cleaning up the SH generation

This commit is contained in:
Sam Cake 2015-05-13 16:00:05 -07:00
parent 8324268ec8
commit 238d3751c5
4 changed files with 233 additions and 223 deletions

View file

@ -53,7 +53,7 @@ void Skybox::render(gpu::Batch& batch, const ViewFrustum& viewFrustum, const Sky
if (skybox.getCubemap() && skybox.getCubemap()->isDefined()) {
skybox.getAmbientSH();
skybox.getIrradianceSH();
static gpu::PipelinePointer thePipeline;
static gpu::BufferPointer theBuffer;
@ -121,250 +121,221 @@ void Skybox::render(gpu::Batch& batch, const ViewFrustum& viewFrustum, const Sky
}
glm::vec3 sRGBToLinear(glm::vec3& color) {
const float GAMMA_CORRECTION = 2.2f;
return glm::pow(color, glm::vec3(GAMMA_CORRECTION));
}
void sphericalHarmonicsAdd(float * result, int order,
const float * inputA, const float * inputB)
{
glm::vec3 linearTosRGB(glm::vec3& color) {
const float GAMMA_CORRECTION_INV = 1.0f / 2.2f;
return glm::pow(color, glm::vec3(GAMMA_CORRECTION_INV));
}
// Originial code for the Spherical Harmonics taken from "Sun and Black Cat- Igor Dykhta (igor dykhta email) © 2007-2014 "
void sphericalHarmonicsAdd(float * result, int order, const float * inputA, const float * inputB) {
const int numCoeff = order * order;
for(int i=0; i < numCoeff; i++)
{
for(int i=0; i < numCoeff; i++) {
result[i] = inputA[i] + inputB[i];
}
}
void sphericalHarmonicsScale(float * result, int order,
const float * input, float scale)
{
void sphericalHarmonicsScale(float * result, int order, const float * input, float scale) {
const int numCoeff = order * order;
for(int i=0; i < numCoeff; i++)
{
for(int i=0; i < numCoeff; i++) {
result[i] = input[i] * scale;
}
}
void sphericalHarmonicsEvaluateDirection(float * result, int order,
const glm::vec3 & dir)
{
void sphericalHarmonicsEvaluateDirection(float * result, int order, const glm::vec3 & dir) {
// calculate coefficients for first 3 bands of spherical harmonics
double p_0_0 = 0.282094791773878140;
double p_1_0 = 0.488602511902919920 * dir.z;
double p_1_1 = -0.488602511902919920;
double p_2_0 = 0.946174695757560080 * dir.z * dir.z - 0.315391565252520050;
double p_2_1 = -1.092548430592079200 * dir.z;
double p_2_2 = 0.546274215296039590;
result[0] = p_0_0;
result[1] = p_1_1 * dir.y;
result[2] = p_1_0;
result[3] = p_1_1 * dir.x;
result[4] = p_2_2 * (dir.x * dir.y + dir.y * dir.x);
result[5] = p_2_1 * dir.y;
result[6] = p_2_0;
result[7] = p_2_1 * dir.x;
result[8] = p_2_2 * (dir.x * dir.x - dir.y * dir.y);
double P_0_0 = 0.282094791773878140;
double P_1_0 = 0.488602511902919920 * dir.z;
double P_1_1 = -0.488602511902919920;
double P_2_0 = 0.946174695757560080 * dir.z * dir.z - 0.315391565252520050;
double P_2_1 = -1.092548430592079200 * dir.z;
double P_2_2 = 0.546274215296039590;
result[0] = P_0_0;
result[1] = P_1_1 * dir.y;
result[2] = P_1_0;
result[3] = P_1_1 * dir.x;
result[4] = P_2_2 * (dir.x * dir.y + dir.y * dir.x);
result[5] = P_2_1 * dir.y;
result[6] = P_2_0;
result[7] = P_2_1 * dir.x;
result[8] = P_2_2 * (dir.x * dir.x - dir.y * dir.y);
}
void sphericalHarmonicsFromTexture(const gpu::Texture& cubeTexture,
std::vector<glm::vec3> & output, const uint order)
{
const uint sqOrder = order*order;
void sphericalHarmonicsFromTexture(const gpu::Texture& cubeTexture, std::vector<glm::vec3> & output, const uint order) {
const uint sqOrder = order*order;
// allocate memory for calculations
output.resize(sqOrder);
