.distance);
_totalAttenuation += rightEarAttenuation + leftEarAttenuation;
_attenuationCount += 2;
_maxAttenuation = std::max(_maxAttenuation,rightEarAttenuation);
_maxAttenuation = std::max(_maxAttenuation,leftEarAttenuation);
_minAttenuation = std::min(_minAttenuation,rightEarAttenuation);
_minAttenuation = std::min(_minAttenuation,leftEarAttenuation);
// run through the samples, and attenuate them
for (int sample = 0; sample < totalNumberOfStereoSamples; sample++) {
int16_t leftSample = originalSamplesData[sample * NUMBER_OF_CHANNELS];
int16_t rightSample = leftSample;
if (wantStereo) {
rightSample = originalSamplesData[(sample * NUMBER_OF_CHANNELS) + 1];
}
attenuatedLeftSamplesData[sample * NUMBER_OF_CHANNELS] =
leftSample * leftEarAttenuation * _allEchoesAttenuation;
attenuatedLeftSamplesData[sample * NUMBER_OF_CHANNELS + 1] = 0;
attenuatedRightSamplesData[sample * NUMBER_OF_CHANNELS] = 0;
attenuatedRightSamplesData[sample * NUMBER_OF_CHANNELS + 1] =
rightSample * rightEarAttenuation * _allEchoesAttenuation;
}
// now inject the attenuated array with the appropriate delay
unsigned int sampleTimeLeft = sampleTime + leftEarDelay;
unsigned int sampleTimeRight = sampleTime + rightEarDelay;
_audio->addSpatialAudioToBuffer(sampleTimeLeft, attenuatedLeftSamples, totalNumberOfSamples);
_audio->addSpatialAudioToBuffer(sampleTimeRight, attenuatedRightSamples, totalNumberOfSamples);
_injectedEchoes++;
}
}
void AudioReflector::preProcessOriginalInboundAudio(unsigned int sampleTime,
QByteArray& samples, const QAudioFormat& format) {
if (_originalSourceAttenuation != 1.0f) {
int numberOfSamples = (samples.size() / sizeof(int16_t));
int16_t* sampleData = (int16_t*)samples.data();
for (int i = 0; i < numberOfSamples; i++) {
sampleData[i] = sampleData[i] * _originalSourceAttenuation;
}
}
}
void AudioReflector::processLocalAudio(unsigned int sampleTime, const QByteArray& samples, const QAudioFormat& format) {
bool processLocalAudio = true; // Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingProcessLocalAudio)
if (processLocalAudio) {
const int NUM_CHANNELS_INPUT = 1;
const int NUM_CHANNELS_OUTPUT = 2;
const int EXPECTED_SAMPLE_RATE = 24000;
if (format.channelCount() == NUM_CHANNELS_INPUT && format.sampleRate() == EXPECTED_SAMPLE_RATE) {
QAudioFormat outputFormat = format;
outputFormat.setChannelCount(NUM_CHANNELS_OUTPUT);
QByteArray stereoInputData(samples.size() * NUM_CHANNELS_OUTPUT, 0);
int numberOfSamples = (samples.size() / sizeof(int16_t));
int16_t* monoSamples = (int16_t*)samples.data();
int16_t* stereoSamples = (int16_t*)stereoInputData.data();
for (int i = 0; i < numberOfSamples; i++) {
stereoSamples[i* NUM_CHANNELS_OUTPUT] = monoSamples[i] * _localAudioAttenuationFactor;
stereoSamples[(i * NUM_CHANNELS_OUTPUT) + 1] = monoSamples[i] * _localAudioAttenuationFactor;
}
_localAudioDelays.clear();
_localEchoesSuppressed.clear();
echoAudio(LOCAL_AUDIO, sampleTime, stereoInputData, outputFormat);
_localEchoesCount = _localAudioDelays.size();
_localEchoesSuppressedCount = _localEchoesSuppressed.size();
}
}
}
void AudioReflector::processInboundAudio(unsigned int sampleTime, const QByteArray& samples, const QAudioFormat& format) {
_inboundAudioDelays.clear();
_inboundEchoesSuppressed.clear();
echoAudio(INBOUND_AUDIO, sampleTime, samples, format);
_inboundEchoesCount = _inboundAudioDelays.size();
_inboundEchoesSuppressedCount = _inboundEchoesSuppressed.size();
}
void AudioReflector::echoAudio(AudioSource source, unsigned int sampleTime, const QByteArray& samples, const QAudioFormat& format) {
QMutexLocker locker(&_mutex);
_maxDelay = 0;
_maxAttenuation = 0.0f;
_minDelay = std::numeric_limits<int>::max();
_minAttenuation = std::numeric_limits<float>::max();
_totalDelay = 0.0f;
_delayCount = 0;
_totalAttenuation = 0.0f;
_attenuationCount = 0;
// depending on if we're processing local or external audio, pick the correct points vector
QVector<AudiblePoint>& audiblePoints = source == INBOUND_AUDIO ? _inboundAudiblePoints : _localAudiblePoints;
int injectCalls = 0;
_injectedEchoes = 0;
foreach(const AudiblePoint& audiblePoint, audiblePoints) {
injectCalls++;
injectAudiblePoint(source, audiblePoint, samples, sampleTime, format.sampleRate());
}
/*
qDebug() << "injectCalls=" << injectCalls;
qDebug() << "_injectedEchoes=" << _injectedEchoes;
*/
_averageDelay = _delayCount == 0 ? 0 : _totalDelay / _delayCount;
_averageAttenuation = _attenuationCount == 0 ? 0 : _totalAttenuation / _attenuationCount;
if (_reflections == 0) {
_minDelay = 0.0f;
_minAttenuation = 0.0f;
}
_officialMaxDelay = _maxDelay;
_officialMinDelay = _minDelay;
_officialMaxAttenuation = _maxAttenuation;
_officialMinAttenuation = _minAttenuation;
_officialAverageDelay = _averageDelay;
_officialAverageAttenuation = _averageAttenuation;
}
void AudioReflector::drawVector(const glm::vec3& start, const glm::vec3& end, const glm::vec3& color) {
glDisable(GL_LIGHTING);
glLineWidth(2.0);
// Draw the vector itself
glBegin(GL_LINES);
glColor3f(color.x,color.y,color.z);
glVertex3f(start.x, start.y, start.z);
glVertex3f(end.x, end.y, end.z);
glEnd();
glEnable(GL_LIGHTING);
}
AudioPath::AudioPath(AudioSource source, const glm::vec3& origin, const glm::vec3& direction,
float attenuation, float delay, float distance,bool isDiffusion, int bounceCount) :
source(source),
isDiffusion(isDiffusion),
startPoint(origin),
startDirection(direction),
startDelay(delay),
startAttenuation(attenuation),
lastPoint(origin),
lastDirection(direction),
lastDistance(distance),
lastDelay(delay),
lastAttenuation(attenuation),
bounceCount(bounceCount),
finalized(false),
reflections()
{
}
void AudioReflector::addAudioPath(AudioSource source, const glm::vec3& origin, const glm::vec3& initialDirection,
float initialAttenuation, float initialDelay, float initialDistance, bool isDiffusion) {
AudioPath* path = new AudioPath(source, origin, initialDirection, initialAttenuation, initialDelay,
initialDistance, isDiffusion, 0);
QVector<AudioPath*>& audioPaths = source == INBOUND_AUDIO ? _inboundAudioPaths : _localAudioPaths;
audioPaths.push_back(path);
}
// NOTE: This is a prototype of an eventual utility that will identify the speaking sources for the inbound audio
// stream. It's not currently called but will be added soon.
void AudioReflector::identifyAudioSources() {
// looking for audio sources....
foreach (const AvatarSharedPointer& avatarPointer, _avatarManager->getAvatarHash()) {
Avatar* avatar = static_cast<Avatar*>(avatarPointer.data());
if (!avatar->isInitialized()) {
continue;
}
qDebug() << "avatar["<< avatar <<"] loudness:" << avatar->getAudioLoudness();
}
}
void AudioReflector::calculateAllReflections() {
// only recalculate when we've moved, or if the attributes have changed
// TODO: what about case where new voxels are added in front of us???
bool wantHeadOrientation = true; // Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingHeadOriented);
glm::quat orientation = wantHeadOrientation ? _myAvatar->getHead()->getFinalOrientationInWorldFrame() : _myAvatar->getOrientation();
glm::vec3 origin = _myAvatar->getHead()->getPosition();
glm::vec3 listenerPosition = _myAvatar->getHead()->getPosition();
bool shouldRecalc = _reflections == 0
|| !isSimilarPosition(origin, _origin)
|| !isSimilarOrientation(orientation, _orientation)
|| !isSimilarPosition(listenerPosition, _listenerPosition)
|| haveAttributesChanged();
if (shouldRecalc) {
QMutexLocker locker(&_mutex);
quint64 start = usecTimestampNow();
_origin = origin;
_orientation = orientation;
_listenerPosition = listenerPosition;
analyzePaths(); // actually does the work
quint64 end = usecTimestampNow();
const bool wantDebugging = false;
if (wantDebugging) {
qDebug() << "newCalculateAllReflections() elapsed=" << (end - start);
}
}
}
void AudioReflector::drawRays() {
const glm::vec3 RED(1,0,0);
const glm::vec3 GREEN(0,1,0);
const glm::vec3 BLUE(0,0,1);
const glm::vec3 CYAN(0,1,1);
int diffusionNumber = 0;
QMutexLocker locker(&_mutex);
// draw the paths for inbound audio
foreach(AudioPath* const& path, _inboundAudioPaths) {
// if this is an original reflection, draw it in RED
if (path->isDiffusion) {
diffusionNumber++;
drawPath(path, GREEN);
} else {
drawPath(path, RED);
}
}
bool processLocalAudio = true; // Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingProcessLocalAudio)
if (processLocalAudio) {
// draw the paths for local audio
foreach(AudioPath* const& path, _localAudioPaths) {
// if this is an original reflection, draw it in RED
if (path->isDiffusion) {
diffusionNumber++;
drawPath(path, CYAN);
} else {
drawPath(path, BLUE);
}
}
}
}
void AudioReflector::drawPath(AudioPath* path, const glm::vec3& originalColor) {
glm::vec3 start = path->startPoint;
glm::vec3 color = originalColor;
const float COLOR_ADJUST_PER_BOUNCE = 0.75f;
foreach (glm::vec3 end, path->reflections) {
drawVector(start, end, color);
start = end;
color = color * COLOR_ADJUST_PER_BOUNCE;
}
}
void AudioReflector::clearPaths() {
// clear our inbound audio paths
foreach(AudioPath* const& path, _inboundAudioPaths) {
delete path;
}
_inboundAudioPaths.clear();
_inboundAudiblePoints.clear(); // clear our inbound audible points
// clear our local audio paths
foreach(AudioPath* const& path, _localAudioPaths) {
delete path;
}
_localAudioPaths.clear();
_localAudiblePoints.clear(); // clear our local audible points
}
// Here's how this works: we have an array of AudioPaths, we loop on all of our currently calculating audio
// paths, and calculate one ray per path. If that ray doesn't reflect, or reaches a max distance/attenuation, then it
// is considered finalized.
// If the ray hits a surface, then, based on the characteristics of that surface, it will calculate the new
// attenuation, path length, and delay for the primary path. For surfaces that have diffusion, it will also create
// fanout number of new paths, those new paths will have an origin of the reflection point, and an initial attenuation
// of their diffusion ratio. Those new paths will be added to the active audio paths, and be analyzed for the next loop.
void AudioReflector::analyzePaths() {
clearPaths();
// add our initial paths
glm::vec3 right = glm::normalize(_orientation * IDENTITY_RIGHT);
glm::vec3 up = glm::normalize(_orientation * IDENTITY_UP);
glm::vec3 front = glm::normalize(_orientation * IDENTITY_FRONT);
glm::vec3 left = -right;
glm::vec3 down = -up;
glm::vec3 back = -front;
glm::vec3 frontRightUp = glm::normalize(front + right + up);
glm::vec3 frontLeftUp = glm::normalize(front + left + up);
glm::vec3 backRightUp = glm::normalize(back + right + up);
glm::vec3 backLeftUp = glm::normalize(back + left + up);
glm::vec3 frontRightDown = glm::normalize(front + right + down);
glm::vec3 frontLeftDown = glm::normalize(front + left + down);
glm::vec3 backRightDown = glm::normalize(back + right + down);
glm::vec3 backLeftDown = glm::normalize(back + left + down);
float initialAttenuation = 1.0f;
bool wantPreDelay = true; // Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingPreDelay)
float preDelay = wantPreDelay ? _preDelay : 0.0f;
// NOTE: we're still calculating our initial paths based on the listeners position. But the analysis code has been
// updated to support individual sound sources (which is how we support diffusion), we can use this new paradigm to
// add support for individual sound sources, and more directional sound sources
addAudioPath(INBOUND_AUDIO, _origin, front, initialAttenuation, preDelay);
addAudioPath(INBOUND_AUDIO, _origin, right, initialAttenuation, preDelay);
addAudioPath(INBOUND_AUDIO, _origin, up, initialAttenuation, preDelay);
addAudioPath(INBOUND_AUDIO, _origin, down, initialAttenuation, preDelay);
addAudioPath(INBOUND_AUDIO, _origin, back, initialAttenuation, preDelay);
addAudioPath(INBOUND_AUDIO, _origin, left, initialAttenuation, preDelay);
addAudioPath(INBOUND_AUDIO, _origin, frontRightUp, initialAttenuation, preDelay);
addAudioPath(INBOUND_AUDIO, _origin, frontLeftUp, initialAttenuation, preDelay);
addAudioPath(INBOUND_AUDIO, _origin, backRightUp, initialAttenuation, preDelay);
addAudioPath(INBOUND_AUDIO, _origin, backLeftUp, initialAttenuation, preDelay);
addAudioPath(INBOUND_AUDIO, _origin, frontRightDown, initialAttenuation, preDelay);
addAudioPath(INBOUND_AUDIO, _origin, frontLeftDown, initialAttenuation, preDelay);
addAudioPath(INBOUND_AUDIO, _origin, backRightDown, initialAttenuation, preDelay);
addAudioPath(INBOUND_AUDIO, _origin, backLeftDown, initialAttenuation, preDelay);
// the original paths for the local audio are directional to the front of the origin
addAudioPath(LOCAL_AUDIO, _origin, front, initialAttenuation, preDelay);
addAudioPath(LOCAL_AUDIO, _origin, frontRightUp, initialAttenuation, preDelay);
addAudioPath(LOCAL_AUDIO, _origin, frontLeftUp, initialAttenuation, preDelay);
addAudioPath(LOCAL_AUDIO, _origin, frontRightDown, initialAttenuation, preDelay);
addAudioPath(LOCAL_AUDIO, _origin, frontLeftDown, initialAttenuation, preDelay);
// loop through all our audio paths and keep analyzing them until they complete
int steps = 0;
int acitvePaths = _inboundAudioPaths.size() + _localAudioPaths.size(); // when we start, all paths are active
while(acitvePaths > 0) {
acitvePaths = analyzePathsSingleStep();
steps++;
}
_reflections = _inboundAudiblePoints.size() + _localAudiblePoints.size();
_diffusionPathCount = countDiffusionPaths();
}
int AudioReflector::countDiffusionPaths() {
int diffusionCount = 0;
foreach(AudioPath* const& path, _inboundAudioPaths) {
if (path->isDiffusion) {
diffusionCount++;
}
}
foreach(AudioPath* const& path, _localAudioPaths) {
if (path->isDiffusion) {
diffusionCount++;
}
}
return diffusionCount;
}
int AudioReflector::analyzePathsSingleStep() {
// iterate all the active sound paths, calculate one step per active path
int activePaths = 0;
QVector<AudioPath*>* pathsLists[] = { &_inboundAudioPaths, &_localAudioPaths };
for(unsigned int i = 0; i < sizeof(pathsLists) / sizeof(pathsLists[0]); i++) {
QVector<AudioPath*>& pathList = *pathsLists[i];
foreach(AudioPath* const& path, pathList) {
glm::vec3 start = path->lastPoint;
glm::vec3 direction = path->lastDirection;
OctreeElement* elementHit; // output from findRayIntersection
float distance; // output from findRayIntersection
BoxFace face; // output from findRayIntersection
if (!path->finalized) {
activePaths++;
if (path->bounceCount > ABSOLUTE_MAXIMUM_BOUNCE_COUNT) {
path->finalized = true;
} else if (_voxels->findRayIntersection(start, direction, elementHit, distance, face)) {
// TODO: we need to decide how we want to handle locking on the ray intersection, if we force lock,
// we get an accurate picture, but it could prevent rendering of the voxels. If we trylock (default),
// we might not get ray intersections where they may exist, but we can't really detect that case...
// add last parameter of Octree::Lock to force locking
handlePathPoint(path, distance, elementHit, face);
} else {
// If we didn't intersect, but this was a diffusion ray, then we will go ahead and cast a short ray out
// from our last known point, in the last known direction, and leave that sound source hanging there
if (path->isDiffusion) {
const float MINIMUM_RANDOM_DISTANCE = 0.25f;
const float MAXIMUM_RANDOM_DISTANCE = 0.5f;
float distance = randFloatInRange(MINIMUM_RANDOM_DISTANCE, MAXIMUM_RANDOM_DISTANCE);
handlePathPoint(path, distance, NULL, UNKNOWN_FACE);
} else {
path->finalized = true; // if it doesn't intersect, then it is finished
}
}
}
}
}
return activePaths;
}
void AudioReflector::handlePathPoint(AudioPath* path, float distance, OctreeElement* elementHit, BoxFace face) {
glm::vec3 start = path->lastPoint;
glm::vec3 direction = path->lastDirection;
glm::vec3 end = start + (direction * (distance * SLIGHTLY_SHORT));
float currentReflectiveAttenuation = path->lastAttenuation; // only the reflective components
float currentDelay = path->lastDelay; // start with our delay so far
float pathDistance = path->lastDistance;
pathDistance += glm::distance(start, end);
float toListenerDistance = glm::distance(end, _listenerPosition);
// adjust our current delay by just the delay from the most recent ray
currentDelay += getDelayFromDistance(distance);
// now we know the current attenuation for the "perfect" reflection case, but we now incorporate
// our surface materials to determine how much of this ray is absorbed, reflected, and diffused
SurfaceCharacteristics material = getSurfaceCharacteristics(elementHit);
float reflectiveAttenuation = currentReflectiveAttenuation * material.reflectiveRatio;
float totalDiffusionAttenuation = currentReflectiveAttenuation * material.diffusionRatio;
bool wantDiffusions = true; // Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingWithDiffusions);
int fanout = wantDiffusions ? _diffusionFanout : 0;
float partialDiffusionAttenuation = fanout < 1 ? 0.0f : totalDiffusionAttenuation / (float)fanout;
// total delay includes the bounce back to listener
float totalDelay = currentDelay + getDelayFromDistance(toListenerDistance);
float toListenerAttenuation = getDistanceAttenuationCoefficient(toListenerDistance + pathDistance);
// if our resulting partial diffusion attenuation, is still above our minimum attenuation
// then we add new paths for each diffusion point
if ((partialDiffusionAttenuation * toListenerAttenuation) > MINIMUM_ATTENUATION_TO_REFLECT
&& totalDelay < MAXIMUM_DELAY_MS) {
// diffusions fan out from random places on the semisphere of the collision point
for(int i = 0; i < fanout; i++) {
glm::vec3 diffusion;
// We're creating a random normal here. But we want it to be relatively dramatic compared to how we handle
// our slightly random surface normals.
const float MINIMUM_RANDOM_LENGTH = 0.5f;
const float MAXIMUM_RANDOM_LENGTH = 1.0f;
float randomness = randFloatInRange(MINIMUM_RANDOM_LENGTH, MAXIMUM_RANDOM_LENGTH);
float remainder = (1.0f - randomness)/2.0f;
float remainderSignA = randomSign();
float remainderSignB = randomSign();
if (face == MIN_X_FACE) {
diffusion = glm::vec3(-randomness, remainder * remainderSignA, remainder * remainderSignB);
} else if (face == MAX_X_FACE) {
diffusion = glm::vec3(randomness, remainder * remainderSignA, remainder * remainderSignB);
} else if (face == MIN_Y_FACE) {
diffusion = glm::vec3(remainder * remainderSignA, -randomness, remainder * remainderSignB);
} else if (face == MAX_Y_FACE) {
diffusion = glm::vec3(remainder * remainderSignA, randomness, remainder * remainderSignB);
} else if (face == MIN_Z_FACE) {
diffusion = glm::vec3(remainder * remainderSignA, remainder * remainderSignB, -randomness);
} else if (face == MAX_Z_FACE) {
diffusion = glm::vec3(remainder * remainderSignA, remainder * remainderSignB, randomness);
} else if (face == UNKNOWN_FACE) {
float randomnessX = randFloatInRange(MINIMUM_RANDOM_LENGTH, MAXIMUM_RANDOM_LENGTH);
float randomnessY = randFloatInRange(MINIMUM_RANDOM_LENGTH, MAXIMUM_RANDOM_LENGTH);
float randomnessZ = randFloatInRange(MINIMUM_RANDOM_LENGTH, MAXIMUM_RANDOM_LENGTH);
diffusion = glm::vec3(direction.x * randomnessX, direction.y * randomnessY, direction.z * randomnessZ);
}
diffusion = glm::normalize(diffusion);
// add new audio path for these diffusions, the new path's source is the same as the original source
addAudioPath(path->source, end, diffusion, partialDiffusionAttenuation, currentDelay, pathDistance, true);
}
} else {
const bool wantDebugging = false;
if (wantDebugging) {
if ((partialDiffusionAttenuation * toListenerAttenuation) <= MINIMUM_ATTENUATION_TO_REFLECT) {
qDebug() << "too quiet to diffuse";
qDebug() << " partialDiffusionAttenuation=" << partialDiffusionAttenuation;
qDebug() << " toListenerAttenuation=" << toListenerAttenuation;
qDebug() << " result=" << (partialDiffusionAttenuation * toListenerAttenuation);
qDebug() << " MINIMUM_ATTENUATION_TO_REFLECT=" << MINIMUM_ATTENUATION_TO_REFLECT;
}
if (totalDelay > MAXIMUM_DELAY_MS) {
qDebug() << "too delayed to diffuse";
qDebug() << " totalDelay=" << totalDelay;
qDebug() << " MAXIMUM_DELAY_MS=" << MAXIMUM_DELAY_MS;
}
}
}
// if our reflective attenuation is above our minimum, then add our reflection point and
// allow our path to continue
if (((reflectiveAttenuation + totalDiffusionAttenuation) * toListenerAttenuation) > MINIMUM_ATTENUATION_TO_REFLECT
&& totalDelay < MAXIMUM_DELAY_MS) {
// add this location, as the reflective attenuation as well as the total diffusion attenuation
// NOTE: we add the delay to the audible point, not back to the listener. The additional delay
// and attenuation to the listener is recalculated at the point where we actually inject the
// audio so that it can be adjusted to ear position
AudiblePoint point = {end, currentDelay, (reflectiveAttenuation + totalDiffusionAttenuation), pathDistance};
QVector<AudiblePoint>& audiblePoints = path->source == INBOUND_AUDIO ? _inboundAudiblePoints : _localAudiblePoints;
audiblePoints.push_back(point);
// add this location to the path points, so we can visualize it
path->reflections.push_back(end);
// now, if our reflective attenuation is over our minimum then keep going...
if (reflectiveAttenuation * toListenerAttenuation > MINIMUM_ATTENUATION_TO_REFLECT) {
glm::vec3 faceNormal = getFaceNormal(face);
path->lastDirection = glm::normalize(glm::reflect(direction,faceNormal));
path->lastPoint = end;
path->lastAttenuation = reflectiveAttenuation;
path->lastDelay = currentDelay;
path->lastDistance = pathDistance;
path->bounceCount++;
} else {
path->finalized = true; // if we're too quiet, then we're done
}
} else {
const bool wantDebugging = false;
if (wantDebugging) {
if (((reflectiveAttenuation + totalDiffusionAttenuation) * toListenerAttenuation) <= MINIMUM_ATTENUATION_TO_REFLECT) {
qDebug() << "too quiet to add audible point";
qDebug() << " reflectiveAttenuation + totalDiffusionAttenuation=" << (reflectiveAttenuation + totalDiffusionAttenuation);
qDebug() << " toListenerAttenuation=" << toListenerAttenuation;
qDebug() << " result=" << ((reflectiveAttenuation + totalDiffusionAttenuation) * toListenerAttenuation);
qDebug() << " MINIMUM_ATTENUATION_TO_REFLECT=" << MINIMUM_ATTENUATION_TO_REFLECT;
}
if (totalDelay > MAXIMUM_DELAY_MS) {
qDebug() << "too delayed to add audible point";
qDebug() << " totalDelay=" << totalDelay;
qDebug() << " MAXIMUM_DELAY_MS=" << MAXIMUM_DELAY_MS;
}
}
path->finalized = true; // if we're too quiet, then we're done
}
}
// TODO: eventually we will add support for different surface characteristics based on the element
// that is hit, which is why we pass in the elementHit to this helper function. But for now, all
// surfaces have the same characteristics
SurfaceCharacteristics AudioReflector::getSurfaceCharacteristics(OctreeElement* elementHit) {
SurfaceCharacteristics result = { getReflectiveRatio(), _absorptionRatio, _diffusionRatio };
return result;
}
void AudioReflector::setReflectiveRatio(float ratio) {
float safeRatio = std::max(0.0f, std::min(ratio, 1.0f));
float currentReflectiveRatio = (1.0f - (_absorptionRatio + _diffusionRatio));
float halfDifference = (safeRatio - currentReflectiveRatio) / 2.0f;
// evenly distribute the difference between the two other ratios
_absorptionRatio -= halfDifference;
_diffusionRatio -= halfDifference;
}
void AudioReflector::setAbsorptionRatio(float ratio) {
float safeRatio = std::max(0.0f, std::min(ratio, 1.0f));
_absorptionRatio = safeRatio;
const float MAX_COMBINED_RATIO = 1.0f;
if (_absorptionRatio + _diffusionRatio > MAX_COMBINED_RATIO) {
_diffusionRatio = MAX_COMBINED_RATIO - _absorptionRatio;
}
}
void AudioReflector::setDiffusionRatio(float ratio) {
float safeRatio = std::max(0.0f, std::min(ratio, 1.0f));
_diffusionRatio = safeRatio;
const float MAX_COMBINED_RATIO = 1.0f;
if (_absorptionRatio + _diffusionRatio > MAX_COMBINED_RATIO) {
_absorptionRatio = MAX_COMBINED_RATIO - _diffusionRatio;
}
}

