Merge branch 'master' of https://github.com/highfidelity/hifi into record_feature

This commit is contained in:
Atlante45 2014-08-18 14:23:40 -07:00
commit 1d30b52ec2
18 changed files with 489 additions and 275 deletions

View file

@ -242,6 +242,8 @@ Application::Application(int& argc, char** argv, QElapsedTimer &startup_time) :
connect(&domainHandler, SIGNAL(hostnameChanged(const QString&)), SLOT(domainChanged(const QString&)));
connect(&domainHandler, SIGNAL(connectedToDomain(const QString&)), SLOT(connectedToDomain(const QString&)));
connect(&domainHandler, SIGNAL(connectedToDomain(const QString&)), SLOT(updateWindowTitle()));
connect(&domainHandler, SIGNAL(disconnectedFromDomain()), SLOT(updateWindowTitle()));
connect(&domainHandler, &DomainHandler::settingsReceived, this, &Application::domainSettingsReceived);
// hookup VoxelEditSender to PaymentManager so we can pay for octree edits
@ -3341,9 +3343,10 @@ void Application::updateWindowTitle(){
QString buildVersion = " (build " + applicationVersion() + ")";
NodeList* nodeList = NodeList::getInstance();
QString connectionStatus = nodeList->getDomainHandler().isConnected() ? "" : " (NOT CONNECTED) ";
QString username = AccountManager::getInstance().getAccountInfo().getUsername();
QString title = QString() + (!username.isEmpty() ? username + " @ " : QString())
+ nodeList->getDomainHandler().getHostname() + buildVersion;
+ nodeList->getDomainHandler().getHostname() + connectionStatus + buildVersion;
AccountManager& accountManager = AccountManager::getInstance();
if (accountManager.getAccountInfo().hasBalance()) {

View file

@ -84,10 +84,11 @@ MyAvatar::MyAvatar() :
for (int i = 0; i < MAX_DRIVE_KEYS; i++) {
_driveKeys[i] = 0.0f;
}
_skeletonModel.setEnableShapes(true);
// The skeleton is both a PhysicsEntity and Ragdoll, so we add it to the simulation once for each type.
_physicsSimulation.setEntity(&_skeletonModel);
_physicsSimulation.setRagdoll(&_skeletonModel);
_skeletonModel.setEnableShapes(true);
Ragdoll* ragdoll = _skeletonModel.buildRagdoll();
_physicsSimulation.setRagdoll(ragdoll);
}
MyAvatar::~MyAvatar() {
@ -1678,10 +1679,10 @@ void MyAvatar::updateCollisionWithAvatars(float deltaTime) {
if (simulation != &(_physicsSimulation)) {
skeleton->setEnableShapes(true);
_physicsSimulation.addEntity(skeleton);
_physicsSimulation.addRagdoll(skeleton);
_physicsSimulation.addRagdoll(skeleton->getRagdoll());
}
} else if (simulation == &(_physicsSimulation)) {
_physicsSimulation.removeRagdoll(skeleton);
_physicsSimulation.removeRagdoll(skeleton->getRagdoll());
_physicsSimulation.removeEntity(skeleton);
skeleton->setEnableShapes(false);
}