std::vector<float> resultR(sqOrder);
std::vector<float> resultG(sqOrder);
std::vector<float> resultB(sqOrder);
// allocate memory for calculations
output.resize(sqOrder);
std::vector<float> resultR(sqOrder);
std::vector<float> resultG(sqOrder);
std::vector<float> resultB(sqOrder);
// variables that describe current face of cube texture
//std::unique_ptr data;
GLint width, height;
GLint internalFormat;
GLint numComponents;
// initialize values
float fWt = 0.0f;
for(uint i=0; i < sqOrder; i++)
{
output[i].x = 0;
output[i].y = 0;
output[i].z = 0;
resultR[i] = 0;
resultG[i] = 0;
resultB[i] = 0;
}
std::vector<float> shBuff(sqOrder);
std::vector<float> shBuffB(sqOrder);
// bind current texture
// glBindTexture(GL_TEXTURE_CUBE_MAP, cubeTexture->texture());
// for each face of cube texture
for(int face=0; face < 6; face++)
{
// get width and height
// glGetTexLevelParameteriv(cubeSides[face], 0, GL_TEXTURE_WIDTH, &width);
// glGetTexLevelParameteriv(cubeSides[face], 0, GL_TEXTURE_HEIGHT, &height);
int width, height;
// initialize values
float fWt = 0.0f;
for(uint i=0; i < sqOrder; i++) {
output[i] = glm::vec3(0.0f);
resultR[i] = 0.0f;
resultG[i] = 0;
resultB[i] = 0;
}
std::vector<float> shBuff(sqOrder);
std::vector<float> shBuffB(sqOrder);
// get width and height
width = height = cubeTexture.getWidth();
if(width != height)
{
return;
}
if(width != height) {
return;
}
numComponents = cubeTexture.accessStoredMipFace(0,face)->_format.getDimensionCount();
const float UCHAR_TO_FLOAT = 1.0f / float(std::numeric_limits<unsigned char>::max());
auto data = cubeTexture.accessStoredMipFace(0,face)->_sysmem.readData();
// for each face of cube texture
for(int face=0; face < gpu::Texture::NUM_CUBE_FACES; face++) {
// step between two texels for range [0, 1]
float invWidth = 1.0f / float(width);
// initial negative bound for range [-1, 1]
float negativeBound = -1.0f + invWidth;
// step between two texels for range [-1, 1]
float invWidthBy2 = 2.0f / float(width);
auto numComponents = cubeTexture.accessStoredMipFace(0,face)->_format.getDimensionCount();
auto data = cubeTexture.accessStoredMipFace(0,face)->_sysmem.readData();
if (data == nullptr) {
continue;
}
for(int y=0; y < width; y++)
{
// texture coordinate V in range [-1 to 1]
const float fV = negativeBound + float(y) * invWidthBy2;
// step between two texels for range [0, 1]
float invWidth = 1.0f / float(width);
// initial negative bound for range [-1, 1]
float negativeBound = -1.0f + invWidth;
// step between two texels for range [-1, 1]
float invWidthBy2 = 2.0f / float(width);
for(int x=0; x < width; x++)
{
// texture coordinate U in range [-1 to 1]
const float fU = negativeBound + float(x) * invWidthBy2;
for(int y=0; y < width; y++) {
// texture coordinate V in range [-1 to 1]
const float fV = negativeBound + float(y) * invWidthBy2;
// determine direction from center of cube texture to current texel
glm::vec3 dir;
switch(face)
{
case gpu::Texture::CUBE_FACE_RIGHT_POS_X:
dir.x = 1.0f;
dir.y = 1.0f - (invWidthBy2 * float(y) + invWidth);
dir.z = 1.0f - (invWidthBy2 * float(x) + invWidth);
dir = -dir;
break;
case gpu::Texture::CUBE_FACE_LEFT_NEG_X:
dir.x = -1.0f;
dir.y = 1.0f - (invWidthBy2 * float(y) + invWidth);
dir.z = -1.0f + (invWidthBy2 * float(x) + invWidth);
dir = -dir;
break;
case gpu::Texture::CUBE_FACE_TOP_POS_Y:
dir.x = - 1.0f + (invWidthBy2 * float(x) + invWidth);
dir.y = 1.0f;
dir.z = - 1.0f + (invWidthBy2 * float(y) + invWidth);