View file

@ -1,254 +0,0 @@
//
// AudioReflector.h
// interface
//
// Created by Brad Hefta-Gaub on 4/2/2014
// Copyright (c) 2014 High Fidelity, Inc. All rights reserved.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#ifndef interface_AudioReflector_h
#define interface_AudioReflector_h
#include <QMutex>
#include <VoxelTree.h>
#include "Audio.h"
#include "avatar/MyAvatar.h"
#include "avatar/AvatarManager.h"
enum AudioSource {
LOCAL_AUDIO,
INBOUND_AUDIO
};
class AudioPath {
public:
AudioPath(AudioSource source = INBOUND_AUDIO, const glm::vec3& origin = glm::vec3(0.0f),
const glm::vec3& direction = glm::vec3(0.0f), float attenuation = 1.0f,
float delay = 0.0f, float distance = 0.0f, bool isDiffusion = false, int bounceCount = 0);
AudioSource source;
bool isDiffusion;
glm::vec3 startPoint;
glm::vec3 startDirection;
float startDelay;
float startAttenuation;
glm::vec3 lastPoint;
glm::vec3 lastDirection;
float lastDistance;
float lastDelay;
float lastAttenuation;
unsigned int bounceCount;
bool finalized;
QVector<glm::vec3> reflections;
};
class AudiblePoint {
public:
glm::vec3 location; /// location of the audible point
float delay; /// includes total delay including pre delay to the point of the audible location, not to the listener's ears
float attenuation; /// only the reflective & diffusive portion of attenuation, doesn't include distance attenuation
float distance; /// includes total distance to the point of the audible location, not to the listener's ears
};
class SurfaceCharacteristics {
public:
float reflectiveRatio;
float absorptionRatio;
float diffusionRatio;
};
class AudioReflector : public QObject {
Q_OBJECT
public:
AudioReflector(QObject* parent = NULL);
// setup functions to configure the resources used by the AudioReflector
void setVoxels(VoxelTree* voxels) { _voxels = voxels; }
void setMyAvatar(MyAvatar* myAvatar) { _myAvatar = myAvatar; }
void setAudio(Audio* audio) { _audio = audio; }
void setAvatarManager(AvatarManager* avatarManager) { _avatarManager = avatarManager; }
void render(); /// must be called in the application render loop
void preProcessOriginalInboundAudio(unsigned int sampleTime, QByteArray& samples, const QAudioFormat& format);
void processInboundAudio(unsigned int sampleTime, const QByteArray& samples, const QAudioFormat& format);
void processLocalAudio(unsigned int sampleTime, const QByteArray& samples, const QAudioFormat& format);
public slots:
// statistics
int getReflections() const { return _reflections; }
float getAverageDelayMsecs() const { return _officialAverageDelay; }
float getAverageAttenuation() const { return _officialAverageAttenuation; }
float getMaxDelayMsecs() const { return _officialMaxDelay; }
float getMaxAttenuation() const { return _officialMaxAttenuation; }
float getMinDelayMsecs() const { return _officialMinDelay; }
float getMinAttenuation() const { return _officialMinAttenuation; }
float getDelayFromDistance(float distance);
int getDiffusionPathCount() const { return _diffusionPathCount; }
int getEchoesInjected() const { return _inboundEchoesCount + _localEchoesCount; }
int getEchoesSuppressed() const { return _inboundEchoesSuppressedCount + _localEchoesSuppressedCount; }
/// ms of delay added to all echos
float getPreDelay() const { return _preDelay; }
void setPreDelay(float preDelay) { _preDelay = preDelay; }
/// ms per meter that sound travels, larger means slower, which sounds bigger
float getSoundMsPerMeter() const { return _soundMsPerMeter; }
void setSoundMsPerMeter(float soundMsPerMeter) { _soundMsPerMeter = soundMsPerMeter; }
/// scales attenuation to be louder or softer than the default distance attenuation
float getDistanceAttenuationScalingFactor() const { return _distanceAttenuationScalingFactor; }
void setDistanceAttenuationScalingFactor(float factor) { _distanceAttenuationScalingFactor = factor; }
/// scales attenuation of local audio to be louder or softer than the default attenuation
float getLocalAudioAttenuationFactor() const { return _localAudioAttenuationFactor; }
void setLocalAudioAttenuationFactor(float factor) { _localAudioAttenuationFactor = factor; }
/// ms window in which we will suppress echoes to reduce comb filter effects
float getCombFilterWindow() const { return _combFilterWindow; }
void setCombFilterWindow(float value) { _combFilterWindow = value; }
/// number of points of diffusion from each reflection point, as fanout increases there are more chances for secondary
/// echoes, but each diffusion ray is quieter and therefore more likely to be below the sound floor
int getDiffusionFanout() const { return _diffusionFanout; }
void setDiffusionFanout(int fanout) { _diffusionFanout = fanout; }
/// ratio 0.0 - 1.0 of amount of each ray that is absorbed upon hitting a surface
float getAbsorptionRatio() const { return _absorptionRatio; }
void setAbsorptionRatio(float ratio);
// ratio 0.0 - 1.0 of amount of each ray that is diffused upon hitting a surface
float getDiffusionRatio() const { return _diffusionRatio; }
void setDiffusionRatio(float ratio);
// remaining ratio 0.0 - 1.0 of amount of each ray that is cleanly reflected upon hitting a surface
float getReflectiveRatio() const { return (1.0f - (_absorptionRatio + _diffusionRatio)); }
void setReflectiveRatio(float ratio);
// wet/dry mix - these don't affect any reflection calculations, only the final mix volumes
float getOriginalSourceAttenuation() const { return _originalSourceAttenuation; }
void setOriginalSourceAttenuation(float value) { _originalSourceAttenuation = value; }
float getEchoesAttenuation() const { return _allEchoesAttenuation; }
void setEchoesAttenuation(float value) { _allEchoesAttenuation = value; }
signals:
private:
VoxelTree* _voxels; // used to access voxel scene
MyAvatar* _myAvatar; // access to listener
Audio* _audio; // access to audio API
AvatarManager* _avatarManager; // access to avatar manager API
// Helpers for drawing
void drawVector(const glm::vec3& start, const glm::vec3& end, const glm::vec3& color);
// helper for generically calculating attenuation based on distance
float getDistanceAttenuationCoefficient(float distance);
// statistics
int _reflections;
int _diffusionPathCount;
int _delayCount;
float _totalDelay;
float _averageDelay;
float _maxDelay;
float _minDelay;
float _officialAverageDelay;
float _officialMaxDelay;
float _officialMinDelay;
int _attenuationCount;
float _totalAttenuation;
float _averageAttenuation;
float _maxAttenuation;
float _minAttenuation;
float _officialAverageAttenuation;
float _officialMaxAttenuation;
float _officialMinAttenuation;
glm::vec3 _listenerPosition;
glm::vec3 _origin;
glm::quat _orientation;
QVector<AudioPath*> _inboundAudioPaths; /// audio paths we're processing for inbound audio
QVector<AudiblePoint> _inboundAudiblePoints; /// the audible points that have been calculated from the inbound audio paths
QMap<float, float> _inboundAudioDelays; /// delay times for currently injected audio points
QVector<float> _inboundEchoesSuppressed; /// delay times for currently injected audio points
int _inboundEchoesCount;
int _inboundEchoesSuppressedCount;
QVector<AudioPath*> _localAudioPaths; /// audio paths we're processing for local audio
QVector<AudiblePoint> _localAudiblePoints; /// the audible points that have been calculated from the local audio paths
QMap<float, float> _localAudioDelays; /// delay times for currently injected audio points
QVector<float> _localEchoesSuppressed; /// delay times for currently injected audio points
int _localEchoesCount;
int _localEchoesSuppressedCount;
// adds a sound source to begin an audio path trace, these can be the initial sound sources with their directional properties,
// as well as diffusion sound sources
void addAudioPath(AudioSource source, const glm::vec3& origin, const glm::vec3& initialDirection, float initialAttenuation,
float initialDelay, float initialDistance = 0.0f, bool isDiffusion = false);
// helper that handles audioPath analysis
int analyzePathsSingleStep();
void handlePathPoint(AudioPath* path, float distance, OctreeElement* elementHit, BoxFace face);
void clearPaths();
void analyzePaths();
void drawRays();
void drawPath(AudioPath* path, const glm::vec3& originalColor);
void calculateAllReflections();
int countDiffusionPaths();
glm::vec3 getFaceNormal(BoxFace face);
void identifyAudioSources();
void injectAudiblePoint(AudioSource source, const AudiblePoint& audiblePoint, const QByteArray& samples, unsigned int sampleTime, int sampleRate);
void echoAudio(AudioSource source, unsigned int sampleTime, const QByteArray& samples, const QAudioFormat& format);
// return the surface characteristics of the element we hit
SurfaceCharacteristics getSurfaceCharacteristics(OctreeElement* elementHit = NULL);
QMutex _mutex;
float _preDelay;
float _soundMsPerMeter;
float _distanceAttenuationScalingFactor;
float _localAudioAttenuationFactor;
float _combFilterWindow;
int _diffusionFanout; // number of points of diffusion from each reflection point
// all elements have the same material for now...
float _absorptionRatio;
float _diffusionRatio;
float _reflectiveRatio;
// wet/dry mix - these don't affect any reflection calculations, only the final mix volumes
float _originalSourceAttenuation; /// each sample of original signal will be multiplied by this
float _allEchoesAttenuation; /// each sample of all echo signals will be multiplied by this
// remember the last known values at calculation
bool haveAttributesChanged();
bool _withDiffusion;
float _lastPreDelay;
float _lastSoundMsPerMeter;
float _lastDistanceAttenuationScalingFactor;
float _lastLocalAudioAttenuationFactor;
int _lastDiffusionFanout;
float _lastAbsorptionRatio;
float _lastDiffusionRatio;
bool _lastDontDistanceAttenuate;
bool _lastAlternateDistanceAttenuate;
int _injectedEchoes;
};
#endif // interface_AudioReflector_h