View file

@ -23,13 +23,19 @@
#include "Menu.h"
#include "MuscleConstraint.h"
#include "SkeletonModel.h"
#include "SkeletonRagdoll.h"
SkeletonModel::SkeletonModel(Avatar* owningAvatar, QObject* parent) :
Model(parent),
Ragdoll(),
_owningAvatar(owningAvatar),
_boundingShape(),
_boundingShapeLocalOffset(0.0f) {
_boundingShapeLocalOffset(0.0f),
_ragdoll(NULL) {
}
SkeletonModel::~SkeletonModel() {
delete _ragdoll;
_ragdoll = NULL;
}
void SkeletonModel::setJointStates(QVector<JointState> states) {
@ -161,9 +167,6 @@ void SkeletonModel::getBodyShapes(QVector<const Shape*>& shapes) const {
void SkeletonModel::renderIKConstraints() {
renderJointConstraints(getRightHandJointIndex());
renderJointConstraints(getLeftHandJointIndex());
//if (isActive() && _owningAvatar->isMyAvatar()) {
// renderRagdoll();
//}
}
class IndexValue {
@ -495,21 +498,25 @@ bool SkeletonModel::getEyePositions(glm::vec3& firstEyePosition, glm::vec3& seco
}
void SkeletonModel::renderRagdoll() {
if (!_ragdoll) {
return;
}
const QVector<VerletPoint>& points = _ragdoll->getPoints();
const int BALL_SUBDIVISIONS = 6;
glDisable(GL_DEPTH_TEST);
glDisable(GL_LIGHTING);
glPushMatrix();
Application::getInstance()->loadTranslatedViewMatrix(_translation);
int numPoints = _ragdollPoints.size();
int numPoints = points.size();
float alpha = 0.3f;
float radius1 = 0.008f;
float radius2 = 0.01f;
glm::vec3 simulationTranslation = getTranslationInSimulationFrame();
glm::vec3 simulationTranslation = _ragdoll->getTranslationInSimulationFrame();
for (int i = 0; i < numPoints; ++i) {
glPushMatrix();
// NOTE: ragdollPoints are in simulation-frame but we want them to be model-relative
glm::vec3 position = _ragdollPoints[i]._position - simulationTranslation;
glm::vec3 position = points[i]._position - simulationTranslation;
glTranslatef(position.x, position.y, position.z);
// draw each point as a yellow hexagon with black border
glColor4f(0.0f, 0.0f, 0.0f, alpha);
@ -523,109 +530,18 @@ void SkeletonModel::renderRagdoll() {
glEnable(GL_LIGHTING);
}
// virtual
void SkeletonModel::initRagdollPoints() {
clearRagdollConstraintsAndPoints();
_muscleConstraints.clear();
initRagdollTransform();
// one point for each joint
int numStates = _jointStates.size();
_ragdollPoints.fill(VerletPoint(), numStates);
for (int i = 0; i < numStates; ++i) {
const JointState& state = _jointStates.at(i);
// _ragdollPoints start in model-frame
_ragdollPoints[i].initPosition(state.getPosition());
}
}
void SkeletonModel::buildRagdollConstraints() {
// NOTE: the length of DistanceConstraints is computed and locked in at this time
// so make sure the ragdoll positions are in a normal configuration before here.
const int numPoints = _ragdollPoints.size();
assert(numPoints == _jointStates.size());
float minBone = FLT_MAX;
float maxBone = -FLT_MAX;
QMultiMap<int, int> families;
for (int i = 0; i < numPoints; ++i) {
const JointState& state = _jointStates.at(i);
int parentIndex = state.getParentIndex();
if (parentIndex == -1) {
FixedConstraint* anchor = new FixedConstraint(&_translationInSimulationFrame, &(_ragdollPoints[i]));
_fixedConstraints.push_back(anchor);
} else {
DistanceConstraint* bone = new DistanceConstraint(&(_ragdollPoints[i]), &(_ragdollPoints[parentIndex]));
bone->setDistance(state.getDistanceToParent());
_boneConstraints.push_back(bone);
families.insert(parentIndex, i);
}
float boneLength = glm::length(state.getPositionInParentFrame());
if (boneLength > maxBone) {
maxBone = boneLength;
} else if (boneLength < minBone) {
minBone = boneLength;
}
}
// Joints that have multiple children effectively have rigid constraints between the children
// in the parent frame, so we add DistanceConstraints between children in the same family.
QMultiMap<int, int>::iterator itr = families.begin();
while (itr != families.end()) {
QList<int> children = families.values(itr.key());
int numChildren = children.size();
if (numChildren > 1) {
for (int i = 1; i < numChildren; ++i) {
DistanceConstraint* bone = new DistanceConstraint(&(_ragdollPoints[children[i-1]]), &(_ragdollPoints[children[i]]));
_boneConstraints.push_back(bone);
}
if (numChildren > 2) {
DistanceConstraint* bone = new DistanceConstraint(&(_ragdollPoints[children[numChildren-1]]), &(_ragdollPoints[children[0]]));
_boneConstraints.push_back(bone);
}
}
++itr;
}
float MAX_STRENGTH = 0.6f;
float MIN_STRENGTH = 0.05f;
// each joint gets a MuscleConstraint to its parent
for (int i = 1; i < numPoints; ++i) {
const JointState& state = _jointStates.at(i);
int p = state.getParentIndex();
if (p == -1) {
continue;
}
MuscleConstraint* constraint = new MuscleConstraint(&(_ragdollPoints[p]), &(_ragdollPoints[i]));
_muscleConstraints.push_back(constraint);
// Short joints are more susceptible to wiggle so we modulate the strength based on the joint's length:
// long = weak and short = strong.
constraint->setIndices(p, i);
float boneLength = glm::length(state.getPositionInParentFrame());
float strength = MIN_STRENGTH + (MAX_STRENGTH - MIN_STRENGTH) * (maxBone - boneLength) / (maxBone - minBone);
if (!families.contains(i)) {
// Although muscles only pull on the children not parents, nevertheless those joints that have
// parents AND children are more stable than joints at the end such as fingers. For such joints we
// bestow maximum strength which helps reduce wiggle.
strength = MAX_MUSCLE_STRENGTH;
}
constraint->setStrength(strength);
}
}
void SkeletonModel::updateVisibleJointStates() {
if (_showTrueJointTransforms) {
if (_showTrueJointTransforms || !_ragdoll) {
// no need to update visible transforms
return;
}
const QVector<VerletPoint>& ragdollPoints = _ragdoll->getPoints();
QVector<glm::vec3> points;
points.reserve(_jointStates.size());
glm::quat invRotation = glm::inverse(_rotation);
for (int i = 0; i < _jointStates.size(); i++) {
JointState& state = _jointStates[i];
points.push_back(_ragdollPoints[i]._position);
points.push_back(ragdollPoints[i]._position);
// get the parent state (this is the state that we want to rotate)
int parentIndex = state.getParentIndex();
@ -659,15 +575,14 @@ void SkeletonModel::updateVisibleJointStates() {
}
}
// virtual
void SkeletonModel::stepRagdollForward(float deltaTime) {
setRagdollTransform(_translation, _rotation);
Ragdoll::stepRagdollForward(deltaTime);
updateMuscles();
int numConstraints = _muscleConstraints.size();
for (int i = 0; i < numConstraints; ++i) {
_muscleConstraints[i]->enforce();
SkeletonRagdoll* SkeletonModel::buildRagdoll() {
if (!_ragdoll) {
_ragdoll = new SkeletonRagdoll(this);
if (_enableShapes) {
buildShapes();
}
}
return _ragdoll;
}
float DENSITY_OF_WATER = 1000.0f; // kg/m^3
@ -685,8 +600,13 @@ void SkeletonModel::buildShapes() {
return;
}
initRagdollPoints();
float massScale = getMassScale();
if (!_ragdoll) {
_ragdoll = new SkeletonRagdoll(this);
}
_ragdoll->initPoints();
QVector<VerletPoint>& points = _ragdoll->getPoints();
float massScale = _ragdoll->getMassScale();
float uniformScale = extractUniformScale(_scale);
const int numStates = _jointStates.size();
@ -706,14 +626,14 @@ void SkeletonModel::buildShapes() {
Shape* shape = NULL;
int parentIndex = joint.parentIndex;
if (type == Shape::SPHERE_SHAPE) {
shape = new VerletSphereShape(radius, &(_ragdollPoints[i]));
shape = new VerletSphereShape(radius, &(points[i]));
shape->setEntity(this);
_ragdollPoints[i].setMass(massScale * glm::max(MIN_JOINT_MASS, DENSITY_OF_WATER * shape->getVolume()));
points[i].setMass(massScale * glm::max(MIN_JOINT_MASS, DENSITY_OF_WATER * shape->getVolume()));
} else if (type == Shape::CAPSULE_SHAPE) {
assert(parentIndex != -1);
shape = new VerletCapsuleShape(radius, &(_ragdollPoints[parentIndex]), &(_ragdollPoints[i]));
shape = new VerletCapsuleShape(radius, &(points[parentIndex]), &(points[i]));
shape->setEntity(this);
_ragdollPoints[i].setMass(massScale * glm::max(MIN_JOINT_MASS, DENSITY_OF_WATER * shape->getVolume()));
points[i].setMass(massScale * glm::max(MIN_JOINT_MASS, DENSITY_OF_WATER * shape->getVolume()));
}
if (parentIndex != -1) {
// always disable collisions between joint and its parent
@ -723,7 +643,7 @@ void SkeletonModel::buildShapes() {
} else {
// give the base joint a very large mass since it doesn't actually move
// in the local-frame simulation (it defines the origin)
_ragdollPoints[i].setMass(VERY_BIG_MASS);
points[i].setMass(VERY_BIG_MASS);
}
_shapes.push_back(shape);
}
@ -735,17 +655,11 @@ void SkeletonModel::buildShapes() {
// joints that are currently colliding.
disableCurrentSelfCollisions();
buildRagdollConstraints();
_ragdoll->buildConstraints();
// ... then move shapes back to current joint positions
if (_ragdollPoints.size() == numStates) {
int numStates = _jointStates.size();
for (int i = 0; i < numStates; ++i) {
// ragdollPoints start in model-frame
_ragdollPoints[i].initPosition(_jointStates.at(i).getPosition());
}
}
enforceRagdollConstraints();
_ragdoll->slamPointPositions();
_ragdoll->enforceConstraints();
}
void SkeletonModel::moveShapesTowardJoints(float deltaTime) {
@ -753,8 +667,9 @@ void SkeletonModel::moveShapesTowardJoints(float deltaTime) {
// unravel a skelton that has become tangled in its constraints. So let's keep this
// around for a while just in case.
const int numStates = _jointStates.size();
assert(_jointStates.size() == _ragdollPoints.size());
if (_ragdollPoints.size() != numStates) {
QVector<VerletPoint>& ragdollPoints = _ragdoll->getPoints();
assert(_jointStates.size() == ragdollPoints.size());
if (ragdollPoints.size() != numStates) {
return;
}
@ -763,32 +678,22 @@ void SkeletonModel::moveShapesTowardJoints(float deltaTime) {
float fraction = glm::clamp(deltaTime / RAGDOLL_FOLLOWS_JOINTS_TIMESCALE, 0.0f, 1.0f);
float oneMinusFraction = 1.0f - fraction;
glm::vec3 simulationTranslation = getTranslationInSimulationFrame();
glm::vec3 simulationTranslation = _ragdoll->getTranslationInSimulationFrame();
for (int i = 0; i < numStates; ++i) {
// ragdollPoints are in simulation-frame but jointStates are in model-frame
_ragdollPoints[i].initPosition(oneMinusFraction * _ragdollPoints[i]._position +
ragdollPoints[i].initPosition(oneMinusFraction * ragdollPoints[i]._position +
fraction * (simulationTranslation + _rotation * (_jointStates.at(i).getPosition())));
}
}
void SkeletonModel::updateMuscles() {
int numConstraints = _muscleConstraints.size();
for (int i = 0; i < numConstraints; ++i) {
MuscleConstraint* constraint = _muscleConstraints[i];
int j = constraint->getParentIndex();
int k = constraint->getChildIndex();
assert(j != -1 && k != -1);
// ragdollPoints are in simulation-frame but jointStates are in model-frame
constraint->setChildOffset(_rotation * (_jointStates.at(k).getPosition() - _jointStates.at(j).getPosition()));
}
}
void SkeletonModel::computeBoundingShape(const FBXGeometry& geometry) {
// compute default joint transforms
int numStates = _jointStates.size();
QVector<glm::mat4> transforms;
transforms.fill(glm::mat4(), numStates);
QVector<VerletPoint>& ragdollPoints = _ragdoll->getPoints();
// compute the default transforms and slam the ragdoll positions accordingly
// (which puts the shapes where we want them)
for (int i = 0; i < numStates; i++) {
@ -797,7 +702,7 @@ void SkeletonModel::computeBoundingShape(const FBXGeometry& geometry) {
int parentIndex = joint.parentIndex;
if (parentIndex == -1) {
transforms[i] = _jointStates[i].getTransform();
_ragdollPoints[i].initPosition(extractTranslation(transforms[i]));
ragdollPoints[i].initPosition(extractTranslation(transforms[i]));
continue;
}
@ -805,7 +710,7 @@ void SkeletonModel::computeBoundingShape(const FBXGeometry& geometry) {
transforms[i] = transforms[parentIndex] * glm::translate(joint.translation)
* joint.preTransform * glm::mat4_cast(modifiedRotation) * joint.postTransform;
// setting the ragdollPoints here slams the VerletShapes into their default positions
_ragdollPoints[i].initPosition(extractTranslation(transforms[i]));
ragdollPoints[i].initPosition(extractTranslation(transforms[i]));
}
// compute bounding box that encloses all shapes
@ -924,9 +829,12 @@ const int BALL_SUBDIVISIONS = 10;
// virtual
void SkeletonModel::renderJointCollisionShapes(float alpha) {
if (!_ragdoll) {
return;
}
glPushMatrix();
Application::getInstance()->loadTranslatedViewMatrix(_translation);
glm::vec3 simulationTranslation = getTranslationInSimulationFrame();
glm::vec3 simulationTranslation = _ragdoll->getTranslationInSimulationFrame();
for (int i = 0; i < _shapes.size(); i++) {
Shape* shape = _shapes[i];
if (!shape) {