dir = -dir;
break;
case gpu::Texture::CUBE_FACE_BOTTOM_NEG_Y:
dir.x = - 1.0f + (invWidthBy2 * float(x) + invWidth);
dir.y = - 1.0f;
dir.z = 1.0f - (invWidthBy2 * float(y) + invWidth);
dir = -dir;
break;
case gpu::Texture::CUBE_FACE_BACK_POS_Z:
dir.x = - 1.0f + (invWidthBy2 * float(x) + invWidth);
dir.y = 1.0f - (invWidthBy2 * float(y) + invWidth);
dir.z = 1.0f;
break;
case gpu::Texture::CUBE_FACE_FRONT_NEG_Z:
dir.x = 1.0f - (invWidthBy2 * float(x) + invWidth);
dir.y = 1.0f - (invWidthBy2 * float(y) + invWidth);
dir.z = - 1.0f;
break;
default:
return;
for(int x=0; x < width; x++) {
// texture coordinate U in range [-1 to 1]
const float fU = negativeBound + float(x) * invWidthBy2;
// determine direction from center of cube texture to current texel
glm::vec3 dir;
switch(face) {
case gpu::Texture::CUBE_FACE_RIGHT_POS_X: {
dir.x = 1.0f;
dir.y = 1.0f - (invWidthBy2 * float(y) + invWidth);
dir.z = 1.0f - (invWidthBy2 * float(x) + invWidth);
dir = -dir;
break;
}
case gpu::Texture::CUBE_FACE_LEFT_NEG_X: {
dir.x = -1.0f;
dir.y = 1.0f - (invWidthBy2 * float(y) + invWidth);
dir.z = -1.0f + (invWidthBy2 * float(x) + invWidth);
dir = -dir;
break;
}
case gpu::Texture::CUBE_FACE_TOP_POS_Y: {
dir.x = - 1.0f + (invWidthBy2 * float(x) + invWidth);
dir.y = 1.0f;
dir.z = - 1.0f + (invWidthBy2 * float(y) + invWidth);
dir = -dir;
break;
}
case gpu::Texture::CUBE_FACE_BOTTOM_NEG_Y: {
dir.x = - 1.0f + (invWidthBy2 * float(x) + invWidth);
dir.y = - 1.0f;
dir.z = 1.0f - (invWidthBy2 * float(y) + invWidth);
dir = -dir;
break;
}
case gpu::Texture::CUBE_FACE_BACK_POS_Z: {
dir.x = - 1.0f + (invWidthBy2 * float(x) + invWidth);
dir.y = 1.0f - (invWidthBy2 * float(y) + invWidth);
dir.z = 1.0f;
break;
}
case gpu::Texture::CUBE_FACE_FRONT_NEG_Z: {
dir.x = 1.0f - (invWidthBy2 * float(x) + invWidth);
dir.y = 1.0f - (invWidthBy2 * float(y) + invWidth);
dir.z = - 1.0f;
break;
}
default:
return;
}
// normalize direction
dir = glm::normalize(dir);
// scale factor depending on distance from center of the face
const float fDiffSolid = 4.0f / ((1.0f + fU*fU + fV*fV) *
sqrtf(1.0f + fU*fU + fV*fV));
fWt += fDiffSolid;
// calculate coefficients of spherical harmonics for current direction
sphericalHarmonicsEvaluateDirection(shBuff.data(), order, dir);
// index of texel in texture
uint pixOffsetIndex = (x + y * width) * numComponents;
// get color from texture and map to range [0, 1]
glm::vec3 clr(float(data[pixOffsetIndex]) * UCHAR_TO_FLOAT,
float(data[pixOffsetIndex+1]) * UCHAR_TO_FLOAT,
float(data[pixOffsetIndex+2]) * UCHAR_TO_FLOAT);
// Gamma correct
clr = sRGBToLinear(clr);
// scale color and add to previously accumulated coefficients
sphericalHarmonicsScale(shBuffB.data(), order,
shBuff.data(), clr.r * fDiffSolid);
sphericalHarmonicsAdd(resultR.data(), order,
resultR.data(), shBuffB.data());
sphericalHarmonicsScale(shBuffB.data(), order,
shBuff.data(), clr.g * fDiffSolid);
sphericalHarmonicsAdd(resultG.data(), order,
resultG.data(), shBuffB.data());
sphericalHarmonicsScale(shBuffB.data(), order,
shBuff.data(), clr.b * fDiffSolid);
sphericalHarmonicsAdd(resultB.data(), order,
resultB.data(), shBuffB.data());
}
// normalize direction
dir = glm::normalize(dir);
// scale factor depending on distance from center of the face
const float fDiffSolid = 4.0f / ((1.0f + fU*fU + fV*fV) *
sqrtf(1.0f + fU*fU + fV*fV));
fWt += fDiffSolid;
// calculate coefficients of spherical harmonics for current direction