View file

@ -1303,6 +1303,10 @@ void Menu::bandwidthDetails() {
connect(_bandwidthDialog, SIGNAL(closed()), SLOT(bandwidthDetailsClosed()));
_bandwidthDialog->show();
if (_hmdToolsDialog) {
_hmdToolsDialog->watchWindow(_bandwidthDialog->windowHandle());
}
}
_bandwidthDialog->raise();
}
@ -1384,6 +1388,9 @@ void Menu::toggleConsole() {
void Menu::toggleToolWindow() {
QMainWindow* toolWindow = Application::getInstance()->getToolWindow();
toolWindow->setVisible(!toolWindow->isVisible());
if (_hmdToolsDialog) {
_hmdToolsDialog->watchWindow(toolWindow->windowHandle());
}
}
void Menu::audioMuteToggled() {
@ -1406,6 +1413,9 @@ void Menu::octreeStatsDetails() {
Application::getInstance()->getOcteeSceneStats());
connect(_octreeStatsDialog, SIGNAL(closed()), SLOT(octreeStatsDetailsClosed()));
_octreeStatsDialog->show();
if (_hmdToolsDialog) {
_hmdToolsDialog->watchWindow(_octreeStatsDialog->windowHandle());
}
}
_octreeStatsDialog->raise();
}
@ -1586,6 +1596,9 @@ void Menu::lodTools() {
_lodToolsDialog = new LodToolsDialog(Application::getInstance()->getGLWidget());
connect(_lodToolsDialog, SIGNAL(closed()), SLOT(lodToolsClosed()));
_lodToolsDialog->show();
if (_hmdToolsDialog) {
_hmdToolsDialog->watchWindow(_lodToolsDialog->windowHandle());
}
}
_lodToolsDialog->raise();
}

View file

@ -123,7 +123,6 @@ public:
LodToolsDialog* getLodToolsDialog() const { return _lodToolsDialog; }
HMDToolsDialog* getHMDToolsDialog() const { return _hmdToolsDialog; }
int getMaxVoxels() const { return _maxVoxels; }
QAction* getUseVoxelShader() const { return _useVoxelShader; }
bool getShadowsEnabled() const;
@ -304,7 +303,6 @@ private:
float _avatarLODIncreaseFPS;
float _avatarLODDistanceMultiplier;
int _boundaryLevelAdjust;
QAction* _useVoxelShader;
int _maxVoxelPacketsPerSecond;
QString replaceLastOccurrence(QChar search, QChar replace, QString string);
quint64 _lastAdjust;

View file

@ -22,6 +22,7 @@
#include <MetavoxelClientManager.h>
#include "renderer/ProgramObject.h"
#include "renderer/TextureCache.h"
class HeightfieldBaseLayerBatch;
class HeightfieldSplatBatch;

View file

@ -63,7 +63,7 @@ void RenderableTextEntityItem::render(RenderArgs* args) {
const int FIXED_FONT_SCALING_RATIO = FIXED_FONT_POINT_SIZE * 40.0f; // this is a ratio determined through experimentation
// Same font properties as textWidth()
// Same font properties as textSize()
TextRenderer* textRenderer = TextRenderer::getInstance(SANS_FONT_FAMILY, FIXED_FONT_POINT_SIZE);
float maxHeight = (float)textRenderer->calculateHeight("Xy") * LINE_SCALE_RATIO;

View file

@ -841,14 +841,14 @@ void GeometryReader::run() {
if (urlValid) {
// Let's read the binaries from the network
QByteArray fileBinary = _reply->readAll();
if (fileBinary.isEmpty() || fileBinary.isNull()) {
throw QString("Read File binary is empty?!");
}
FBXGeometry fbxgeo;
if (_url.path().toLower().endsWith(".svo")) {
QByteArray fileBinary = _reply->readAll();
if (fileBinary.isEmpty() || fileBinary.isNull()) {
throw QString("Read File binary is empty?!");
}
fbxgeo = readSVO(fileBinary);
} else if (_url.path().toLower().endsWith(".fbx")) {
bool grabLightmaps = true;
float lightmapLevel = 1.0f;
@ -860,7 +860,7 @@ void GeometryReader::run() {
} else if (_url.path().toLower().endsWith("palaceoforinthilian4.fbx")) {
lightmapLevel = 3.5f;
}
fbxgeo = readFBX(fileBinary, _mapping, grabLightmaps, lightmapLevel);
fbxgeo = readFBX(_reply, _mapping, grabLightmaps, lightmapLevel);
}
QMetaObject::invokeMethod(geometry.data(), "setGeometry", Q_ARG(const FBXGeometry&, fbxgeo));
} else {

View file

@ -134,38 +134,21 @@ void Model::setOffset(const glm::vec3& offset) {
_snappedToRegistrationPoint = false;
}
void Model::initProgram(ProgramObject& program, Model::Locations& locations, int specularTextureUnit) {
void Model::initProgram(ProgramObject& program, Model::Locations& locations, bool link) {
if (link) {
program.bindAttributeLocation("tangent", gpu::Stream::TANGENT);
program.bindAttributeLocation("texcoord1", gpu::Stream::TEXCOORD1);
program.link();
}
program.bind();
#ifdef Q_OS_MAC
// HACK: Assign explicitely the attribute channel to avoid a bug on Yosemite
glBindAttribLocation(program.programId(), 4, "tangent");
glLinkProgram(program.programId());
#endif
glBindAttribLocation(program.programId(), gpu::Stream::TANGENT, "tangent");
glBindAttribLocation(program.programId(), gpu::Stream::TEXCOORD1, "texcoord1");
glLinkProgram(program.programId());
locations.tangent = program.attributeLocation("tangent");
locations.alphaThreshold = program.uniformLocation("alphaThreshold");
locations.texcoordMatrices = program.uniformLocation("texcoordMatrices");
locations.emissiveParams = program.uniformLocation("emissiveParams");
program.setUniformValue("diffuseMap", 0);
program.setUniformValue("normalMap", 1);
int loc = program.uniformLocation("specularMap");
@ -184,50 +167,22 @@ void Model::initProgram(ProgramObject& program, Model::Locations& locations, int
locations.emissiveTextureUnit = -1;
}
if (!program.isLinked()) {
program.release();
}
program.release();
}
void Model::initSkinProgram(ProgramObject& program, Model::SkinLocations& locations, int specularTextureUnit) {
initProgram(program, locations, specularTextureUnit);
#ifdef Q_OS_MAC
// HACK: Assign explicitely the attribute channel to avoid a bug on Yosemite
glBindAttribLocation(program.programId(), 5, "clusterIndices");
glBindAttribLocation(program.programId(), 6, "clusterWeights");
glLinkProgram(program.programId());
#endif
// HACK: Assign explicitely the attribute channel to avoid a bug on Yosemite
glBindAttribLocation(program.programId(), gpu::Stream::SKIN_CLUSTER_INDEX, "clusterIndices");
glBindAttribLocation(program.programId(), gpu::Stream::SKIN_CLUSTER_WEIGHT, "clusterWeights");
glLinkProgram(program.programId());
void Model::initSkinProgram(ProgramObject& program, Model::SkinLocations& locations) {
program.bindAttributeLocation("tangent", gpu::Stream::TANGENT);
program.bindAttributeLocation("texcoord1", gpu::Stream::TEXCOORD1);
program.bindAttributeLocation("clusterIndices", gpu::Stream::SKIN_CLUSTER_INDEX);
program.bindAttributeLocation("clusterWeights", gpu::Stream::SKIN_CLUSTER_WEIGHT);
program.link();
initProgram(program, locations, false);
program.bind();
locations.clusterMatrices = program.uniformLocation("clusterMatrices");
locations.clusterMatrices = program.uniformLocation("clusterMatrices");
locations.clusterIndices = program.attributeLocation("clusterIndices");
locations.clusterWeights = program.attributeLocation("clusterWeights");
program.release();
@ -269,7 +224,6 @@ void Model::init() {
if (!_program.isLinked()) {
_program.addShaderFromSourceFile(QGLShader::Vertex, Application::resourcesPath() + "shaders/model.vert");
_program.addShaderFromSourceFile(QGLShader::Fragment, Application::resourcesPath() + "shaders/model.frag");
_program.link();
initProgram(_program, _locations);
@ -277,116 +231,101 @@ void Model::init() {
Application::resourcesPath() + "shaders/model_normal_map.vert");
_normalMapProgram.addShaderFromSourceFile(QGLShader::Fragment,
Application::resourcesPath() + "shaders/model_normal_map.frag");
_normalMapProgram.link();
initProgram(_normalMapProgram, _normalMapLocations);
_specularMapProgram.addShaderFromSourceFile(QGLShader::Vertex,
Application::resourcesPath() + "shaders/model.vert");
_specularMapProgram.addShaderFromSourceFile(QGLShader::Fragment,
Application::resourcesPath() + "shaders/model_specular_map.frag");
_specularMapProgram.link();
initProgram(_specularMapProgram, _specularMapLocations);
_normalSpecularMapProgram.addShaderFromSourceFile(QGLShader::Vertex,
Application::resourcesPath() + "shaders/model_normal_map.vert");
_normalSpecularMapProgram.addShaderFromSourceFile(QGLShader::Fragment,
Application::resourcesPath() + "shaders/model_normal_specular_map.frag");
_normalSpecularMapProgram.link();
initProgram(_normalSpecularMapProgram, _normalSpecularMapLocations, 2);
initProgram(_normalSpecularMapProgram, _normalSpecularMapLocations);
_translucentProgram.addShaderFromSourceFile(QGLShader::Vertex,
Application::resourcesPath() + "shaders/model.vert");
_translucentProgram.addShaderFromSourceFile(QGLShader::Fragment,
Application::resourcesPath() + "shaders/model_translucent.frag");
_translucentProgram.link();
initProgram(_translucentProgram, _translucentLocations);
// Lightmap
_lightmapProgram.addShaderFromSourceFile(QGLShader::Vertex, Application::resourcesPath() + "shaders/model_lightmap.vert");
_lightmapProgram.addShaderFromSourceFile(QGLShader::Fragment, Application::resourcesPath() + "shaders/model_lightmap.frag");
_lightmapProgram.link();
initProgram(_lightmapProgram, _lightmapLocations);
_lightmapNormalMapProgram.addShaderFromSourceFile(QGLShader::Vertex,
Application::resourcesPath() + "shaders/model_lightmap_normal_map.vert");
_lightmapNormalMapProgram.addShaderFromSourceFile(QGLShader::Fragment,
Application::resourcesPath() + "shaders/model_lightmap_normal_map.frag");
_lightmapNormalMapProgram.link();
initProgram(_lightmapNormalMapProgram, _lightmapNormalMapLocations);
_lightmapSpecularMapProgram.addShaderFromSourceFile(QGLShader::Vertex,
Application::resourcesPath() + "shaders/model_lightmap.vert");
_lightmapSpecularMapProgram.addShaderFromSourceFile(QGLShader::Fragment,
Application::resourcesPath() + "shaders/model_lightmap_specular_map.frag");
_lightmapSpecularMapProgram.link();
initProgram(_lightmapSpecularMapProgram, _lightmapSpecularMapLocations);
_lightmapNormalSpecularMapProgram.addShaderFromSourceFile(QGLShader::Vertex,
Application::resourcesPath() + "shaders/model_lightmap_normal_map.vert");
_lightmapNormalSpecularMapProgram.addShaderFromSourceFile(QGLShader::Fragment,
Application::resourcesPath() + "shaders/model_lightmap_normal_specular_map.frag");
_lightmapNormalSpecularMapProgram.link();
initProgram(_lightmapNormalSpecularMapProgram, _lightmapNormalSpecularMapLocations, 2);
initProgram(_lightmapNormalSpecularMapProgram, _lightmapNormalSpecularMapLocations);
// end lightmap
_shadowProgram.addShaderFromSourceFile(QGLShader::Vertex, Application::resourcesPath() + "shaders/model_shadow.vert");
_shadowProgram.addShaderFromSourceFile(QGLShader::Fragment,
Application::resourcesPath() + "shaders/model_shadow.frag");
_shadowProgram.link();
_skinProgram.addShaderFromSourceFile(QGLShader::Vertex, Application::resourcesPath() + "shaders/skin_model.vert");
_skinProgram.addShaderFromSourceFile(QGLShader::Fragment, Application::resourcesPath() + "shaders/model.frag");
_skinProgram.link();
initSkinProgram(_skinProgram, _skinLocations);
_skinNormalMapProgram.addShaderFromSourceFile(QGLShader::Vertex,
Application::resourcesPath() + "shaders/skin_model_normal_map.vert");
_skinNormalMapProgram.addShaderFromSourceFile(QGLShader::Fragment,
Application::resourcesPath() + "shaders/model_normal_map.frag");
_skinNormalMapProgram.link();
initSkinProgram(_skinNormalMapProgram, _skinNormalMapLocations);
_skinSpecularMapProgram.addShaderFromSourceFile(QGLShader::Vertex,
Application::resourcesPath() + "shaders/skin_model.vert");
_skinSpecularMapProgram.addShaderFromSourceFile(QGLShader::Fragment,
Application::resourcesPath() + "shaders/model_specular_map.frag");
_skinSpecularMapProgram.link();
initSkinProgram(_skinSpecularMapProgram, _skinSpecularMapLocations);
_skinNormalSpecularMapProgram.addShaderFromSourceFile(QGLShader::Vertex,
Application::resourcesPath() + "shaders/skin_model_normal_map.vert");
_skinNormalSpecularMapProgram.addShaderFromSourceFile(QGLShader::Fragment,
Application::resourcesPath() + "shaders/model_normal_specular_map.frag");
_skinNormalSpecularMapProgram.link();
initSkinProgram(_skinNormalSpecularMapProgram, _skinNormalSpecularMapLocations, 2);
initSkinProgram(_skinNormalSpecularMapProgram, _skinNormalSpecularMapLocations);
_skinShadowProgram.addShaderFromSourceFile(QGLShader::Vertex,
Application::resourcesPath() + "shaders/skin_model_shadow.vert");
_skinShadowProgram.addShaderFromSourceFile(QGLShader::Fragment,
Application::resourcesPath() + "shaders/model_shadow.frag");
_skinShadowProgram.link();
initSkinProgram(_skinShadowProgram, _skinShadowLocations);
_skinTranslucentProgram.addShaderFromSourceFile(QGLShader::Vertex,
Application::resourcesPath() + "shaders/skin_model.vert");
_skinTranslucentProgram.addShaderFromSourceFile(QGLShader::Fragment,
Application::resourcesPath() + "shaders/model_translucent.frag");
_skinTranslucentProgram.link();
initSkinProgram(_skinTranslucentProgram, _skinTranslucentLocations);
}
}
@ -600,8 +539,6 @@ bool Model::findRayIntersectionAgainstSubMeshes(const glm::vec3& origin, const g
if (modelFrameBox.findRayIntersection(modelFrameOrigin, modelFrameDirection, distance, face)) {
float bestDistance = std::numeric_limits<float>::max();
float bestTriangleDistance = std::numeric_limits<float>::max();
bool someTriangleHit = false;
float distanceToSubMesh;
BoxFace subMeshFace;
@ -615,7 +552,6 @@ bool Model::findRayIntersectionAgainstSubMeshes(const glm::vec3& origin, const g
if (subMeshBox.findRayIntersection(origin, direction, distanceToSubMesh, subMeshFace)) {
if (distanceToSubMesh < bestDistance) {
if (pickAgainstTriangles) {
someTriangleHit = false;
if (!_calculatedMeshTrianglesValid) {
recalculateMeshBoxes(pickAgainstTriangles);
}
@ -628,9 +564,6 @@ bool Model::findRayIntersectionAgainstSubMeshes(const glm::vec3& origin, const g
float thisTriangleDistance;
if (findRayTriangleIntersection(origin, direction, triangle, thisTriangleDistance)) {
if (thisTriangleDistance < bestDistance) {
bestTriangleDistance = thisTriangleDistance;
someTriangleHit = true;
bestDistance = thisTriangleDistance;
intersectedSomething = true;
face = subMeshFace;