View file

@ -15,18 +15,20 @@
#include "renderer/Model.h"
#include <CapsuleShape.h>
#include <Ragdoll.h>
#include "SkeletonRagdoll.h"
class Avatar;
class MuscleConstraint;
class SkeletonRagdoll;
/// A skeleton loaded from a model.
class SkeletonModel : public Model, public Ragdoll {
class SkeletonModel : public Model {
Q_OBJECT
public:
SkeletonModel(Avatar* owningAvatar, QObject* parent = NULL);
~SkeletonModel();
void setJointStates(QVector<JointState> states);
@ -96,12 +98,11 @@ public:
bool getEyePositions(glm::vec3& firstEyePosition, glm::vec3& secondEyePosition) const;
virtual void updateVisibleJointStates();
// virtual overrride from Ragdoll
virtual void stepRagdollForward(float deltaTime);
SkeletonRagdoll* buildRagdoll();
SkeletonRagdoll* getRagdoll() { return _ragdoll; }
void moveShapesTowardJoints(float fraction);
void updateMuscles();
void computeBoundingShape(const FBXGeometry& geometry);
void renderBoundingCollisionShapes(float alpha);
@ -115,10 +116,6 @@ public:
protected:
// virtual overrrides from Ragdoll
void initRagdollPoints();
void buildRagdollConstraints();
void buildShapes();
/// \param jointIndex index of joint in model
@ -147,7 +144,7 @@ private:
CapsuleShape _boundingShape;
glm::vec3 _boundingShapeLocalOffset;
QVector<MuscleConstraint*> _muscleConstraints;
SkeletonRagdoll* _ragdoll;
};
#endif // hifi_SkeletonModel_h