sphericalHarmonicsEvaluateDirection(shBuff.data(), order, dir);
// index of texel in texture
uint pixOffsetIndex = (x + y * width) * numComponents;
// get color from texture and map to range [0, 1]
glm::vec3 clr(
float(data[pixOffsetIndex]) / 255,
float(data[pixOffsetIndex+1]) / 255,
float(data[pixOffsetIndex+2]) / 255
);
// scale color and add to previously accumulated coefficients
sphericalHarmonicsScale(shBuffB.data(), order,
shBuff.data(), clr.r * fDiffSolid);
sphericalHarmonicsAdd(resultR.data(), order,
resultR.data(), shBuffB.data());
sphericalHarmonicsScale(shBuffB.data(), order,
shBuff.data(), clr.g * fDiffSolid);
sphericalHarmonicsAdd(resultG.data(), order,
resultG.data(), shBuffB.data());
sphericalHarmonicsScale(shBuffB.data(), order,
shBuff.data(), clr.b * fDiffSolid);
sphericalHarmonicsAdd(resultB.data(), order,
resultB.data(), shBuffB.data());
}
}
}
// final scale for coefficients
const float fNormProj = (4.0f * glm::pi<float>()) / fWt;
sphericalHarmonicsScale(resultR.data(), order, resultR.data(), fNormProj);
sphericalHarmonicsScale(resultG.data(), order, resultG.data(), fNormProj);
sphericalHarmonicsScale(resultB.data(), order, resultB.data(), fNormProj);
// save result
for(uint i=0; i < sqOrder; i++)
{
output[i].r = resultR[i];
output[i].g = resultG[i];
output[i].b = resultB[i];
}
}
/*
glm::vec3 sphericalHarmonicsFromTexture(glm::vec3 & N, std::vector & coef)
{
return
// constant term, lowest frequency //////
C4 * coef[0] +
// axis aligned terms ///////////////////
2.0 * C2 * coef[1] * N.y +
2.0 * C2 * coef[2] * N.z +
2.0 * C2 * coef[3] * N.x +
// band 2 terms /////////////////////////
2.0 * C1 * coef[4] * N.x * N.y +
2.0 * C1 * coef[5] * N.y * N.z +
C3 * coef[6] * N.z * N.z - C5 * coef[6] +
2.0 * C1 * coef[7] * N.x * N.z +
C1 * coef[8] * (N.x * N.x - N.y * N.y);
}
*/
const SphericalHarmonics& Skybox::getAmbientSH() const {
if (!_isSHValid) {
if (_cubemap && _cubemap->isDefined()) {
std::vector< glm::vec3 > coefs(10, glm::vec3(0.0f));
sphericalHarmonicsFromTexture(*_cubemap, coefs, 3);
_ambientSH.L00 = coefs[0];
_ambientSH.L1m1 = coefs[1];
_ambientSH.L10 = coefs[2];
_ambientSH.L11 = coefs[3];
_ambientSH.L2m2 = coefs[4];
_ambientSH.L2m1 = coefs[5];
_ambientSH.L20 = coefs[6];
_ambientSH.L21 = coefs[7];
_ambientSH.L22 = coefs[8];
_isSHValid = true;
}
}
return _ambientSH;
// final scale for coefficients
const float fNormProj = (4.0f * glm::pi<float>()) / fWt;
sphericalHarmonicsScale(resultR.data(), order, resultR.data(), fNormProj);
sphericalHarmonicsScale(resultG.data(), order, resultG.data(), fNormProj);
sphericalHarmonicsScale(resultB.data(), order, resultB.data(), fNormProj);
// save result
for(uint i=0; i < sqOrder; i++) {
// gamma Correct
// output[i] = linearTosRGB(glm::vec3(resultR[i], resultG[i], resultB[i]));
output[i] = glm::vec3(resultR[i], resultG[i], resultB[i]);
}
}
const SphericalHarmonics& Skybox::getIrradianceSH() const {
if (!_isSHValid) {
if (_cubemap && _cubemap->isDefined()) {
std::vector< glm::vec3 > coefs;
sphericalHarmonicsFromTexture(*_cubemap, coefs, 3);
_irradianceSH.L00 = coefs[0];
_irradianceSH.L1m1 = coefs[1];
_irradianceSH.L10 = coefs[2];
_irradianceSH.L11 = coefs[3];
_irradianceSH.L2m2 = coefs[4];
_irradianceSH.L2m1 = coefs[5];
_irradianceSH.L20 = coefs[6];
_irradianceSH.L21 = coefs[7];
_irradianceSH.L22 = coefs[8];
_isSHValid = true;
}
}
return _irradianceSH;
}