View file

@ -347,7 +347,7 @@ private:
static Locations _lightmapSpecularMapLocations;
static Locations _lightmapNormalSpecularMapLocations;
static void initProgram(ProgramObject& program, Locations& locations, int specularTextureUnit = 1);
static void initProgram(ProgramObject& program, Locations& locations, bool link = true);
class SkinLocations : public Locations {
public:
@ -363,7 +363,7 @@ private:
static SkinLocations _skinShadowLocations;
static SkinLocations _skinTranslucentLocations;
static void initSkinProgram(ProgramObject& program, SkinLocations& locations, int specularTextureUnit = 1);
static void initSkinProgram(ProgramObject& program, SkinLocations& locations);
QVector<AABox> _calculatedMeshBoxes; // world coordinate AABoxes for all sub mesh boxes
bool _calculatedMeshBoxesValid;

View file

@ -1,80 +0,0 @@
//
// PointShader.cpp
// interface/src/renderer
//
// Created by Brad Hefta-Gaub on 10/30/13.
// Copyright 2013 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
// include this before QOpenGLFramebufferObject, which includes an earlier version of OpenGL
#include "InterfaceConfig.h"
#include <QOpenGLFramebufferObject>
#include "Application.h"
#include "PointShader.h"
#include "ProgramObject.h"
#include "RenderUtil.h"
PointShader::PointShader()
: _initialized(false)
{
_program = NULL;
}
PointShader::~PointShader() {
if (_initialized) {
delete _program;
}
}
ProgramObject* PointShader::createPointShaderProgram(const QString& name) {
ProgramObject* program = new ProgramObject();
program->addShaderFromSourceFile(QGLShader::Vertex, Application::resourcesPath() + "shaders/" + name + ".vert" );
program->link();
return program;
}
void PointShader::init() {
if (_initialized) {
qDebug("[ERROR] PointShader is already initialized.");
return;
}
_program = createPointShaderProgram("point_size");
_initialized = true;
}
void PointShader::begin() {
_program->bind();
}
void PointShader::end() {
_program->release();
}
int PointShader::attributeLocation(const char* name) const {
if (_program) {
return _program->attributeLocation(name);
} else {
return -1;
}
}
int PointShader::uniformLocation(const char* name) const {
if (_program) {
return _program->uniformLocation(name);
} else {
return -1;
}
}
void PointShader::setUniformValue(int uniformLocation, float value) {
_program->setUniformValue(uniformLocation, value);
}
void PointShader::setUniformValue(int uniformLocation, const glm::vec3& value) {
_program->setUniformValue(uniformLocation, value.x, value.y, value.z);
}

View file

@ -1,48 +0,0 @@
//
// PointShader.h
// interface/src/renderer
//
// Created by Brad Hefta-Gaub on 10/30/13.
// Copyright 2013 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#ifndef hifi_PointShader_h
#define hifi_PointShader_h
#include <QObject>
class ProgramObject;
/// A shader program that draws voxels as points with variable sizes
class PointShader : public QObject {
Q_OBJECT
public:
PointShader();
~PointShader();
void init();
/// Starts using the voxel point shader program.
void begin();
/// Stops using the voxel point shader program.
void end();
/// Gets access to attributes from the shader program
int attributeLocation(const char* name) const;
int uniformLocation(const char* name) const;
void setUniformValue(int uniformLocation, float value);
void setUniformValue(int uniformLocation, const glm::vec3& value);
static ProgramObject* createPointShaderProgram(const QString& name);
private:
bool _initialized;
ProgramObject* _program;
};
#endif // hifi_PointShader_h

View file

@ -1,73 +0,0 @@
//
// VoxelShader.cpp
// interface/src/renderer
//
// Created by Brad Hefta-Gaub on 9/22/13.
// Copyright 2013 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
// include this before QOpenGLFramebufferObject, which includes an earlier version of OpenGL
#include "InterfaceConfig.h"
#include <QOpenGLFramebufferObject>
#include "Application.h"
#include "VoxelShader.h"
#include "ProgramObject.h"
#include "RenderUtil.h"
VoxelShader::VoxelShader()
: _initialized(false)
{
_program = NULL;
}
VoxelShader::~VoxelShader() {
if (_initialized) {
delete _program;
}
}
ProgramObject* VoxelShader::createGeometryShaderProgram(const QString& name) {
ProgramObject* program = new ProgramObject();
program->addShaderFromSourceFile(QGLShader::Vertex, Application::resourcesPath() + "shaders/passthrough.vert" );
program->addShaderFromSourceFile(QGLShader::Geometry, Application::resourcesPath() + "shaders/" + name + ".geom" );
program->setGeometryInputType(GL_POINTS);
program->setGeometryOutputType(GL_TRIANGLE_STRIP);
const int VERTICES_PER_FACE = 4;
const int FACES_PER_VOXEL = 6;
const int VERTICES_PER_VOXEL = VERTICES_PER_FACE * FACES_PER_VOXEL;
program->setGeometryOutputVertexCount(VERTICES_PER_VOXEL);
program->link();
return program;
}
void VoxelShader::init() {
if (_initialized) {
qDebug("[ERROR] TestProgram is already initialized.");
return;
}
_program = createGeometryShaderProgram("voxel");
_initialized = true;
}
void VoxelShader::begin() {
_program->bind();
}
void VoxelShader::end() {
_program->release();
}
int VoxelShader::attributeLocation(const char * name) const {
if (_program) {
return _program->attributeLocation(name);
} else {
return -1;
}
}

View file

@ -1,49 +0,0 @@
//
// VoxelShader.h
// interface/src/renderer
//
// Created by Brad Hefta-Gaub on 9/23/13.
// Copyright 2013 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#ifndef hifi_VoxelShader_h
#define hifi_VoxelShader_h
#include <QObject>
class ProgramObject;
/// A generic full screen glow effect.
class VoxelShader : public QObject {
Q_OBJECT
public:
VoxelShader();
~VoxelShader();
void init();
/// Starts using the voxel geometry shader effect.
void begin();
/// Stops using the voxel geometry shader effect.
void end();
/// Gets access to attributes from the shader program
int attributeLocation(const char * name) const;
static ProgramObject* createGeometryShaderProgram(const QString& name);
public slots:
private:
bool _initialized;
ProgramObject* _program;
};
#endif // hifi_VoxelShader_h

View file

@ -124,7 +124,7 @@ void ChatWindow::showEvent(QShowEvent* event) {
if (!event->spontaneous()) {
_ui->messagePlainTextEdit->setFocus();
}
const QRect parentGeometry = parentWidget()->geometry();
QRect parentGeometry = Application::getInstance()->getDesirableApplicationGeometry();
int titleBarHeight = UIUtil::getWindowTitleBarHeight(this);
int menuBarHeight = Menu::getInstance()->geometry().height();
int topMargin = titleBarHeight + menuBarHeight;

View file

@ -9,8 +9,12 @@
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include <QScreen>
#include <QWindow>
#include "Application.h"
#include "FramelessDialog.h"
#include "Menu.h"
const int RESIZE_HANDLE_WIDTH = 7;
@ -90,24 +94,27 @@ void FramelessDialog::showEvent(QShowEvent* event) {
}
void FramelessDialog::resizeAndPosition(bool resizeParent) {
QRect parentGeometry = Application::getInstance()->getDesirableApplicationGeometry();
QSize parentSize = parentGeometry.size();
// keep full app height or width depending on position
if (_position == POSITION_LEFT || _position == POSITION_RIGHT) {
setFixedHeight(parentWidget()->size().height());
setFixedHeight(parentSize.height());
} else {
setFixedWidth(parentWidget()->size().width());
setFixedWidth(parentSize.width());
}
// resize parrent if width is smaller than this dialog
if (resizeParent && parentWidget()->size().width() < size().width()) {
parentWidget()->resize(size().width(), parentWidget()->size().height());
if (resizeParent && parentSize.width() < size().width()) {
parentWidget()->resize(size().width(), parentSize.height());
}
if (_position == POSITION_LEFT || _position == POSITION_TOP) {
// move to upper left corner
move(parentWidget()->geometry().topLeft());
move(parentGeometry.topLeft());
} else if (_position == POSITION_RIGHT) {
// move to upper right corner
QPoint pos = parentWidget()->geometry().topRight();
QPoint pos = parentGeometry.topRight();
pos.setX(pos.x() - size().width());
move(pos);
}