View file

@ -0,0 +1,148 @@
//
// SkeletonRagdoll.cpp
// interface/src/avatar
//
// Created by Andrew Meadows 2014.08.14
// Copyright 2014 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include <DistanceConstraint.h>
#include <FixedConstraint.h>
#include "SkeletonRagdoll.h"
#include "MuscleConstraint.h"
#include "../renderer/Model.h"
SkeletonRagdoll::SkeletonRagdoll(Model* model) : Ragdoll(), _model(model) {
assert(_model);
}
SkeletonRagdoll::~SkeletonRagdoll() {
}
// virtual
void SkeletonRagdoll::stepForward(float deltaTime) {
setTransform(_model->getTranslation(), _model->getRotation());
Ragdoll::stepForward(deltaTime);
updateMuscles();
int numConstraints = _muscleConstraints.size();
for (int i = 0; i < numConstraints; ++i) {
_muscleConstraints[i]->enforce();
}
}
void SkeletonRagdoll::slamPointPositions() {
QVector<JointState>& jointStates = _model->getJointStates();
int numStates = jointStates.size();
for (int i = 0; i < numStates; ++i) {
_points[i].initPosition(jointStates.at(i).getPosition());
}
}
// virtual
void SkeletonRagdoll::initPoints() {
clearConstraintsAndPoints();
_muscleConstraints.clear();
initTransform();
// one point for each joint
QVector<JointState>& jointStates = _model->getJointStates();
int numStates = jointStates.size();
_points.fill(VerletPoint(), numStates);
slamPointPositions();
}
// virtual
void SkeletonRagdoll::buildConstraints() {
QVector<JointState>& jointStates = _model->getJointStates();
// NOTE: the length of DistanceConstraints is computed and locked in at this time
// so make sure the ragdoll positions are in a normal configuration before here.
const int numPoints = _points.size();
assert(numPoints == jointStates.size());
float minBone = FLT_MAX;
float maxBone = -FLT_MAX;
QMultiMap<int, int> families;
for (int i = 0; i < numPoints; ++i) {
const JointState& state = jointStates.at(i);
int parentIndex = state.getParentIndex();
if (parentIndex == -1) {
FixedConstraint* anchor = new FixedConstraint(&_translationInSimulationFrame, &(_points[i]));
_fixedConstraints.push_back(anchor);
} else {
DistanceConstraint* bone = new DistanceConstraint(&(_points[i]), &(_points[parentIndex]));
bone->setDistance(state.getDistanceToParent());
_boneConstraints.push_back(bone);
families.insert(parentIndex, i);
}
float boneLength = glm::length(state.getPositionInParentFrame());
if (boneLength > maxBone) {
maxBone = boneLength;
} else if (boneLength < minBone) {
minBone = boneLength;
}
}
// Joints that have multiple children effectively have rigid constraints between the children
// in the parent frame, so we add DistanceConstraints between children in the same family.
QMultiMap<int, int>::iterator itr = families.begin();
while (itr != families.end()) {
QList<int> children = families.values(itr.key());
int numChildren = children.size();
if (numChildren > 1) {
for (int i = 1; i < numChildren; ++i) {
DistanceConstraint* bone = new DistanceConstraint(&(_points[children[i-1]]), &(_points[children[i]]));
_boneConstraints.push_back(bone);
}
if (numChildren > 2) {
DistanceConstraint* bone = new DistanceConstraint(&(_points[children[numChildren-1]]), &(_points[children[0]]));
_boneConstraints.push_back(bone);
}
}
++itr;
}
float MAX_STRENGTH = 0.6f;
float MIN_STRENGTH = 0.05f;
// each joint gets a MuscleConstraint to its parent
for (int i = 1; i < numPoints; ++i) {
const JointState& state = jointStates.at(i);
int p = state.getParentIndex();
if (p == -1) {
continue;
}
MuscleConstraint* constraint = new MuscleConstraint(&(_points[p]), &(_points[i]));
_muscleConstraints.push_back(constraint);
// Short joints are more susceptible to wiggle so we modulate the strength based on the joint's length:
// long = weak and short = strong.
constraint->setIndices(p, i);
float boneLength = glm::length(state.getPositionInParentFrame());
float strength = MIN_STRENGTH + (MAX_STRENGTH - MIN_STRENGTH) * (maxBone - boneLength) / (maxBone - minBone);
if (!families.contains(i)) {
// Although muscles only pull on the children not parents, nevertheless those joints that have
// parents AND children are more stable than joints at the end such as fingers. For such joints we
// bestow maximum strength which helps reduce wiggle.
strength = MAX_MUSCLE_STRENGTH;
}
constraint->setStrength(strength);
}
}
void SkeletonRagdoll::updateMuscles() {
QVector<JointState>& jointStates = _model->getJointStates();
int numConstraints = _muscleConstraints.size();
glm::quat rotation = _model->getRotation();
for (int i = 0; i < numConstraints; ++i) {
MuscleConstraint* constraint = _muscleConstraints[i];
int j = constraint->getParentIndex();
int k = constraint->getChildIndex();
assert(j != -1 && k != -1);
// ragdollPoints are in simulation-frame but jointStates are in model-frame
constraint->setChildOffset(rotation * (jointStates.at(k).getPosition() - jointStates.at(j).getPosition()));
}
}

View file

@ -0,0 +1,42 @@
//
// SkeletonkRagdoll.h
// interface/src/avatar
//
// Created by Andrew Meadows 2014.08.14
// Copyright 2014 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#ifndef hifi_SkeletonRagdoll_h
#define hifi_SkeletonRagdoll_h
#include <QVector>
#include <Ragdoll.h>
#include "../renderer/JointState.h"
class MuscleConstraint;
class Model;
class SkeletonRagdoll : public Ragdoll {
public:
SkeletonRagdoll(Model* model);
virtual ~SkeletonRagdoll();
void slamPointPositions();
virtual void stepForward(float deltaTime);
virtual void initPoints();
virtual void buildConstraints();
void updateMuscles();
private:
Model* _model;
QVector<MuscleConstraint*> _muscleConstraints;
};
#endif // hifi_SkeletonRagdoll_h

View file

@ -167,6 +167,9 @@ public:
const QVector<LocalLight>& getLocalLights() const { return _localLights; }
void setShowTrueJointTransforms(bool show) { _showTrueJointTransforms = show; }
QVector<JointState>& getJointStates() { return _jointStates; }
const QVector<JointState>& getJointStates() const { return _jointStates; }
protected:
QSharedPointer<NetworkGeometry> _geometry;

View file

@ -57,6 +57,9 @@ ApplicationOverlay::~ApplicationOverlay() {
const float WHITE_TEXT[] = { 0.93f, 0.93f, 0.93f };
const float RETICLE_COLOR[] = { 0.0f, 198.0f / 255.0f, 244.0f / 255.0f };
const float CONNECTION_STATUS_BORDER_COLOR[] = { 1.0f, 0.0f, 0.0f };
const float CONNECTION_STATUS_BORDER_LINE_WIDTH = 4.0f;
// Renders the overlays either to a texture or to the screen
void ApplicationOverlay::renderOverlay(bool renderToTexture) {
@ -115,6 +118,8 @@ void ApplicationOverlay::renderOverlay(bool renderToTexture) {
renderPointers();
renderDomainConnectionStatusBorder();
glPopMatrix();
@ -1234,6 +1239,30 @@ void ApplicationOverlay::renderTexturedHemisphere() {
}
void ApplicationOverlay::renderDomainConnectionStatusBorder() {
NodeList* nodeList = NodeList::getInstance();
if (nodeList && !nodeList->getDomainHandler().isConnected()) {
QGLWidget* glWidget = Application::getInstance()->getGLWidget();
int right = glWidget->width();
int bottom = glWidget->height();
glColor3f(CONNECTION_STATUS_BORDER_COLOR[0],
CONNECTION_STATUS_BORDER_COLOR[1],
CONNECTION_STATUS_BORDER_COLOR[2]);
glLineWidth(CONNECTION_STATUS_BORDER_LINE_WIDTH);
glBegin(GL_LINE_LOOP);
glVertex2i(0, 0);
glVertex2i(0, bottom);
glVertex2i(right, bottom);
glVertex2i(right, 0);
glEnd();
}
}
QOpenGLFramebufferObject* ApplicationOverlay::getFramebufferObject() {
QSize size = Application::getInstance()->getGLWidget()->size();
if (!_framebufferObject || _framebufferObject->size() != size) {