View file

@ -36,14 +36,14 @@ public:
const gpu::TexturePointer& getCubemap() const { return _cubemap; }
void clearCubemap();
const SphericalHarmonics& getAmbientSH() const;
const SphericalHarmonics& getIrradianceSH() const;
static void render(gpu::Batch& batch, const ViewFrustum& frustum, const Skybox& skybox);
protected:
gpu::TexturePointer _cubemap;
mutable SphericalHarmonics _ambientSH;
mutable SphericalHarmonics _irradianceSH;
mutable bool _isSHValid = false;
Color _color{1.0f, 1.0f, 1.0f};

View file

@ -293,7 +293,7 @@ void DeferredLightingEffect::render() {
if (locations->ambientSphere >= 0) {
model::SphericalHarmonics sh;
if (useSkyboxCubemap) {
sh = _skybox->getAmbientSH();
sh = _skybox->getIrradianceSH();
} else {
sh = globalLight->getAmbientSphere();
}

View file

@ -603,6 +603,45 @@ void NetworkTexture::setImage(const QImage& image, bool translucent, const QColo
faces.push_back(image.copy(QRect(3 * faceWidth, faceWidth, faceWidth, faceWidth)).mirrored(true, false));
// Front = -Z
faces.push_back(image.copy(QRect(1 * faceWidth, faceWidth, faceWidth, faceWidth)).mirrored(true, false));
} else if ((_height / 4) == (_width / 3)) {
int faceWidth = _height / 4;
// Here is the expected layout for the faces in an image with the 4/3 aspect ratio:
//
// <-------WIDTH-------->
// ^ +------+------+------+
// | | | | |
// | | | +Y | |
// | | | | |
// H +------+------+------+
// E | | | |
// I | -X | -Z | +X |
// G | | | |
// H +------+------+------+
// T | | | |
// | | | -Y | |
// | | | | |
// | +------+------+------+
// | | | | |
// | | | +Z! | | <+Z is upside down!
// | | | | |
// V +------+------+------+
//
// FaceWidth = width / 3 = height / 4
// Right = +X
faces.push_back(image.copy(QRect(2 * faceWidth, faceWidth, faceWidth, faceWidth)).mirrored(true, false));
// Left = -X
faces.push_back(image.copy(QRect(0 * faceWidth, faceWidth, faceWidth, faceWidth)).mirrored(true, false));
// Top = +Y
faces.push_back(image.copy(QRect(1 * faceWidth, 0, faceWidth, faceWidth)).mirrored(false, true));
// Bottom = -Y
faces.push_back(image.copy(QRect(1 * faceWidth, 2 * faceWidth, faceWidth, faceWidth)).mirrored(false, true));
// Back = +Z
faces.push_back(image.copy(QRect(1 * faceWidth, 3 * faceWidth, faceWidth, faceWidth)).mirrored(false, true));
// Front = -Z
faces.push_back(image.copy(QRect(1 * faceWidth, faceWidth, faceWidth, faceWidth)).mirrored(true, false));
}
if (faces.size() == gpu::Texture::NUM_FACES_PER_TYPE[gpu::Texture::TEX_CUBE]) {