View file

@ -67,83 +67,41 @@ HMDToolsDialog::HMDToolsDialog(QWidget* parent) :
// watch for our dialog window moving screens. If it does we want to enforce our rules about
// what screens we're allowed on
QWindow* dialogWindow = windowHandle();
connect(dialogWindow, &QWindow::screenChanged, this, &HMDToolsDialog::dialogWindowScreenChanged);
connect(dialogWindow, &QWindow::xChanged, this, &HMDToolsDialog::dialogWindowGeometryChanged);
connect(dialogWindow, &QWindow::yChanged, this, &HMDToolsDialog::dialogWindowGeometryChanged);
connect(dialogWindow, &QWindow::widthChanged, this, &HMDToolsDialog::dialogWindowGeometryChanged);
connect(dialogWindow, &QWindow::heightChanged, this, &HMDToolsDialog::dialogWindowGeometryChanged);
watchWindow(windowHandle());
if (Application::getInstance()->getRunningScriptsWidget()) {
watchWindow(Application::getInstance()->getRunningScriptsWidget()->windowHandle());
}
if (Application::getInstance()->getToolWindow()) {
watchWindow(Application::getInstance()->getToolWindow()->windowHandle());
}
if (Menu::getInstance()->getBandwidthDialog()) {
watchWindow(Menu::getInstance()->getBandwidthDialog()->windowHandle());
}
if (Menu::getInstance()->getOctreeStatsDialog()) {
watchWindow(Menu::getInstance()->getOctreeStatsDialog()->windowHandle());
}
if (Menu::getInstance()->getLodToolsDialog()) {
watchWindow(Menu::getInstance()->getLodToolsDialog()->windowHandle());
}
// when the application is about to quit, leave HDM mode
connect(Application::getInstance(), SIGNAL(aboutToQuit()), this, SLOT(aboutToQuit()));
// keep track of changes to the number of screens
connect(QApplication::desktop(), &QDesktopWidget::screenCountChanged, this, &HMDToolsDialog::screenCountChanged);
}
HMDToolsDialog::~HMDToolsDialog() {
foreach(HMDWindowWatcher* watcher, _windowWatchers) {
delete watcher;
}
_windowWatchers.clear();
}
void HMDToolsDialog::applicationWindowScreenChanged(QScreen* screen) {
_debugDetails->setText(getDebugDetails());
}
void HMDToolsDialog::dialogWindowGeometryChanged(int arg) {
QWindow* dialogWindow = windowHandle();
_previousDialogRect = rect();
_previousDialogRect = QRect(dialogWindow->mapToGlobal(_previousDialogRect.topLeft()),
dialogWindow->mapToGlobal(_previousDialogRect.bottomRight()));
_previousDialogScreen = dialogWindow->screen();
}
void HMDToolsDialog::dialogWindowScreenChanged(QScreen* screen) {
_debugDetails->setText(getDebugDetails());
// if we have more than one screen, and a known hmdScreen then try to
// keep our dialog off of the hmdScreen
if (QApplication::desktop()->screenCount() > 1) {
// we want to use a local variable here because we are not necesarily in HMD mode
int hmdScreenNumber = OculusManager::getHMDScreen();
if (_hmdScreenNumber >= 0) {
QScreen* hmdScreen = QGuiApplication::screens()[hmdScreenNumber];
if (screen == hmdScreen) {
qDebug() << "HMD Tools: Whoa! What are you doing? You don't want to move me to the HMD Screen!";
QWindow* dialogWindow = windowHandle();
// try to pick a better screen
QScreen* betterScreen = NULL;
QWindow* appWindow = Application::getInstance()->getWindow()->windowHandle();
QScreen* appScreen = appWindow->screen();
if (_previousDialogScreen && _previousDialogScreen != hmdScreen) {
// first, if the previous dialog screen is not the HMD screen, then move it there.
betterScreen = appScreen;
} else if (appScreen != hmdScreen) {
// second, if the application screen is not the HMD screen, then move it there.
betterScreen = appScreen;
} else if (_previousScreen && _previousScreen != hmdScreen) {
// third, if the application screen is the HMD screen, we want to move it to
// the previous screen
betterScreen = _previousScreen;
} else {
// last, if we can't use the previous screen the use the primary desktop screen
int desktopPrimaryScreenNumber = QApplication::desktop()->primaryScreen();
QScreen* desktopPrimaryScreen = QGuiApplication::screens()[desktopPrimaryScreenNumber];
betterScreen = desktopPrimaryScreen;
}
if (betterScreen) {
dialogWindow->setScreen(betterScreen);
dialogWindow->setGeometry(_previousDialogRect);
}
}
}
}
}
QString HMDToolsDialog::getDebugDetails() const {
QString results;
@ -305,5 +263,79 @@ void HMDToolsDialog::screenCountChanged(int newCount) {
_debugDetails->setText(getDebugDetails());
}
void HMDToolsDialog::watchWindow(QWindow* window) {
qDebug() << "HMDToolsDialog::watchWindow() window:" << window;
if (window && !_windowWatchers.contains(window)) {
HMDWindowWatcher* watcher = new HMDWindowWatcher(window, this);
_windowWatchers[window] = watcher;
}
}
HMDWindowWatcher::HMDWindowWatcher(QWindow* window, HMDToolsDialog* hmdTools) :
_window(window),
_hmdTools(hmdTools),
_previousScreen(NULL)
{
connect(window, &QWindow::screenChanged, this, &HMDWindowWatcher::windowScreenChanged);
connect(window, &QWindow::xChanged, this, &HMDWindowWatcher::windowGeometryChanged);
connect(window, &QWindow::yChanged, this, &HMDWindowWatcher::windowGeometryChanged);
connect(window, &QWindow::widthChanged, this, &HMDWindowWatcher::windowGeometryChanged);
connect(window, &QWindow::heightChanged, this, &HMDWindowWatcher::windowGeometryChanged);
}
HMDWindowWatcher::~HMDWindowWatcher() {
}
void HMDWindowWatcher::windowGeometryChanged(int arg) {
_previousRect = _window->geometry();
_previousScreen = _window->screen();
}
void HMDWindowWatcher::windowScreenChanged(QScreen* screen) {
// if we have more than one screen, and a known hmdScreen then try to
// keep our dialog off of the hmdScreen
if (QApplication::desktop()->screenCount() > 1) {
// we want to use a local variable here because we are not necesarily in HMD mode
int hmdScreenNumber = OculusManager::getHMDScreen();
if (hmdScreenNumber >= 0) {
QScreen* hmdScreen = QGuiApplication::screens()[hmdScreenNumber];
if (screen == hmdScreen) {
qDebug() << "HMD Tools: Whoa! What are you doing? You don't want to move me to the HMD Screen!";
// try to pick a better screen
QScreen* betterScreen = NULL;
QScreen* lastApplicationScreen = _hmdTools->getLastApplicationScreen();
QWindow* appWindow = Application::getInstance()->getWindow()->windowHandle();
QScreen* appScreen = appWindow->screen();
if (_previousScreen && _previousScreen != hmdScreen) {
// first, if the previous dialog screen is not the HMD screen, then move it there.
betterScreen = _previousScreen;
} else if (appScreen != hmdScreen) {
// second, if the application screen is not the HMD screen, then move it there.
betterScreen = appScreen;
} else if (lastApplicationScreen && lastApplicationScreen != hmdScreen) {
// third, if the application screen is the HMD screen, we want to move it to
// the previous screen
betterScreen = lastApplicationScreen;
} else {
// last, if we can't use the previous screen the use the primary desktop screen
int desktopPrimaryScreenNumber = QApplication::desktop()->primaryScreen();
QScreen* desktopPrimaryScreen = QGuiApplication::screens()[desktopPrimaryScreenNumber];
betterScreen = desktopPrimaryScreen;
}
if (betterScreen) {
_window->setScreen(betterScreen);
_window->setGeometry(_previousRect);
}
}
}
}
}

View file

@ -14,6 +14,8 @@
#include <QDialog>
class HMDWindowWatcher;
class HMDToolsDialog : public QDialog {
Q_OBJECT
public:
@ -22,6 +24,10 @@ public:
~HMDToolsDialog();
QString getDebugDetails() const;
QScreen* getHMDScreen() const { return _hmdScreen; }
QScreen* getLastApplicationScreen() const { return _previousScreen; }
bool hasHMDScreen() const { return _hmdScreenNumber >= -1; }
void watchWindow(QWindow* window);
signals:
void closed();
@ -32,8 +38,6 @@ public slots:
void activateWindowAfterEnterMode();
void moveWindowAfterLeaveMode();
void applicationWindowScreenChanged(QScreen* screen);
void dialogWindowScreenChanged(QScreen* screen);
void dialogWindowGeometryChanged(int arg);
void aboutToQuit();
void screenCountChanged(int newCount);
@ -58,6 +62,27 @@ private:
QRect _previousDialogRect;
QScreen* _previousDialogScreen;
bool _inHDMMode;
QHash<QWindow*, HMDWindowWatcher*> _windowWatchers;
};
class HMDWindowWatcher : public QObject {
Q_OBJECT
public:
// Sets up the UI
HMDWindowWatcher(QWindow* window, HMDToolsDialog* hmdTools);
~HMDWindowWatcher();
public slots:
void windowScreenChanged(QScreen* screen);
void windowGeometryChanged(int arg);
private:
QWindow* _window;
HMDToolsDialog* _hmdTools;
QRect _previousRect;
QScreen* _previousScreen;
};
#endif // hifi_HMDToolsDialog_h

View file

@ -17,7 +17,9 @@
#include <QFileInfo>
#include <QKeyEvent>
#include <QPainter>
#include <QScreen>
#include <QTableWidgetItem>
#include <QWindow>
#include "Application.h"
#include "Menu.h"
@ -82,10 +84,6 @@ void RunningScriptsWidget::loadSelectedScript() {
}
}
void RunningScriptsWidget::setBoundary(const QRect& rect) {
_boundary = rect;
}
void RunningScriptsWidget::setRunningScripts(const QStringList& list) {
setUpdatesEnabled(false);
QLayoutItem* widget;
@ -153,7 +151,7 @@ void RunningScriptsWidget::showEvent(QShowEvent* event) {
ui->filterLineEdit->setFocus();
}
const QRect parentGeometry = parentWidget()->geometry();
QRect parentGeometry = Application::getInstance()->getDesirableApplicationGeometry();
int titleBarHeight = UIUtil::getWindowTitleBarHeight(this);
int menuBarHeight = Menu::getInstance()->geometry().height();
int topMargin = titleBarHeight + menuBarHeight;

View file

@ -18,7 +18,6 @@
#include <QSortFilterProxyModel>
#include "ScriptsModel.h"
#include "FramelessDialog.h"
#include "ScriptsTableWidget.h"
namespace Ui {
@ -44,7 +43,6 @@ protected:
public slots:
void scriptStopped(const QString& scriptName);
void setBoundary(const QRect& rect);
private slots:
void allScriptsStopped();
@ -61,7 +59,6 @@ private:
ScriptsTableWidget* _recentlyLoadedScriptsTable;
QStringList _recentlyLoadedScripts;
QString _lastStoppedScript;
QRect _boundary;
};
#endif // hifi_RunningScriptsWidget_h

View file

@ -477,10 +477,6 @@ void Stats::display(
VoxelSystem* voxels = Application::getInstance()->getVoxels();
lines = _expanded ? 14 : 3;
bool wantSpatialProcessing = false; // Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessing)
if (_expanded && wantSpatialProcessing) {
lines += 10; // spatial audio processing adds 1 spacing line and 8 extra lines of info
}
drawBackground(backgroundColor, horizontalOffset, 0, glWidget->width() - horizontalOffset,
lines * STATS_PELS_PER_LINE + 10);
@ -669,104 +665,6 @@ void Stats::display(
verticalOffset += STATS_PELS_PER_LINE;
drawText(horizontalOffset, verticalOffset, scale, rotation, font, (char*)voxelStats.str().c_str(), color);
}
if (_expanded && wantSpatialProcessing) {
verticalOffset += STATS_PELS_PER_LINE; // space one line...
const AudioReflector* audioReflector = Application::getInstance()->getAudioReflector();
// add some reflection stats
char reflectionsStatus[128];
bool includeOriginal = true; //Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingIncludeOriginal)
bool separateEars = true; //Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingSeparateEars)
bool stereoSource = true; //Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingStereoSource)
bool randomSurfaces = true; //Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingSlightlyRandomSurfaces)
sprintf(reflectionsStatus, "Reflections: %d, Original: %s, Ears: %s, Source: %s, Normals: %s",
audioReflector->getReflections(),
(includeOriginal ? "included" : "silent"),
(separateEars ? "two" : "one"),
(stereoSource ? "stereo" : "mono"),
(randomSurfaces ? "random" : "regular")
);
verticalOffset += STATS_PELS_PER_LINE;
drawText(horizontalOffset, verticalOffset, scale, rotation, font, reflectionsStatus, color);
bool wantPreDelay = true; //Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingPreDelay)
float preDelay = wantPreDelay ? audioReflector->getPreDelay() : 0.0f;
sprintf(reflectionsStatus, "Delay: pre: %6.3f, average %6.3f, max %6.3f, min %6.3f, speed: %6.3f",
preDelay,
audioReflector->getAverageDelayMsecs(),
audioReflector->getMaxDelayMsecs(),
audioReflector->getMinDelayMsecs(),
audioReflector->getSoundMsPerMeter());
verticalOffset += STATS_PELS_PER_LINE;
drawText(horizontalOffset, verticalOffset, scale, rotation, font, reflectionsStatus, color);
//Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingDontDistanceAttenuate);
bool distanceAttenuationDisabled = false;
// Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingAlternateDistanceAttenuate);
bool alternateDistanceAttenuationEnabled = false;
sprintf(reflectionsStatus, "Attenuation: average %5.3f, max %5.3f, min %5.3f, %s: %5.3f",
audioReflector->getAverageAttenuation(),
audioReflector->getMaxAttenuation(),
audioReflector->getMinAttenuation(),
(distanceAttenuationDisabled ? "Distance Factor [DISABLED]" :
alternateDistanceAttenuationEnabled ? "Distance Factor [ALTERNATE]" : "Distance Factor [STANARD]"),
audioReflector->getDistanceAttenuationScalingFactor());
verticalOffset += STATS_PELS_PER_LINE;
drawText(horizontalOffset, verticalOffset, scale, rotation, font, reflectionsStatus, color);
bool localAudio = true; // Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingProcessLocalAudio);
sprintf(reflectionsStatus, "Local Audio: %s Attenuation: %5.3f", (localAudio ? "yes" : "no"),
audioReflector->getLocalAudioAttenuationFactor());
verticalOffset += STATS_PELS_PER_LINE;
drawText(horizontalOffset, verticalOffset, scale, rotation, font, reflectionsStatus, color);
bool diffusionEnabled = true; //Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingWithDiffusions);
int fanout = diffusionEnabled ? audioReflector->getDiffusionFanout() : 0;
int diffusionPaths = diffusionEnabled ? audioReflector->getDiffusionPathCount() : 0;
sprintf(reflectionsStatus, "Diffusion: %s, Fanout: %d, Paths: %d",
(diffusionEnabled ? "yes" : "no"), fanout, diffusionPaths);
verticalOffset += STATS_PELS_PER_LINE;
drawText(horizontalOffset, verticalOffset, scale, rotation, font, reflectionsStatus, color);
const float AS_PERCENT = 100.0f;
float reflectiveRatio = audioReflector->getReflectiveRatio() * AS_PERCENT;
float diffusionRatio = audioReflector->getDiffusionRatio() * AS_PERCENT;
float absorptionRatio = audioReflector->getAbsorptionRatio() * AS_PERCENT;
sprintf(reflectionsStatus, "Ratios: Reflective: %5.3f, Diffusion: %5.3f, Absorption: %5.3f",
reflectiveRatio, diffusionRatio, absorptionRatio);
verticalOffset += STATS_PELS_PER_LINE;
drawText(horizontalOffset, verticalOffset, scale, rotation, font, reflectionsStatus, color);
sprintf(reflectionsStatus, "Comb Filter Window: %5.3f ms, Allowed: %d, Suppressed: %d",
audioReflector->getCombFilterWindow(),
audioReflector->getEchoesInjected(),
audioReflector->getEchoesSuppressed());
verticalOffset += STATS_PELS_PER_LINE;
drawText(horizontalOffset, verticalOffset, scale, rotation, font, reflectionsStatus, color);
sprintf(reflectionsStatus, "Wet/Dry Mix: Original: %5.3f Echoes: %5.3f",
audioReflector->getOriginalSourceAttenuation(),
audioReflector->getEchoesAttenuation());
verticalOffset += STATS_PELS_PER_LINE;
drawText(horizontalOffset, verticalOffset, 0.10f, 0.0f, 2.0f, reflectionsStatus, color);
}
}
void Stats::setMetavoxelStats(int internal, int leaves, int sendProgress,

View file

@ -432,19 +432,19 @@ bool Overlays::isLoaded(unsigned int id) {
return thisOverlay->isLoaded();
}
float Overlays::textWidth(unsigned int id, const QString& text) const {
QSizeF Overlays::textSize(unsigned int id, const QString& text) const {
Overlay* thisOverlay = _overlays2D[id];
if (thisOverlay) {
if (typeid(*thisOverlay) == typeid(TextOverlay)) {
return static_cast<TextOverlay*>(thisOverlay)->textWidth(text);
return static_cast<TextOverlay*>(thisOverlay)->textSize(text);
}
} else {
thisOverlay = _overlays3D[id];
if (thisOverlay) {
if (typeid(*thisOverlay) == typeid(Text3DOverlay)) {
return static_cast<Text3DOverlay*>(thisOverlay)->textWidth(text);
return static_cast<Text3DOverlay*>(thisOverlay)->textSize(text);
}
}
}
return 0.0f;
return QSizeF(0.0f, 0.0f);
}

View file

@ -85,9 +85,9 @@ public slots:
/// returns whether the overlay's assets are loaded or not
bool isLoaded(unsigned int id);
/// returns the width of the given text in the specified overlay if it is a text overlay: in pixels if it is a 2D text
/// returns the size of the given text in the specified overlay if it is a text overlay: in pixels if it is a 2D text
/// overlay; in meters if it is a 3D text overlay
float textWidth(unsigned int id, const QString& text) const;
QSizeF textSize(unsigned int id, const QString& text) const;
private:
QMap<unsigned int, Overlay*> _overlays2D;