View file

@ -56,6 +56,7 @@ private:
void renderAudioMeter();
void renderStatsAndLogs();
void renderTexturedHemisphere();
void renderDomainConnectionStatusBorder();
QOpenGLFramebufferObject* _framebufferObject;
float _trailingAudioLoudness;
@ -76,4 +77,4 @@ private:
GLuint _crosshairTexture;
};
#endif // hifi_ApplicationOverlay_h
#endif // hifi_ApplicationOverlay_h

View file

@ -36,6 +36,7 @@ DomainHandler::DomainHandler(QObject* parent) :
void DomainHandler::clearConnectionInfo() {
_uuid = QUuid();
_isConnected = false;
emit disconnectedFromDomain();
if (_handshakeTimer) {
_handshakeTimer->stop();
@ -129,6 +130,8 @@ void DomainHandler::setIsConnected(bool isConnected) {
// we've connected to new domain - time to ask it for global settings
requestDomainSettings();
} else {
emit disconnectedFromDomain();
}
}
}
@ -196,4 +199,4 @@ void DomainHandler::parseDTLSRequirementPacket(const QByteArray& dtlsRequirement
_sockAddr.setPort(dtlsPort);
// initializeDTLSSession();
}
}

View file

@ -70,6 +70,7 @@ private slots:
signals:
void hostnameChanged(const QString& hostname);
void connectedToDomain(const QString& hostname);
void disconnectedFromDomain();
void settingsReceived(const QJsonObject& domainSettingsObject);
void settingsReceiveFail();

View file

@ -88,25 +88,7 @@ ContactPoint::ContactPoint(const CollisionInfo& collision, quint32 frame) :
}
}
// virtual
float ContactPoint::enforce() {
for (int i = 0; i < _numPoints; ++i) {
glm::vec3& position = _points[i]->_position;
// TODO: use a fast distance approximation
float newDistance = glm::distance(_contactPoint, position);
float constrainedDistance = _distances[i];
// NOTE: these "distance" constraints only push OUT, don't pull IN.
if (newDistance > EPSILON && newDistance < constrainedDistance) {
glm::vec3 direction = (_contactPoint - position) / newDistance;
glm::vec3 center = 0.5f * (_contactPoint + position);
_contactPoint = center + (0.5f * constrainedDistance) * direction;
position = center - (0.5f * constrainedDistance) * direction;
}
}
return 0.0f;
}
void ContactPoint::buildConstraints() {
glm::vec3 pointA = _shapeA->getTranslation() + _offsetA;
glm::vec3 pointB = _shapeB->getTranslation() + _offsetB;
glm::vec3 penetration = pointA - pointB;
@ -116,14 +98,6 @@ void ContactPoint::buildConstraints() {
// the contact point will be the average of the two points on the shapes
_contactPoint = 0.5f * (pointA + pointB);
// TODO: Andrew to compute more correct lagrangian weights that provide a more realistic response.
//
// HACK: since the weights are naively equal for all points (which is what the above TODO is about) we
// don't want to use the full-strength delta because otherwise there can be annoying oscillations. We
// reduce this problem by in the short-term by attenuating the delta that is applied, the tradeoff is
// that this makes it easier for limbs to tunnel through during collisions.
const float HACK_STRENGTH = 0.5f;
if (constraintViolation) {
for (int i = 0; i < _numPoints; ++i) {
VerletPoint* point = _points[i];
@ -146,13 +120,34 @@ void ContactPoint::buildConstraints() {
glm::vec3 targetPosition = point->_position + delta;
_distances[i] = glm::distance(_contactPoint, targetPosition);
point->_position += HACK_STRENGTH * delta;
point->_position += delta;
}
} else {
for (int i = 0; i < _numPoints; ++i) {
_distances[i] = glm::length(glm::length(_offsets[i]));
}
}
return 0.0f;
}
// virtual
void ContactPoint::applyFriction() {
// TODO: Andrew to re-implement this in a different way
/*
for (int i = 0; i < _numPoints; ++i) {
glm::vec3& position = _points[i]->_position;
// TODO: use a fast distance approximation
float newDistance = glm::distance(_contactPoint, position);
float constrainedDistance = _distances[i];
// NOTE: these "distance" constraints only push OUT, don't pull IN.
if (newDistance > EPSILON && newDistance < constrainedDistance) {
glm::vec3 direction = (_contactPoint - position) / newDistance;
glm::vec3 center = 0.5f * (_contactPoint + position);
_contactPoint = center + (0.5f * constrainedDistance) * direction;
position = center - (0.5f * constrainedDistance) * direction;
}
}
*/
}
void ContactPoint::updateContact(const CollisionInfo& collision, quint32 frame) {

View file

@ -26,8 +26,8 @@ public:
ContactPoint(const CollisionInfo& collision, quint32 frame);
virtual float enforce();
void buildConstraints();
void applyFriction();
void updateContact(const CollisionInfo& collision, quint32 frame);
quint32 getLastFrame() const { return _lastFrame; }

View file

@ -47,12 +47,12 @@ PhysicsSimulation::~PhysicsSimulation() {
void PhysicsSimulation::setRagdoll(Ragdoll* ragdoll) {
if (_ragdoll != ragdoll) {
if (_ragdoll) {
_ragdoll->_ragdollSimulation = NULL;
_ragdoll->_simulation = NULL;
}
_ragdoll = ragdoll;
if (_ragdoll) {
assert(!(_ragdoll->_ragdollSimulation));
_ragdoll->_ragdollSimulation = this;
assert(!(_ragdoll->_simulation));
_ragdoll->_simulation = this;
}
}
}
@ -144,7 +144,7 @@ bool PhysicsSimulation::addRagdoll(Ragdoll* doll) {
// list is full
return false;
}
if (doll->_ragdollSimulation == this) {
if (doll->_simulation == this) {
for (int i = 0; i < numDolls; ++i) {
if (doll == _otherRagdolls[i]) {
// already in list
@ -153,8 +153,8 @@ bool PhysicsSimulation::addRagdoll(Ragdoll* doll) {
}
}
// add to list
assert(!(doll->_ragdollSimulation));
doll->_ragdollSimulation = this;
assert(!(doll->_simulation));
doll->_simulation = this;
_otherRagdolls.push_back(doll);
// set the massScale of otherRagdolls artificially high
@ -164,7 +164,7 @@ bool PhysicsSimulation::addRagdoll(Ragdoll* doll) {
void PhysicsSimulation::removeRagdoll(Ragdoll* doll) {
int numDolls = _otherRagdolls.size();
if (doll->_ragdollSimulation != this) {
if (doll->_simulation != this) {
return;
}
for (int i = 0; i < numDolls; ++i) {
@ -178,7 +178,7 @@ void PhysicsSimulation::removeRagdoll(Ragdoll* doll) {
_otherRagdolls.pop_back();
_otherRagdolls[i] = lastDoll;
}
doll->_ragdollSimulation = NULL;
doll->_simulation = NULL;
doll->setMassScale(1.0f);
break;
}
@ -195,13 +195,13 @@ void PhysicsSimulation::stepForward(float deltaTime, float minError, int maxIter
quint64 expiry = startTime + maxUsec;
moveRagdolls(deltaTime);
buildContactConstraints();
enforceContacts();
int numDolls = _otherRagdolls.size();
{
PerformanceTimer perfTimer("enforce");
_ragdoll->enforceRagdollConstraints();
_ragdoll->enforceConstraints();
for (int i = 0; i < numDolls; ++i) {
_otherRagdolls[i]->enforceRagdollConstraints();
_otherRagdolls[i]->enforceConstraints();
}
}
@ -214,12 +214,12 @@ void PhysicsSimulation::stepForward(float deltaTime, float minError, int maxIter
{ // enforce constraints
PerformanceTimer perfTimer("enforce");
error = _ragdoll->enforceRagdollConstraints();
error = _ragdoll->enforceConstraints();
for (int i = 0; i < numDolls; ++i) {
error = glm::max(error, _otherRagdolls[i]->enforceRagdollConstraints());
error = glm::max(error, _otherRagdolls[i]->enforceConstraints());
}
}
enforceContactConstraints();
applyContactFriction();
++iterations;
now = usecTimestampNow();
@ -230,10 +230,10 @@ void PhysicsSimulation::stepForward(float deltaTime, float minError, int maxIter
void PhysicsSimulation::moveRagdolls(float deltaTime) {
PerformanceTimer perfTimer("integrate");
_ragdoll->stepRagdollForward(deltaTime);
_ragdoll->stepForward(deltaTime);
int numDolls = _otherRagdolls.size();
for (int i = 0; i < numDolls; ++i) {
_otherRagdolls[i]->stepRagdollForward(deltaTime);
_otherRagdolls[i]->stepForward(deltaTime);
}
}
@ -288,16 +288,7 @@ void PhysicsSimulation::resolveCollisions() {
}
}
void PhysicsSimulation::buildContactConstraints() {
PerformanceTimer perfTimer("contacts");
QMap<quint64, ContactPoint>::iterator itr = _contacts.begin();
while (itr != _contacts.end()) {
itr.value().buildConstraints();
++itr;
}
}
void PhysicsSimulation::enforceContactConstraints() {
void PhysicsSimulation::enforceContacts() {
PerformanceTimer perfTimer("contacts");
QMap<quint64, ContactPoint>::iterator itr = _contacts.begin();
while (itr != _contacts.end()) {
@ -306,6 +297,15 @@ void PhysicsSimulation::enforceContactConstraints() {
}
}
void PhysicsSimulation::applyContactFriction() {
PerformanceTimer perfTimer("contacts");
QMap<quint64, ContactPoint>::iterator itr = _contacts.begin();
while (itr != _contacts.end()) {
itr.value().applyFriction();
++itr;
}
}
void PhysicsSimulation::updateContacts() {
PerformanceTimer perfTimer("contacts");
int numCollisions = _collisions.size();

View file

@ -56,8 +56,8 @@ protected:
void computeCollisions();
void resolveCollisions();
void buildContactConstraints();
void enforceContactConstraints();
void enforceContacts();
void applyContactFriction();
void updateContacts();
void pruneContacts();

View file

@ -19,27 +19,27 @@
#include "PhysicsSimulation.h"
#include "SharedUtil.h" // for EPSILON
Ragdoll::Ragdoll() : _massScale(1.0f), _ragdollTranslation(0.0f), _translationInSimulationFrame(0.0f), _ragdollSimulation(NULL) {
Ragdoll::Ragdoll() : _massScale(1.0f), _translation(0.0f), _translationInSimulationFrame(0.0f), _simulation(NULL) {
}
Ragdoll::~Ragdoll() {
clearRagdollConstraintsAndPoints();
if (_ragdollSimulation) {
_ragdollSimulation->removeRagdoll(this);
clearConstraintsAndPoints();
if (_simulation) {
_simulation->removeRagdoll(this);
}
}
void Ragdoll::stepRagdollForward(float deltaTime) {
if (_ragdollSimulation) {
updateSimulationTransforms(_ragdollTranslation - _ragdollSimulation->getTranslation(), _ragdollRotation);
void Ragdoll::stepForward(float deltaTime) {
if (_simulation) {
updateSimulationTransforms(_translation - _simulation->getTranslation(), _rotation);
}
int numPoints = _ragdollPoints.size();
int numPoints = _points.size();
for (int i = 0; i < numPoints; ++i) {
_ragdollPoints[i].integrateForward();
_points[i].integrateForward();
}
}
void Ragdoll::clearRagdollConstraintsAndPoints() {
void Ragdoll::clearConstraintsAndPoints() {
int numConstraints = _boneConstraints.size();
for (int i = 0; i < numConstraints; ++i) {
delete _boneConstraints[i];
@ -50,10 +50,10 @@ void Ragdoll::clearRagdollConstraintsAndPoints() {
delete _fixedConstraints[i];
}
_fixedConstraints.clear();
_ragdollPoints.clear();
_points.clear();
}
float Ragdoll::enforceRagdollConstraints() {
float Ragdoll::enforceConstraints() {
float maxDistance = 0.0f;
// enforce the bone constraints first
int numConstraints = _boneConstraints.size();
@ -68,16 +68,16 @@ float Ragdoll::enforceRagdollConstraints() {
return maxDistance;
}
void Ragdoll::initRagdollTransform() {
_ragdollTranslation = glm::vec3(0.0f);
_ragdollRotation = glm::quat();
void Ragdoll::initTransform() {
_translation = glm::vec3(0.0f);
_rotation = glm::quat();
_translationInSimulationFrame = glm::vec3(0.0f);
_rotationInSimulationFrame = glm::quat();
}
void Ragdoll::setRagdollTransform(const glm::vec3& translation, const glm::quat& rotation) {
_ragdollTranslation = translation;
_ragdollRotation = rotation;
void Ragdoll::setTransform(const glm::vec3& translation, const glm::quat& rotation) {
_translation = translation;
_rotation = rotation;
}
void Ragdoll::updateSimulationTransforms(const glm::vec3& translation, const glm::quat& rotation) {
@ -93,9 +93,9 @@ void Ragdoll::updateSimulationTransforms(const glm::vec3& translation, const glm
glm::quat deltaRotation = rotation * glm::inverse(_rotationInSimulationFrame);
// apply the deltas to all ragdollPoints
int numPoints = _ragdollPoints.size();
int numPoints = _points.size();
for (int i = 0; i < numPoints; ++i) {
_ragdollPoints[i].move(deltaPosition, deltaRotation, _translationInSimulationFrame);
_points[i].move(deltaPosition, deltaRotation, _translationInSimulationFrame);
}
// remember the current transform
@ -109,9 +109,9 @@ void Ragdoll::setMassScale(float scale) {
scale = glm::clamp(glm::abs(scale), MIN_SCALE, MAX_SCALE);
if (scale != _massScale) {
float rescale = scale / _massScale;
int numPoints = _ragdollPoints.size();
int numPoints = _points.size();
for (int i = 0; i < numPoints; ++i) {
_ragdollPoints[i].setMass(rescale * _ragdollPoints[i].getMass());
_points[i].setMass(rescale * _points[i].getMass());
}
_massScale = scale;
}