View file

@ -108,7 +108,7 @@ void Text3DOverlay::render(RenderArgs* args) {
const int FIXED_FONT_SCALING_RATIO = FIXED_FONT_POINT_SIZE * 40.0f; // this is a ratio determined through experimentation
// Same font properties as textWidth()
// Same font properties as textSize()
TextRenderer* textRenderer = TextRenderer::getInstance(SANS_FONT_FAMILY, FIXED_FONT_POINT_SIZE);
float maxHeight = (float)textRenderer->calculateHeight("Xy") * LINE_SCALE_RATIO;
@ -236,11 +236,23 @@ Text3DOverlay* Text3DOverlay::createClone() const {
return new Text3DOverlay(this);;
}
float Text3DOverlay::textWidth(const QString& text) const {
QSizeF Text3DOverlay::textSize(const QString& text) const {
QFont font(SANS_FONT_FAMILY, FIXED_FONT_POINT_SIZE); // Same font properties as render()
QFontMetrics fontMetrics(font);
float scaleFactor = _lineHeight * LINE_SCALE_RATIO / (float)FIXED_FONT_POINT_SIZE;
return scaleFactor * (float)fontMetrics.width(qPrintable(text));
const float TEXT_SCALE_ADJUST = 1.02f; // Experimentally detemined for the specified font
const int TEXT_HEIGHT_ADJUST = -6;
float scaleFactor = _lineHeight * TEXT_SCALE_ADJUST * LINE_SCALE_RATIO / (float)FIXED_FONT_POINT_SIZE;
QStringList lines = text.split(QRegExp("\r\n|\r|\n"));
float width = 0.0f;
for (int i = 0; i < lines.count(); i += 1) {
width = std::max(width, scaleFactor * (float)fontMetrics.width(qPrintable(lines[i])));
}
float height = lines.count() * scaleFactor * (float)(fontMetrics.height() + TEXT_HEIGHT_ADJUST);
return QSizeF(width, height);
}

View file

@ -51,7 +51,7 @@ public:
virtual void setProperties(const QScriptValue& properties);
virtual QScriptValue getProperty(const QString& property);
float textWidth(const QString& text) const; // Meters
QSizeF textSize(const QString& test) const; // Meters
virtual Text3DOverlay* createClone() const;

View file

@ -77,7 +77,7 @@ void TextOverlay::render(RenderArgs* args) {
glVertex2f(_bounds.left(), _bounds.bottom());
glEnd();
// Same font properties as textWidth()
// Same font properties as textSize()
TextRenderer* textRenderer = TextRenderer::getInstance(SANS_FONT_FAMILY, _fontSize, DEFAULT_FONT_WEIGHT);
const int leftAdjust = -1; // required to make text render relative to left edge of bounds
@ -169,8 +169,20 @@ QScriptValue TextOverlay::getProperty(const QString& property) {
return Overlay2D::getProperty(property);
}
float TextOverlay::textWidth(const QString& text) const {
QSizeF TextOverlay::textSize(const QString& text) const {
QFont font(SANS_FONT_FAMILY, _fontSize, DEFAULT_FONT_WEIGHT); // Same font properties as render()
QFontMetrics fontMetrics(font);
return fontMetrics.width(qPrintable(text));
const int TEXT_HEIGHT_ADJUST = -2; // Experimentally determined for the specified font
QStringList lines = text.split(QRegExp("\r\n|\r|\n"));
int width = 0;
for (int i = 0; i < lines.count(); i += 1) {
width = std::max(width, fontMetrics.width(qPrintable(lines[i])));
}
int height = lines.count() * (fontMetrics.height() + TEXT_HEIGHT_ADJUST);
return QSizeF(width, height);
}

View file

@ -59,7 +59,7 @@ public:
virtual TextOverlay* createClone() const;
virtual QScriptValue getProperty(const QString& property);
float textWidth(const QString& text) const; // Pixels
QSizeF textSize(const QString& test) const; // Pixels
private:
QString _text;

View file

@ -1,742 +0,0 @@
//
// PrimitiveRenderer.cpp
// interface/src/voxels
//
// Copyright 2014 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include <QMutexLocker>
#include "InterfaceConfig.h"
#include "OctreeElement.h"
#include "PrimitiveRenderer.h"
Primitive::Primitive() {
}
Primitive::~Primitive() {
}
// Simple dispatch between API and SPI
const VertexElementList& Primitive::vertexElements() const {
return vVertexElements();
}
VertexElementIndexList& Primitive::vertexElementIndices() {
return vVertexElementIndices();
}
TriElementList& Primitive::triElements() {
return vTriElements();
}
void Primitive::releaseVertexElements() {
vReleaseVertexElements();
}
unsigned long Primitive::getMemoryUsage() {
return vGetMemoryUsage();
}
Cube::Cube(
float x,
float y,
float z,
float s,
unsigned char r,
unsigned char g,
unsigned char b,
unsigned char faceExclusions
) :
_cpuMemoryUsage(0) {
init(x, y, z, s, r, g, b, faceExclusions);
}
Cube::~Cube() {
terminate();
}
void Cube::init(
float x,
float y,
float z,
float s,
unsigned char r,
unsigned char g,
unsigned char b,
unsigned char faceExclusions
) {
initializeVertices(x, y, z, s, r, g, b, faceExclusions);
initializeTris(faceExclusions);
}
void Cube::terminate() {
terminateTris();
terminateVertices();
}
void Cube::initializeVertices(
float x,
float y,
float z,
float s,
unsigned char r,
unsigned char g,
unsigned char b,
unsigned char faceExclusions
) {
for (int i = 0; i < _sNumVerticesPerCube; i++) {
// Check whether the vertex is necessary for the faces indicated by faceExclusions bit mask.
// uncomment this line to load all faces: if (~0x00 & _sFaceIndexToHalfSpaceMask[i >> 2]) {
// uncomment this line to include shared faces: if (faceExclusions & _sFaceIndexToHalfSpaceMask[i >> 2]) {
// uncomment this line to exclude shared faces:
if (~faceExclusions & _sFaceIndexToHalfSpaceMask[i >> 2]) {
VertexElement* v = new VertexElement();
if (v) {
// Construct vertex position
v->position.x = x + s * _sVertexIndexToConstructionVector[i][0];
v->position.y = y + s * _sVertexIndexToConstructionVector[i][1];
v->position.z = z + s * _sVertexIndexToConstructionVector[i][2];
// Construct vertex normal
v->normal.x = _sVertexIndexToNormalVector[i >> 2][0];
v->normal.y = _sVertexIndexToNormalVector[i >> 2][1];
v->normal.z = _sVertexIndexToNormalVector[i >> 2][2];
// Construct vertex color
//#define FALSE_COLOR
#ifndef FALSE_COLOR
v->color.r = r;
v->color.g = g;
v->color.b = b;
v->color.a = 255;
#else
static unsigned char falseColor[6][3] = {
192, 0, 0, // Bot
0, 192, 0, // Top
0, 0, 192, // Right
192, 0, 192, // Left
192, 192, 0, // Near
192, 192, 192 // Far
};
v->color.r = falseColor[i >> 2][0];
v->color.g = falseColor[i >> 2][1];
v->color.b = falseColor[i >> 2][2];
v->color.a = 255;
#endif
// Add vertex element to list
_vertices.push_back(v);
_cpuMemoryUsage += sizeof(VertexElement);
_cpuMemoryUsage += sizeof(VertexElement*);
}
}
}
}
void Cube::terminateVertices() {
for (VertexElementList::iterator it = _vertices.begin(); it != _vertices.end(); ++it) {
delete *it;
}
_cpuMemoryUsage -= _vertices.size() * (sizeof(VertexElement) + sizeof(VertexElement*));
_vertices.clear();
}
void Cube::initializeTris(
unsigned char faceExclusions
) {
int index = 0;
for (int i = 0; i < _sNumFacesPerCube; i++) {
// Check whether the vertex is necessary for the faces indicated by faceExclusions bit mask.
// uncomment this line to load all faces: if (~0x00 & _sFaceIndexToHalfSpaceMask[i]) {
// uncomment this line to include shared faces: if (faceExclusions & _sFaceIndexToHalfSpaceMask[i]) {
// uncomment this line to exclude shared faces:
if (~faceExclusions & _sFaceIndexToHalfSpaceMask[i]) {
int start = index;
// Create the triangulated face, two tris, six indices referencing four vertices, both
// with cw winding order, such that:
// A-B
// |\|
// D-C
// Store triangle ABC
TriElement* tri = new TriElement();
if (tri) {
tri->indices[0] = index++;
tri->indices[1] = index++;
tri->indices[2] = index;
// Add tri element to list
_tris.push_back(tri);
_cpuMemoryUsage += sizeof(TriElement);
_cpuMemoryUsage += sizeof(TriElement*);
}
// Now store triangle ACD
tri = new TriElement();
if (tri) {
tri->indices[0] = start;
tri->indices[1] = index++;
tri->indices[2] = index++;
// Add tri element to list
_tris.push_back(tri);
_cpuMemoryUsage += sizeof(TriElement);
_cpuMemoryUsage += sizeof(TriElement*);
}
}
}
}
void Cube::terminateTris() {
for (TriElementList::iterator it = _tris.begin(); it != _tris.end(); ++it) {
delete *it;
}
_cpuMemoryUsage -= _tris.size() * (sizeof(TriElement) + sizeof(TriElement*));
_tris.clear();
}
const VertexElementList& Cube::vVertexElements() const {
return _vertices;
}
VertexElementIndexList& Cube::vVertexElementIndices() {
return _vertexIndices;
}
TriElementList& Cube::vTriElements() {
return _tris;
}
void Cube::vReleaseVertexElements() {
terminateVertices();
}
unsigned long Cube::vGetMemoryUsage() {
return _cpuMemoryUsage;
}
unsigned char Cube::_sFaceIndexToHalfSpaceMask[6] = {
OctreeElement::HalfSpace::Bottom,
OctreeElement::HalfSpace::Top,
OctreeElement::HalfSpace::Right,
OctreeElement::HalfSpace::Left,
OctreeElement::HalfSpace::Near,
OctreeElement::HalfSpace::Far,
};
// Construction vectors ordered such that the vertices of each face are
// clockwise in a right-handed coordinate system with B-L-N at 0,0,0.
float Cube::_sVertexIndexToConstructionVector[24][3] = {
// Bottom
{ 0,0,0 },
{ 1,0,0 },
{ 1,0,1 },
{ 0,0,1 },
// Top
{ 0,1,0 },
{ 0,1,1 },
{ 1,1,1 },
{ 1,1,0 },
// Right
{ 1,0,0 },
{ 1,1,0 },
{ 1,1,1 },
{ 1,0,1 },
// Left
{ 0,0,0 },
{ 0,0,1 },
{ 0,1,1 },
{ 0,1,0 },
// Near
{ 0,0,0 },
{ 0,1,0 },
{ 1,1,0 },
{ 1,0,0 },
// Far
{ 0,0,1 },
{ 1,0,1 },
{ 1,1,1 },
{ 0,1,1 },
};
// Normals for a right-handed coordinate system
float Cube::_sVertexIndexToNormalVector[6][3] = {
{ 0,-1, 0 }, // Bottom
{ 0, 1, 0 }, // Top
{ 1, 0, 0 }, // Right
{ -1, 0, 0 }, // Left
{ 0, 0,-1 }, // Near
{ 0, 0, 1 }, // Far
};
Renderer::Renderer() {
}
Renderer::~Renderer() {
}
// Simple dispatch between API and SPI
int Renderer::add(
Primitive* primitive
) {
return vAdd(primitive);
}
void Renderer::remove(
int id
) {
vRemove(id);
}
void Renderer::release() {
vRelease();
}
void Renderer::render() {
vRender();
}
unsigned long Renderer::getMemoryUsage() {
return vGetMemoryUsage();
}
unsigned long Renderer::getMemoryUsageGPU() {
return vGetMemoryUsageGPU();
}
PrimitiveRenderer::PrimitiveRenderer(
int maxCount
) :
_maxCount(maxCount),
_triBufferId(0),
_vertexBufferId(0),
_vertexElementCount(0),
_maxVertexElementCount(0),
_triElementCount(0),
_maxTriElementCount(0),
_primitives(),
_primitiveCount(0),
_gpuMemoryUsage(0),
_cpuMemoryUsage(0)
{
init();
}
PrimitiveRenderer::~PrimitiveRenderer() {
terminate();
}
void PrimitiveRenderer::init() {
initializeGL();
initializeBookkeeping();
}
void PrimitiveRenderer::initializeGL() {
glGenBuffers(1, &_triBufferId);
glGenBuffers(1, &_vertexBufferId);
// Set up the element array buffer containing the index ids
_maxTriElementCount = _maxCount * 2;
int size = _maxTriElementCount * _sIndicesPerTri * sizeof(GLint);
_gpuMemoryUsage += size;
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _triBufferId);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, size, 0, GL_DYNAMIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
// Set up the array buffer in the form of array of structures
// I chose AOS because it maximizes the amount of data tranferred
// by a single glBufferSubData call.
_maxVertexElementCount = _maxCount * 8;
size = _maxVertexElementCount * sizeof(VertexElement);
_gpuMemoryUsage += size;
glBindBuffer(GL_ARRAY_BUFFER, _vertexBufferId);
glBufferData(GL_ARRAY_BUFFER, size, 0, GL_DYNAMIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
// Initialize the first tri element in the buffer to all zeros, the
// degenerate case
deconstructTriElement(0);
// Initialize the first vertex element in the buffer to all zeros, the
// degenerate case
deconstructVertexElement(0);
}
void PrimitiveRenderer::initializeBookkeeping() {
// Start primitive count at one, because zero is reserved for the degenerate triangle
_primitives.resize(_maxCount + 1);
// Set the counters
_primitiveCount = 1;
_vertexElementCount = 1;
_triElementCount = 1;
// Guesstimate the memory consumption
_cpuMemoryUsage = sizeof(PrimitiveRenderer);
_cpuMemoryUsage += _availablePrimitiveIndex.capacity() * sizeof(int);
_cpuMemoryUsage += _availableVertexElementIndex.capacity() * sizeof(int);
_cpuMemoryUsage += _availableTriElementIndex.capacity() * sizeof(int);
_cpuMemoryUsage += _deconstructTriElementIndex.capacity() * sizeof(int);
_cpuMemoryUsage += _constructPrimitiveIndex.capacity() * sizeof(int);
}
void PrimitiveRenderer::terminate() {
terminateBookkeeping();
terminateGL();
}
void PrimitiveRenderer::terminateGL() {
if (_vertexBufferId) {
glDeleteBuffers(1, &_vertexBufferId);
_vertexBufferId = 0;
}
if (_triBufferId) {
glDeleteBuffers(1, &_triBufferId);
_triBufferId = 0;
}
}
void PrimitiveRenderer::terminateBookkeeping() {
// Delete all of the primitives
for (int i = _primitiveCount + 1; --i > 0; ) {
Primitive* primitive = _primitives[i];
if (primitive) {
_cpuMemoryUsage -= primitive->getMemoryUsage();
_primitives[i] = 0;
delete primitive;
}
}
// Drain the queues
_availablePrimitiveIndex.clear();
_availableVertexElementIndex.clear();
_availableTriElementIndex.clear();
_deconstructTriElementIndex.clear();
_constructPrimitiveIndex.clear();
_cpuMemoryUsage = sizeof(PrimitiveRenderer) + _primitives.size() * sizeof(Primitive *);
}
void PrimitiveRenderer::constructElements(
Primitive* primitive
) {
// Load vertex elements
VertexElementIndexList& vertexElementIndexList = primitive->vertexElementIndices();
const VertexElementList& vertices = primitive->vertexElements();
{
for (VertexElementList::const_iterator it = vertices.begin(); it != vertices.end(); ++it ) {
int index = getAvailableVertexElementIndex();
if (index != 0) {
// Store the vertex element index in the primitive's
// vertex element index list
vertexElementIndexList.push_back(index);
VertexElement* vertex = *it;
transferVertexElement(index, vertex);
} else {
break;
}
}
}
// Load tri elements
if (vertexElementIndexList.size() == vertices.size()) {
TriElementList& tris = primitive->triElements();
for (TriElementList::iterator it = tris.begin(); it != tris.end(); ++it) {
TriElement* tri = *it;
int index = getAvailableTriElementIndex();
if (index != 0) {
int k;
k = tri->indices[0];
tri->indices[0] = vertexElementIndexList[k];
k = tri->indices[1];
tri->indices[1] = vertexElementIndexList[k];
k = tri->indices[2];
tri->indices[2] = vertexElementIndexList[k];
tri->id = index;
transferTriElement(index, tri->indices);
} else {
break;
}
}
} else {
// TODO: failure mode
}
}
void PrimitiveRenderer::deconstructElements(
Primitive* primitive
) {
// Schedule the tri elements of the face for deconstruction
{
TriElementList& tris = primitive->triElements();
for (TriElementList::const_iterator it = tris.begin(); it != tris.end(); ++it) {
const TriElement* tri = *it;
if (tri->id) {
// Put the tri element index into decon queue
_deconstructTriElementIndex.push(tri->id);
}
}
}
// Return the vertex element index to the available queue, it is not necessary
// to zero the data
{
VertexElementIndexList& vertexIndexList = primitive->vertexElementIndices();
for (VertexElementIndexList::const_iterator it = vertexIndexList.begin(); it != vertexIndexList.end(); ++it) {
int index = *it;
if (index) {
// Put the vertex element index into the available queue
_availableVertexElementIndex.push(index);
}
}
}
delete primitive;
}
int PrimitiveRenderer::getAvailablePrimitiveIndex() {
int index;
// Check the available primitive index queue first for an available index.
if (!_availablePrimitiveIndex.isEmpty()) {
index = _availablePrimitiveIndex.pop();
} else if (_primitiveCount < _maxCount) {
// There are no primitive indices available from the queue,
// make one up
index = _primitiveCount++;
} else {
index = 0;
}
return index;
}
int PrimitiveRenderer::getAvailableVertexElementIndex() {
int index;
// Check the available vertex element queue first for an available index.
if (!_availableVertexElementIndex.isEmpty()) {
index = _availableVertexElementIndex.pop();
} else if (_vertexElementCount < _maxVertexElementCount) {
// There are no vertex elements available from the queue,
// grab one from the end of the list
index = _vertexElementCount++;
} else {
index = 0;
}
return index;
}
int PrimitiveRenderer::getAvailableTriElementIndex() {
int index;
// Check the tri elements scheduled for deconstruction queue first to
// intercept and reuse an index without it having to be destroyed
if (!_deconstructTriElementIndex.isEmpty()) {
index = _deconstructTriElementIndex.pop();
} else if (!_availableTriElementIndex.isEmpty()) {
// Nothing available in the deconstruction queue, now
// check the available tri element queue for an available index.
index = _availableTriElementIndex.pop();
} else if (_triElementCount < _maxTriElementCount) {
// There are no reusable tri elements available from the queue,
// grab one from the end of the list
index = _triElementCount++;
} else {
index = 0;
}
return index;
}
void PrimitiveRenderer::deconstructTriElement(
int idx
) {
// Set the tri element to the degenerate case.
static int degenerate[3] = { 0, 0, 0 };
transferTriElement(idx, degenerate);
}
void PrimitiveRenderer::deconstructVertexElement(
int idx
) {
// Set the vertex element to the degenerate case.
VertexElement degenerate;
memset(&degenerate, 0, sizeof(degenerate));
transferVertexElement(idx, &degenerate);
}
void PrimitiveRenderer::transferVertexElement(
int idx,
VertexElement* vertex
) {
glBindBuffer(GL_ARRAY_BUFFER, _vertexBufferId);
glBufferSubData(GL_ARRAY_BUFFER, idx * sizeof(VertexElement), sizeof(VertexElement), vertex);
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
void PrimitiveRenderer::transferTriElement(
int idx,
int tri[3]
) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _triBufferId);
glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, idx * _sBytesPerTriElement, _sBytesPerTriElement, tri);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
int PrimitiveRenderer::vAdd(
Primitive* primitive
) {
QMutexLocker lock(&_guard);
int id = getAvailablePrimitiveIndex();
if (id != 0) {
// Take ownership of primitive, including responsibility
// for destruction
_primitives[id] = primitive;
_constructPrimitiveIndex.push(id);
_cpuMemoryUsage += primitive->getMemoryUsage();
}
return id;
}
void PrimitiveRenderer::vRemove(
int id
) {
if (id != 0) {
QMutexLocker lock(&_guard);
// Locate and remove the primitive by id in the vector map
Primitive* primitive = _primitives[id];
if (primitive) {
_primitives[id] = 0;
_cpuMemoryUsage -= primitive->getMemoryUsage();
deconstructElements(primitive);
// Queue the index onto the available primitive stack.
_availablePrimitiveIndex.push(id);
}
}
}
void PrimitiveRenderer::vRelease() {
QMutexLocker lock(&_guard);
terminateBookkeeping();
initializeBookkeeping();
}
void PrimitiveRenderer::vRender() {
int id;
QMutexLocker lock(&_guard);
// Iterate over the set of triangle element array buffer ids scheduled for
// destruction. Set the triangle element to the degenerate case. Queue the id
// onto the available tri element stack.
while (!_deconstructTriElementIndex.isEmpty()) {
id = _deconstructTriElementIndex.pop();
deconstructTriElement(id);
_availableTriElementIndex.push(id);
}
// Iterate over the set of primitive ids scheduled for construction. Transfer
// primitive data to the GPU.
while (!_constructPrimitiveIndex.isEmpty()) {
id = _constructPrimitiveIndex.pop();
Primitive* primitive = _primitives[id];
if (primitive) {
constructElements(primitive);
// No need to keep an extra copy of the vertices
_cpuMemoryUsage -= primitive->getMemoryUsage();
primitive->releaseVertexElements();
_cpuMemoryUsage += primitive->getMemoryUsage();
}
}
// The application uses clockwise winding for the definition of front face, this renderer
// aalso uses clockwise (that is the gl default) to construct the triangulation
// so...
//glFrontFace(GL_CW);
glEnable(GL_CULL_FACE);
glBindBuffer(GL_ARRAY_BUFFER, _vertexBufferId);
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, sizeof(VertexElement), 0);
glEnableClientState(GL_NORMAL_ARRAY);
glNormalPointer(GL_FLOAT, sizeof(VertexElement), (const GLvoid*)12);
glEnableClientState(GL_COLOR_ARRAY);
glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(VertexElement), (const GLvoid*)24);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _triBufferId);
glDrawElements(GL_TRIANGLES, 3 * _triElementCount, GL_UNSIGNED_INT, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
glDisable(GL_CULL_FACE);
}
unsigned long PrimitiveRenderer::vGetMemoryUsage() {
return _cpuMemoryUsage;
}
unsigned long PrimitiveRenderer::vGetMemoryUsageGPU() {
return _gpuMemoryUsage;
}

View file

@ -1,503 +0,0 @@
//
// PrimitiveRenderer.h
// interface/src/voxels
//
// Created by Norman Craft.
// Copyright 2014 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#ifndef hifi_PrimitiveRenderer_h
#define hifi_PrimitiveRenderer_h
#include <QStack>
#include <QVector>
#include <QMutex>
/// Vertex element structure.
/// Using the array of structures approach to specifying
/// vertex data to GL cuts down on the calls to glBufferSubData
///
typedef
struct __VertexElement {
struct __position {
float x;
float y;
float z;
} position;
struct __normal {
float x;
float y;
float z;
} normal;
struct __color {
unsigned char r;
unsigned char g;
unsigned char b;
unsigned char a;
} color;
} VertexElement;
/// Triangle element index structure.
/// Specify the vertex indices of the triangle and its element index.
///
typedef
struct __TriElement {
int indices[3];
int id;
} TriElement;
/// Vertex element list container.
///
typedef QVector<VertexElement *> VertexElementList;
/// Vertex element index list container.
///
typedef QVector<int> VertexElementIndexList;
/// Triangle element list container
///
typedef QVector<TriElement *> TriElementList;
///
/// @class Primitive
/// Primitive Interface class.
/// Abstract class for accessing vertex and tri elements of geometric primitives
///
///
class Primitive {
public:
virtual ~Primitive();
// API methods go here
/// Vertex element accessor.
/// @return A list of vertex elements of the primitive
///
const VertexElementList& vertexElements() const;
/// Vertex element index accessor.
/// @return A list of vertex element indices of the primitive
///
VertexElementIndexList& vertexElementIndices();
/// Tri element accessor.
/// @return A list of tri elements of the primitive
///
TriElementList& triElements();
/// Release vertex elements.
///
void releaseVertexElements();
/// Get memory usage.
///
unsigned long getMemoryUsage();
protected:
/// Default constructor prohibited to API user, restricted to service implementer.
///
Primitive();
private:
/// Copy constructor prohibited.
///
Primitive(
const Primitive& copy
);
// SPI methods are defined here
/// Vertex element accessor.
/// Service implementer to provide private override for this method
/// in derived class
///
virtual const VertexElementList& vVertexElements() const = 0;
/// Vertex element index accessor.
/// Service implementer to provide private override for this method
/// in derived class
///
virtual VertexElementIndexList& vVertexElementIndices() = 0;
/// Tri element accessor.
/// Service implementer to provide private override for this method
/// in derived class
///
virtual TriElementList& vTriElements() = 0;
/// Release vertex elements.
/// Service implementer to provide private override for this method
/// in derived class
///
virtual void vReleaseVertexElements() = 0;
/// Get memory usage.
/// Service implementer to provide private override for this method
/// in derived class
///
virtual unsigned long vGetMemoryUsage() = 0;
};
///
/// @class Cube
/// Class for accessing the vertex and triangle elements of a cube
///
class Cube: public Primitive {
public:
/// Configuration dependency injection constructor.
///
Cube(
float x, ///< Cube location on X-axis
float y, ///< Cube location on Y-axis
float z, ///< Cube location on Z-axis
float s, ///< Cube size
unsigned char r, ///< Cube red color component
unsigned char g, ///< Cube green color component
unsigned char b, ///< Cube blue color component
unsigned char faces ///< Bitmask of faces of cube excluded from construction
);
~Cube();
private:
/// Copy constructor prohibited.
///
Cube (
const Cube& cube
);
/// Cube initialization
///
void init(
float x, ///< Cube location on X-axis
float y, ///< Cube location on Y-axis
float z, ///< Cube location on Z-axis
float s, ///< Cube size
unsigned char r, ///< Cube red color component
unsigned char g, ///< Cube green color component
unsigned char b, ///< Cube blue color component
unsigned char faceExclusions ///< Bitmask of faces of cube excluded from construction
);
/// Cube termination
///
void terminate();
/// Initialize cube's vertex list
///
void initializeVertices(
float x, ///< Cube location on X-axis
float y, ///< Cube location on Y-axis
float z, ///< Cube location on Z-axis
float s, ///< Cube size
unsigned char r, ///< Cube red color component
unsigned char g, ///< Cube green color component
unsigned char b, ///< Cube blue color component
unsigned char faceExclusions ///< Bitmask of faces of cube excluded from construction
);
/// Terminate cube's vertex list
///
void terminateVertices();
/// Initialize cube's triangle list
///
void initializeTris(
unsigned char faceExclusions
);
/// Terminate cube's triangle list
///
void terminateTris();
// SPI virtual override methods go here
const VertexElementList& vVertexElements() const;
VertexElementIndexList& vVertexElementIndices();
TriElementList& vTriElements();
void vReleaseVertexElements();
unsigned long vGetMemoryUsage();
private:
VertexElementList _vertices; ///< Vertex element list
VertexElementIndexList _vertexIndices; ///< Vertex element index list
TriElementList _tris; ///< Tri element list
unsigned long _cpuMemoryUsage; ///< Memory allocation of object
static const int _sNumFacesPerCube = 6; ///< Number of faces per cube
static const int _sNumVerticesPerCube = 24; ///< Number of vertices per cube
static unsigned char _sFaceIndexToHalfSpaceMask[6]; ///< index to bitmask map
static float _sVertexIndexToConstructionVector[24][3]; ///< Vertex index to construction vector map
static float _sVertexIndexToNormalVector[6][3]; ///< Vertex index to normal vector map
};
///
/// @class Renderer
/// GL renderer interface class.
/// Abstract class for rendering geometric primitives in GL
///
class Renderer {
public:
virtual ~Renderer();
// API methods go here
/// Add primitive to renderer database.
///
int add(
Primitive* primitive ///< Primitive instance to be added
);
/// Remove primitive from renderer database.
///
void remove(
int id ///< Primitive id to be removed
);
/// Clear all primitives from renderer database
///
void release();
/// Render primitive database.
/// The render method assumes appropriate GL context and state has
/// already been provided for
///
void render();
/// Get memory usage.
///
unsigned long getMemoryUsage();
/// Get GPU memory usage.
///
unsigned long getMemoryUsageGPU();
protected:
/// Default constructor prohibited to API user, restricted to service implementer.
///
Renderer();
private:
/// Copy constructor prohibited.
///
Renderer(
const Renderer& copy
);
// SPI methods are defined here
/// Add primitive to renderer database.
/// Service implementer to provide private override for this method
/// in derived class
/// @return Primitive id
///
virtual int vAdd(
Primitive* primitive ///< Primitive instance to be added
) = 0;
/// Remove primitive from renderer database.
/// Service implementer to provide private override for this method
/// in derived class
///
virtual void vRemove(
int id ///< Primitive id
) = 0;
/// Clear all primitives from renderer database
/// Service implementer to provide private override for this method
/// in derived class
///
virtual void vRelease() = 0;
/// Render primitive database.
/// Service implementer to provide private virtual override for this method
/// in derived class
///
virtual void vRender() = 0;
/// Get memory usage.
///
virtual unsigned long vGetMemoryUsage() = 0;
/// Get GPU memory usage.
///
virtual unsigned long vGetMemoryUsageGPU() = 0;
};
///
/// @class PrimitiveRenderer
/// Renderer implementation class for the rendering of geometric primitives
/// using GL element array and GL array buffers
///
class PrimitiveRenderer : public Renderer {
public:
/// Configuration dependency injection constructor.
///
PrimitiveRenderer(
int maxCount ///< Max count
);
~PrimitiveRenderer();
private:
/// Default constructor prohibited.
///
PrimitiveRenderer();
/// Copy constructor prohibited.
///
PrimitiveRenderer(
const PrimitiveRenderer& renderer
);
void init();
void terminate();
/// Allocate and initialize GL buffers.
///
void initializeGL();
/// Terminate and deallocate GL buffers.
///
void terminateGL();
void initializeBookkeeping();
void terminateBookkeeping();
/// Construct the elements of the faces of the primitive.
///
void constructElements(
Primitive* primitive ///< Primitive instance
);
/// Deconstruct the elements of the faces of the primitive.
///
void deconstructElements(
Primitive* primitive ///< Primitive instance
);
/// Deconstruct the triangle element from the GL buffer.
///
void deconstructTriElement(
int idx ///< Triangle element index
);
/// Deconstruct the vertex element from the GL buffer.
///
void deconstructVertexElement(
int idx ///< Vertex element index
);
/// Transfer the vertex element to the GL buffer.
///
void transferVertexElement(
int idx, ///< Vertex element index
VertexElement *vertex ///< Vertex element instance
);
/// Transfer the triangle element to the GL buffer.
///
void transferTriElement(
int idx, ///< Triangle element index
int tri[3] ///< Triangle element data
);
/// Get available primitive index.
/// Get an available primitive index from either the recycling
/// queue or incrementing the counter
///
int getAvailablePrimitiveIndex();
/// Get available vertex element index.
/// Get an available vertex element index from either the recycling
/// queue or incrementing the counter
///
int getAvailableVertexElementIndex();
/// Get available triangle element index.
/// Get an available triangle element index from either the elements
/// scheduled for deconstruction queue, the recycling
/// queue or incrementing the counter
///
int getAvailableTriElementIndex();
// SPI virtual override methods go here
/// Add primitive to renderer database.
///
int vAdd(
Primitive* primitive ///< Primitive instance to be added
);
/// Remove primitive from renderer database.
///
void vRemove(
int id ///< Primitive id to be removed
);
/// Clear all primitives from renderer database
///
void vRelease();
/// Render triangle database.
///
void vRender();
/// Get memory usage.
///
unsigned long vGetMemoryUsage();
/// Get gpu memory usage.
///
unsigned long vGetMemoryUsageGPU();
private:
int _maxCount; ///< Maximum count of tris
// GL related parameters
GLuint _triBufferId; ///< GL element array buffer id
GLuint _vertexBufferId; ///< GL vertex array buffer id
// Book keeping parameters
int _vertexElementCount; ///< Count of vertices
int _maxVertexElementCount; ///< Max count of vertices
int _triElementCount; ///< Count of triangles
int _maxTriElementCount; ///< Max count of triangles
QVector<Primitive *> _primitives; ///< Vector of primitive
int _primitiveCount; ///< Count of primitives
QStack<int> _availablePrimitiveIndex; ///< Queue of primitive indices available
QStack<int> _availableVertexElementIndex; ///< Queue of vertex element indices available
QStack<int> _availableTriElementIndex; ///< Queue of triangle element indices available
QStack<int> _deconstructTriElementIndex; ///< Queue of triangle element indices requiring deletion from GL
QStack<int> _constructPrimitiveIndex; ///< Queue of primitives requiring addition to GL
QMutex _guard;
// Statistics parameters, not necessary for proper operation
unsigned long _gpuMemoryUsage; ///< GPU memory used by this instance
unsigned long _cpuMemoryUsage; ///< CPU memory used by this instance
static const int _sIndicesPerTri = 3;
static const int _sBytesPerTriElement = sizeof(GLint) * _sIndicesPerTri;
};
#endif // hifi_PrimitiveRenderer_h