View file

@ -33,44 +33,44 @@ public:
Ragdoll();
virtual ~Ragdoll();
virtual void stepRagdollForward(float deltaTime);
virtual void stepForward(float deltaTime);
/// \return max distance of point movement
float enforceRagdollConstraints();
float enforceConstraints();
// both const and non-const getPoints()
const QVector<VerletPoint>& getRagdollPoints() const { return _ragdollPoints; }
QVector<VerletPoint>& getRagdollPoints() { return _ragdollPoints; }
const QVector<VerletPoint>& getPoints() const { return _points; }
QVector<VerletPoint>& getPoints() { return _points; }
void initRagdollTransform();
void initTransform();
/// set the translation and rotation of the Ragdoll and adjust all VerletPoints.
void setRagdollTransform(const glm::vec3& translation, const glm::quat& rotation);
void setTransform(const glm::vec3& translation, const glm::quat& rotation);
const glm::vec3& getTranslationInSimulationFrame() const { return _translationInSimulationFrame; }
void setMassScale(float scale);
float getMassScale() const { return _massScale; }
protected:
void clearRagdollConstraintsAndPoints();
virtual void initRagdollPoints() = 0;
virtual void buildRagdollConstraints() = 0;
void clearConstraintsAndPoints();
virtual void initPoints() = 0;
virtual void buildConstraints() = 0;
protected:
float _massScale;
glm::vec3 _ragdollTranslation; // world-frame
glm::quat _ragdollRotation; // world-frame
glm::vec3 _translation; // world-frame
glm::quat _rotation; // world-frame
glm::vec3 _translationInSimulationFrame;
glm::quat _rotationInSimulationFrame;
QVector<VerletPoint> _ragdollPoints;
QVector<VerletPoint> _points;
QVector<DistanceConstraint*> _boneConstraints;
QVector<FixedConstraint*> _fixedConstraints;
private:
void updateSimulationTransforms(const glm::vec3& translation, const glm::quat& rotation);
friend class PhysicsSimulation;
PhysicsSimulation* _ragdollSimulation;
PhysicsSimulation* _simulation;
};
#endif // hifi_Ragdoll_h