File diff suppressed because it is too large Load diff

View file

@ -25,22 +25,12 @@
#include "Camera.h"
#include "Util.h"
#include "world.h"
#include "renderer/VoxelShader.h"
#include "PrimitiveRenderer.h"
class ProgramObject;
const int NUM_CHILDREN = 8;
struct VoxelShaderVBOData
{
float x, y, z; // position
float s; // size
unsigned char r,g,b; // color
};
class VoxelSystem : public NodeData, public OctreeElementDeleteHook, public OctreeElementUpdateHook {
Q_OBJECT
@ -80,7 +70,6 @@ public:
void killLocalVoxels();
virtual void hideOutOfView(bool forceFullFrustum = false);
void inspectForOcclusions();
bool hasViewChanged();
bool isViewChanging();
@ -97,8 +86,6 @@ public slots:
void clearAllNodesBufferIndex();
void setDisableFastVoxelPipeline(bool disableFastVoxelPipeline);
void setUseVoxelShader(bool useVoxelShader);
void setVoxelsAsPoints(bool voxelsAsPoints);
protected:
float _treeScale;
@ -140,8 +127,6 @@ private:
static bool killSourceVoxelsOperation(OctreeElement* element, void* extraData);
static bool forceRedrawEntireTreeOperation(OctreeElement* element, void* extraData);
static bool clearAllNodesBufferIndexOperation(OctreeElement* element, void* extraData);
static bool inspectForExteriorOcclusionsOperation(OctreeElement* element, void* extraData);
static bool inspectForInteriorOcclusionsOperation(OctreeElement* element, void* extraData);
static bool hideOutOfViewOperation(OctreeElement* element, void* extraData);
static bool hideAllSubTreeOperation(OctreeElement* element, void* extraData);
static bool showAllSubTreeOperation(OctreeElement* element, void* extraData);
@ -191,14 +176,8 @@ private:
void initVoxelMemory();
void cleanupVoxelMemory();
bool _useVoxelShader;
bool _voxelsAsPoints;
bool _voxelShaderModeWhenVoxelsAsPointsEnabled;
GLuint _vboVoxelsID; /// when using voxel shader, we'll use this VBO
GLuint _vboVoxelsIndicesID; /// when using voxel shader, we'll use this VBO for our indexes
VoxelShaderVBOData* _writeVoxelShaderData;
VoxelShaderVBOData* _readVoxelShaderData;
GLuint _vboVerticesID;
GLuint _vboColorsID;
@ -258,17 +237,6 @@ private:
float _lastKnownVoxelSizeScale;
int _lastKnownBoundaryLevelAdjust;
bool _inOcclusions;
bool _showCulledSharedFaces; ///< Flag visibility of culled faces
bool _usePrimitiveRenderer; ///< Flag primitive renderer for use
PrimitiveRenderer* _renderer; ///< Voxel renderer
static const unsigned int _sNumOctantsPerHemiVoxel = 4;
static int _sCorrectedChildIndex[8];
static unsigned short _sSwizzledOcclusionBits[64]; ///< Swizzle value of bit pairs of the value of index
static unsigned char _sOctantIndexToBitMask[8]; ///< Map octant index to partition mask
static unsigned char _sOctantIndexToSharedBitMask[8][8]; ///< Map octant indices to shared partition mask
// haze
bool _drawHaze;
float _farHazeDistance;

View file

@ -138,7 +138,15 @@ static int fbxGeometryMetaTypeId = qRegisterMetaType<FBXGeometry>();
static int fbxAnimationFrameMetaTypeId = qRegisterMetaType<FBXAnimationFrame>();
static int fbxAnimationFrameVectorMetaTypeId = qRegisterMetaType<QVector<FBXAnimationFrame> >();
template<class T> QVariant readBinaryArray(QDataStream& in) {
template<class T> int streamSize() {
return sizeof(T);
}
template<bool> int streamSize() {
return 1;
}
template<class T> QVariant readBinaryArray(QDataStream& in, int& position) {
quint32 arrayLength;
quint32 encoding;
quint32 compressedLength;
@ -146,6 +154,7 @@ template<class T> QVariant readBinaryArray(QDataStream& in) {
in >> arrayLength;
in >> encoding;
in >> compressedLength;
position += sizeof(quint32) * 3;
QVector<T> values;
const unsigned int DEFLATE_ENCODING = 1;
@ -154,6 +163,7 @@ template<class T> QVariant readBinaryArray(QDataStream& in) {
QByteArray compressed(sizeof(quint32) + compressedLength, 0);
*((quint32*)compressed.data()) = qToBigEndian<quint32>(arrayLength * sizeof(T));
in.readRawData(compressed.data() + sizeof(quint32), compressedLength);
position += compressedLength;
QByteArray uncompressed = qUncompress(compressed);
QDataStream uncompressedIn(uncompressed);
uncompressedIn.setByteOrder(QDataStream::LittleEndian);
@ -167,65 +177,74 @@ template<class T> QVariant readBinaryArray(QDataStream& in) {
for (quint32 i = 0; i < arrayLength; i++) {
T value;
in >> value;
position += streamSize<T>();
values.append(value);
}
}
return QVariant::fromValue(values);
}
QVariant parseBinaryFBXProperty(QDataStream& in) {
QVariant parseBinaryFBXProperty(QDataStream& in, int& position) {
char ch;
in.device()->getChar(&ch);
position++;
switch (ch) {
case 'Y': {
qint16 value;
in >> value;
position += sizeof(qint16);
return QVariant::fromValue(value);
}
case 'C': {
bool value;
in >> value;
position++;
return QVariant::fromValue(value);
}
case 'I': {
qint32 value;
in >> value;
position += sizeof(qint32);
return QVariant::fromValue(value);
}
case 'F': {
float value;
in >> value;
position += sizeof(float);
return QVariant::fromValue(value);
}
case 'D': {
double value;
in >> value;
position += sizeof(double);
return QVariant::fromValue(value);
}
case 'L': {
qint64 value;
in >> value;
position += sizeof(qint64);
return QVariant::fromValue(value);
}
case 'f': {
return readBinaryArray<float>(in);
return readBinaryArray<float>(in, position);
}
case 'd': {
return readBinaryArray<double>(in);
return readBinaryArray<double>(in, position);
}
case 'l': {
return readBinaryArray<qint64>(in);
return readBinaryArray<qint64>(in, position);
}
case 'i': {
return readBinaryArray<qint32>(in);
return readBinaryArray<qint32>(in, position);
}
case 'b': {
return readBinaryArray<bool>(in);
return readBinaryArray<bool>(in, position);
}
case 'S':
case 'R': {
quint32 length;
in >> length;
position += sizeof(quint32) + length;
return QVariant::fromValue(in.device()->read(length));
}
default:
@ -233,8 +252,8 @@ QVariant parseBinaryFBXProperty(QDataStream& in) {
}
}
FBXNode parseBinaryFBXNode(QDataStream& in) {
quint32 endOffset;
FBXNode parseBinaryFBXNode(QDataStream& in, int& position) {
qint32 endOffset;
quint32 propertyCount;
quint32 propertyListLength;
quint8 nameLength;
@ -243,21 +262,23 @@ FBXNode parseBinaryFBXNode(QDataStream& in) {
in >> propertyCount;
in >> propertyListLength;
in >> nameLength;
position += sizeof(quint32) * 3 + sizeof(quint8);
FBXNode node;
const unsigned int MIN_VALID_OFFSET = 40;
const int MIN_VALID_OFFSET = 40;
if (endOffset < MIN_VALID_OFFSET || nameLength == 0) {
// use a null name to indicate a null node
return node;
}
node.name = in.device()->read(nameLength);
position += nameLength;
for (quint32 i = 0; i < propertyCount; i++) {
node.properties.append(parseBinaryFBXProperty(in));
node.properties.append(parseBinaryFBXProperty(in, position));
}
while (endOffset > in.device()->pos()) {
FBXNode child = parseBinaryFBXNode(in);
while (endOffset > position) {
FBXNode child = parseBinaryFBXNode(in, position);
if (child.name.isNull()) {
return node;
@ -416,11 +437,12 @@ FBXNode parseFBX(QIODevice* device) {
// skip the rest of the header
const int HEADER_SIZE = 27;
in.skipRawData(HEADER_SIZE);
int position = HEADER_SIZE;
// parse the top-level node
FBXNode top;
while (device->bytesAvailable()) {
FBXNode next = parseBinaryFBXNode(in);
FBXNode next = parseBinaryFBXNode(in, position);
if (next.name.isNull()) {
return top;
@ -2516,7 +2538,11 @@ QByteArray writeMapping(const QVariantHash& mapping) {
FBXGeometry readFBX(const QByteArray& model, const QVariantHash& mapping, bool loadLightmaps, float lightmapLevel) {
QBuffer buffer(const_cast<QByteArray*>(&model));
buffer.open(QIODevice::ReadOnly);
return extractFBXGeometry(parseFBX(&buffer), mapping, loadLightmaps, lightmapLevel);
return readFBX(&buffer, mapping, loadLightmaps, lightmapLevel);
}
FBXGeometry readFBX(QIODevice* device, const QVariantHash& mapping, bool loadLightmaps, float lightmapLevel) {
return extractFBXGeometry(parseFBX(device), mapping, loadLightmaps, lightmapLevel);
}
bool addMeshVoxelsOperation(OctreeElement* element, void* extraData) {

View file

@ -24,6 +24,8 @@
#include <glm/glm.hpp>
#include <glm/gtc/quaternion.hpp>
class QIODevice;
class FBXNode;
typedef QList<FBXNode> FBXNodeList;
@ -272,6 +274,10 @@ QByteArray writeMapping(const QVariantHash& mapping);
/// \exception QString if an error occurs in parsing
FBXGeometry readFBX(const QByteArray& model, const QVariantHash& mapping, bool loadLightmaps = true, float lightmapLevel = 1.0f);
/// Reads FBX geometry from the supplied model and mapping data.
/// \exception QString if an error occurs in parsing
FBXGeometry readFBX(QIODevice* device, const QVariantHash& mapping, bool loadLightmaps = true, float lightmapLevel = 1.0f);
/// Reads SVO geometry from the supplied model data.
FBXGeometry readSVO(const QByteArray& model);

View file

@ -73,6 +73,7 @@ void DomainHandler::hardReset() {
qDebug() << "Hard reset in NodeList DomainHandler.";
_iceDomainID = QUuid();
_iceServerSockAddr = HifiSockAddr();
_hostname = QString();
_sockAddr.setAddress(QHostAddress::Null);
}

View file

@ -728,6 +728,10 @@ bool Octree::findRayIntersection(const glm::vec3& origin, const glm::vec3& direc
}
recurseTreeWithOperation(findRayIntersectionOp, &args);
if (args.found) {
args.distance *= (float)(TREE_SCALE); // scale back up to meters
}
if (gotLock) {
unlock();

View file

@ -39,6 +39,7 @@ void registerMetaTypes(QScriptEngine* engine) {
qScriptRegisterMetaType(engine, pickRayToScriptValue, pickRayFromScriptValue);
qScriptRegisterMetaType(engine, collisionToScriptValue, collisionFromScriptValue);
qScriptRegisterMetaType(engine, quuidToScriptValue, quuidFromScriptValue);
qScriptRegisterMetaType(engine, qSizeFToScriptValue, qSizeFFromScriptValue);
}
QScriptValue vec4toScriptValue(QScriptEngine* engine, const glm::vec4& vec4) {
@ -206,3 +207,14 @@ void quuidFromScriptValue(const QScriptValue& object, QUuid& uuid) {
uuid = fromString;
}
QScriptValue qSizeFToScriptValue(QScriptEngine* engine, const QSizeF& qSizeF) {
QScriptValue obj = engine->newObject();
obj.setProperty("width", qSizeF.width());
obj.setProperty("height", qSizeF.height());
return obj;
}
void qSizeFFromScriptValue(const QScriptValue& object, QSizeF& qSizeF) {
qSizeF.setWidth(object.property("width").toVariant().toFloat());
qSizeF.setHeight(object.property("height").toVariant().toFloat());
}

View file

@ -81,4 +81,8 @@ void collisionFromScriptValue(const QScriptValue &object, Collision& collision);
QScriptValue quuidToScriptValue(QScriptEngine* engine, const QUuid& uuid);
void quuidFromScriptValue(const QScriptValue& object, QUuid& uuid);
//Q_DECLARE_METATYPE(QSizeF) // Don't need to to this becase it's arleady a meta type
QScriptValue qSizeFToScriptValue(QScriptEngine* engine, const QSizeF& qSizeF);
void qSizeFFromScriptValue(const QScriptValue& object, QSizeF& qSizeF);
#endif // hifi_RegisteredMetaTypes_h

View file

@ -9,21 +9,43 @@
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include <QCoreApplication>
#include "ShutdownEventListener.h"
#ifdef Q_OS_WIN
#include <Windows.h>
#else
#include <csignal>
#endif
ShutdownEventListener::ShutdownEventListener(QObject* parent) : QObject(parent) {
ShutdownEventListener& ShutdownEventListener::getInstance() {
static ShutdownEventListener staticInstance;
return staticInstance;
}
void signalHandler(int param) {
// tell the qApp it should quit
QMetaObject::invokeMethod(qApp, "quit");
}
ShutdownEventListener::ShutdownEventListener(QObject* parent) :
QObject(parent)
{
#ifndef Q_OS_WIN
// be a signal handler for SIGTERM so we can stop our children when we get it
signal(SIGTERM, signalHandler);
#endif
}
bool ShutdownEventListener::nativeEventFilter(const QByteArray &eventType, void* msg, long* result) {
#ifdef Q_OS_WIN
if (eventType == "windows_generic_MSG") {
MSG* message = (MSG*)msg;
if (message->message == WM_CLOSE) {
emit receivedCloseEvent();
// tell our registered application to quit
QMetaObject::invokeMethod(qApp, "quit");
}
}
#endif

View file

@ -18,12 +18,11 @@
class ShutdownEventListener : public QObject, public QAbstractNativeEventFilter {
Q_OBJECT
public:
ShutdownEventListener(QObject* parent = NULL);
static ShutdownEventListener& getInstance();
virtual bool nativeEventFilter(const QByteArray& eventType, void* message, long* result);
signals:
void receivedCloseEvent();
private:
ShutdownEventListener(QObject* parent = 0);
};
#endif // hifi_ShutdownEventListener_h