View file

@ -16,12 +16,14 @@
#include <cerrno>
#include <stdio.h>
#include <MovingMinMaxAvg.h> // for MovingMinMaxAvg
#include <MovingMinMaxAvg.h>
#include <SequenceNumberStats.h>
#include <StdDev.h>
#include <SharedUtil.h> // for usecTimestampNow
#include <SimpleMovingAverage.h>
#include <StdDev.h>
const quint64 MSEC_TO_USEC = 1000;
const quint64 LARGE_STATS_TIME = 500; // we don't expect stats calculation to take more than this many usecs
void runSend(const char* addressOption, int port, int gap, int size, int report);
void runReceive(const char* addressOption, int port, int gap, int size, int report);
@ -77,25 +79,37 @@ void runSend(const char* addressOption, int port, int gap, int size, int report)
servaddr.sin_addr.s_addr = inet_addr(addressOption);
servaddr.sin_port = htons(port);
const int SAMPLES_FOR_30_SECONDS = 30 * 1000000 / gap;
const int SAMPLES_FOR_SECOND = 1000000 / gap;
std::cout << "SAMPLES_FOR_SECOND:" << SAMPLES_FOR_SECOND << "\n";
const int INTERVALS_PER_30_SECONDS = 30;
std::cout << "INTERVALS_PER_30_SECONDS:" << INTERVALS_PER_30_SECONDS << "\n";
const int SAMPLES_FOR_30_SECONDS = 30 * SAMPLES_FOR_SECOND;
std::cout << "SAMPLES_FOR_30_SECONDS:" << SAMPLES_FOR_30_SECONDS << "\n";
const int REPORTS_FOR_30_SECONDS = 30 * MSECS_PER_SECOND / report;
std::cout << "REPORTS_FOR_30_SECONDS:" << REPORTS_FOR_30_SECONDS << "\n";
const int SAMPLES_PER_REPORT = report * MSEC_TO_USEC / gap;
std::cout << "SAMPLES_PER_REPORT:" << SAMPLES_PER_REPORT << "\n";
int intervalsPerReport = report / MSEC_TO_USEC;
if (intervalsPerReport < 1) {
intervalsPerReport = 1;
}
std::cout << "intervalsPerReport:" << intervalsPerReport << "\n";
MovingMinMaxAvg<int> timeGaps(SAMPLES_FOR_SECOND, INTERVALS_PER_30_SECONDS);
MovingMinMaxAvg<int> timeGapsPerReport(SAMPLES_FOR_SECOND, intervalsPerReport);
char* outputBuffer = new char[size];
memset(outputBuffer, 0, size);
quint16 outgoingSequenceNumber = 0;
MovingMinMaxAvg<int> timeGaps(1, SAMPLES_FOR_30_SECONDS);
MovingMinMaxAvg<int> timeGapsPerReport(1, SAMPLES_PER_REPORT);
StDev stDevReportInterval;
StDev stDev30s;
StDev stDev;
SimpleMovingAverage averageNetworkTime(SAMPLES_FOR_30_SECONDS);
SimpleMovingAverage averageStatsCalcultionTime(SAMPLES_FOR_30_SECONDS);
float lastStatsCalculationTime = 0.0f; // we add out stats calculation time in the next calculation window
bool hasStatsCalculationTime = false;
quint64 last = usecTimestampNow();
quint64 lastReport = 0;
@ -111,19 +125,37 @@ void runSend(const char* addressOption, int port, int gap, int size, int report)
// pack seq num
memcpy(outputBuffer, &outgoingSequenceNumber, sizeof(quint16));
quint64 networkStart = usecTimestampNow();
int n = sendto(sockfd, outputBuffer, size, 0, (struct sockaddr *)&servaddr, sizeof(servaddr));
quint64 networkEnd = usecTimestampNow();
float networkElapsed = (float)(networkEnd - networkStart);
if (n < 0) {
std::cout << "Send error: " << strerror(errno) << "\n";
}
outgoingSequenceNumber++;
quint64 statsCalcultionStart = usecTimestampNow();
int gapDifferece = actualGap - gap;
timeGaps.update(gapDifferece);
timeGapsPerReport.update(gapDifferece);
stDev.addValue(gapDifferece);
stDev30s.addValue(gapDifferece);
stDevReportInterval.addValue(gapDifferece);
last = now;
// track out network time and stats calculation times
averageNetworkTime.updateAverage(networkElapsed);
// for our stats calculation time, we actually delay the updating by one sample.
// we do this so that the calculation of the average timing for the stats calculation
// happen inside of the calculation processing. This ensures that tracking stats on
// stats calculation doesn't side effect the remaining running time.
if (hasStatsCalculationTime) {
averageStatsCalcultionTime.updateAverage(lastStatsCalculationTime);
}
if (now - lastReport >= (report * MSEC_TO_USEC)) {
@ -144,6 +176,9 @@ void runSend(const char* addressOption, int port, int gap, int size, int report)
<< "max: " << timeGapsPerReport.getWindowMax() << " usecs, "
<< "avg: " << timeGapsPerReport.getWindowAverage() << " usecs, "
<< "stdev: " << stDevReportInterval.getStDev() << " usecs\n"
<< "Average Execution Times Last 30s:\n"
<< " network: " << averageNetworkTime.getAverage() << " usecs average\n"
<< " stats: " << averageStatsCalcultionTime.getAverage() << " usecs average"
<< "\n";
stDevReportInterval.reset();
@ -153,6 +188,14 @@ void runSend(const char* addressOption, int port, int gap, int size, int report)
lastReport = now;
}
quint64 statsCalcultionEnd = usecTimestampNow();
lastStatsCalculationTime = (float)(statsCalcultionEnd - statsCalcultionStart);
if (lastStatsCalculationTime > LARGE_STATS_TIME) {
qDebug() << "WARNING -- unexpectedly large lastStatsCalculationTime=" << lastStatsCalculationTime;
}
hasStatsCalculationTime = true;
}
}
delete[] outputBuffer;
@ -184,21 +227,26 @@ void runReceive(const char* addressOption, int port, int gap, int size, int repo
myaddr.sin_port = htons(port);
const int SAMPLES_FOR_30_SECONDS = 30 * 1000000 / gap;
const int SAMPLES_FOR_SECOND = 1000000 / gap;
std::cout << "SAMPLES_FOR_SECOND:" << SAMPLES_FOR_SECOND << "\n";
const int INTERVALS_PER_30_SECONDS = 30;
std::cout << "INTERVALS_PER_30_SECONDS:" << INTERVALS_PER_30_SECONDS << "\n";
const int SAMPLES_FOR_30_SECONDS = 30 * SAMPLES_FOR_SECOND;
std::cout << "SAMPLES_FOR_30_SECONDS:" << SAMPLES_FOR_30_SECONDS << "\n";
const int SAMPLES_PER_REPORT = report * MSEC_TO_USEC / gap;
std::cout << "SAMPLES_PER_REPORT:" << SAMPLES_PER_REPORT << "\n";
const int REPORTS_FOR_30_SECONDS = 30 * MSECS_PER_SECOND / report;
std::cout << "REPORTS_FOR_30_SECONDS:" << REPORTS_FOR_30_SECONDS << "\n";
int intervalsPerReport = report / MSEC_TO_USEC;
if (intervalsPerReport < 1) {
intervalsPerReport = 1;
}
std::cout << "intervalsPerReport:" << intervalsPerReport << "\n";
MovingMinMaxAvg<int> timeGaps(SAMPLES_FOR_SECOND, INTERVALS_PER_30_SECONDS);
MovingMinMaxAvg<int> timeGapsPerReport(SAMPLES_FOR_SECOND, intervalsPerReport);
char* inputBuffer = new char[size];
memset(inputBuffer, 0, size);
MovingMinMaxAvg<int> timeGaps(1, SAMPLES_FOR_30_SECONDS);
MovingMinMaxAvg<int> timeGapsPerReport(1, SAMPLES_PER_REPORT);
SequenceNumberStats seqStats(REPORTS_FOR_30_SECONDS);
@ -206,6 +254,11 @@ void runReceive(const char* addressOption, int port, int gap, int size, int repo
StDev stDev30s;
StDev stDev;
SimpleMovingAverage averageNetworkTime(SAMPLES_FOR_30_SECONDS);
SimpleMovingAverage averageStatsCalcultionTime(SAMPLES_FOR_30_SECONDS);
float lastStatsCalculationTime = 0.0f; // we add out stats calculation time in the next calculation window
bool hasStatsCalculationTime = false;
if (bind(sockfd, (struct sockaddr *)&myaddr, sizeof(myaddr)) < 0) {
std::cout << "bind failed\n";
return;
@ -213,9 +266,14 @@ void runReceive(const char* addressOption, int port, int gap, int size, int repo
quint64 last = 0; // first case
quint64 lastReport = 0;
while (true) {
quint64 networkStart = usecTimestampNow();
n = recvfrom(sockfd, inputBuffer, size, 0, NULL, NULL); // we don't care about where it came from
quint64 networkEnd = usecTimestampNow();
float networkElapsed = (float)(networkEnd - networkStart);
if (n < 0) {
std::cout << "Receive error: " << strerror(errno) << "\n";
}
@ -228,8 +286,11 @@ void runReceive(const char* addressOption, int port, int gap, int size, int repo
last = usecTimestampNow();
std::cout << "first packet received\n";
} else {
quint64 statsCalcultionStart = usecTimestampNow();
quint64 now = usecTimestampNow();
int actualGap = now - last;
int gapDifferece = actualGap - gap;
timeGaps.update(gapDifferece);
timeGapsPerReport.update(gapDifferece);
@ -237,6 +298,17 @@ void runReceive(const char* addressOption, int port, int gap, int size, int repo
stDev30s.addValue(gapDifferece);
stDevReportInterval.addValue(gapDifferece);
last = now;
// track out network time and stats calculation times
averageNetworkTime.updateAverage(networkElapsed);
// for our stats calculation time, we actually delay the updating by one sample.
// we do this so that the calculation of the average timing for the stats calculation
// happen inside of the calculation processing. This ensures that tracking stats on
// stats calculation doesn't side effect the remaining running time.
if (hasStatsCalculationTime) {
averageStatsCalcultionTime.updateAverage(lastStatsCalculationTime);
}
if (now - lastReport >= (report * MSEC_TO_USEC)) {
@ -258,9 +330,12 @@ void runReceive(const char* addressOption, int port, int gap, int size, int repo
<< "max: " << timeGapsPerReport.getWindowMax() << " usecs, "
<< "avg: " << timeGapsPerReport.getWindowAverage() << " usecs, "
<< "stdev: " << stDevReportInterval.getStDev() << " usecs\n"
<< "Average Execution Times Last 30s:\n"
<< " network: " << averageNetworkTime.getAverage() << " usecs average\n"
<< " stats: " << averageStatsCalcultionTime.getAverage() << " usecs average"
<< "\n";
stDevReportInterval.reset();
if (stDev30s.getSamples() > SAMPLES_FOR_30_SECONDS) {
stDev30s.reset();
}
@ -282,6 +357,14 @@ void runReceive(const char* addressOption, int port, int gap, int size, int repo
lastReport = now;
}
quint64 statsCalcultionEnd = usecTimestampNow();
lastStatsCalculationTime = (float)(statsCalcultionEnd - statsCalcultionStart);
if (lastStatsCalculationTime > LARGE_STATS_TIME) {
qDebug() << "WARNING -- unexpectedly large lastStatsCalculationTime=" << lastStatsCalculationTime;
}
hasStatsCalculationTime = true;
}
}
delete[] inputBuffer;