Merge pull request #15237 from SamGondelman/particleShapes

Case 21859: Particle Entity emitter shapes, including model
This commit is contained in:
Sam Gondelman 2019-04-03 11:03:33 -07:00 committed by GitHub
commit 1cc2cd3194
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
16 changed files with 427 additions and 69 deletions

View file

@ -307,10 +307,6 @@ void RenderableModelEntityItem::setShapeType(ShapeType type) {
}
void RenderableModelEntityItem::setCompoundShapeURL(const QString& url) {
// because the caching system only allows one Geometry per url, and because this url might also be used
// as a visual model, we need to change this url in some way. We add a "collision-hull" query-arg so it
// will end up in a different hash-key in ResourceCache. TODO: It would be better to use the same URL and
// parse it twice.
auto currentCompoundShapeURL = getCompoundShapeURL();
ModelEntityItem::setCompoundShapeURL(url);
if (getCompoundShapeURL() != currentCompoundShapeURL || !getModel()) {

View file

@ -1,4 +1,4 @@
//
//
// RenderableParticleEffectEntityItem.cpp
// interface/src
//
@ -9,12 +9,12 @@
//
#include "RenderableParticleEffectEntityItem.h"
#include <StencilMaskPass.h>
#include <GeometryCache.h>
#include <shaders/Shaders.h>
#include <glm/gtx/transform.hpp>
using namespace render;
using namespace render::entities;
@ -79,6 +79,14 @@ bool ParticleEffectEntityRenderer::needsRenderUpdateFromTypedEntity(const TypedE
return true;
}
if (_shapeType != entity->getShapeType()) {
return true;
}
if (_compoundShapeURL != entity->getCompoundShapeURL()) {
return true;
}
return false;
}
@ -87,10 +95,10 @@ void ParticleEffectEntityRenderer::doRenderUpdateSynchronousTyped(const ScenePoi
if (!newParticleProperties.valid()) {
qCWarning(entitiesrenderer) << "Bad particle properties";
}
if (resultWithReadLock<bool>([&]{ return _particleProperties != newParticleProperties; })) {
if (resultWithReadLock<bool>([&] { return _particleProperties != newParticleProperties; })) {
_timeUntilNextEmit = 0;
withWriteLock([&]{
withWriteLock([&] {
_particleProperties = newParticleProperties;
if (!_prevEmitterShouldTrailInitialized) {
_prevEmitterShouldTrailInitialized = true;
@ -101,13 +109,20 @@ void ParticleEffectEntityRenderer::doRenderUpdateSynchronousTyped(const ScenePoi
withWriteLock([&] {
_pulseProperties = entity->getPulseProperties();
_shapeType = entity->getShapeType();
QString compoundShapeURL = entity->getCompoundShapeURL();
if (_compoundShapeURL != compoundShapeURL) {
_compoundShapeURL = compoundShapeURL;
_hasComputedTriangles = false;
fetchGeometryResource();
}
});
_emitting = entity->getIsEmitting();
bool textureEmpty = resultWithReadLock<bool>([&]{ return _particleProperties.textures.isEmpty(); });
bool textureEmpty = resultWithReadLock<bool>([&] { return _particleProperties.textures.isEmpty(); });
if (textureEmpty) {
if (_networkTexture) {
withWriteLock([&] {
withWriteLock([&] {
_networkTexture.reset();
});
}
@ -116,11 +131,11 @@ void ParticleEffectEntityRenderer::doRenderUpdateSynchronousTyped(const ScenePoi
entity->setVisuallyReady(true);
});
} else {
bool textureNeedsUpdate = resultWithReadLock<bool>([&]{
bool textureNeedsUpdate = resultWithReadLock<bool>([&] {
return !_networkTexture || _networkTexture->getURL() != QUrl(_particleProperties.textures);
});
if (textureNeedsUpdate) {
withWriteLock([&] {
withWriteLock([&] {
_networkTexture = DependencyManager::get<TextureCache>()->getTexture(_particleProperties.textures);
});
}
@ -144,7 +159,7 @@ void ParticleEffectEntityRenderer::doRenderUpdateSynchronousTyped(const ScenePoi
void ParticleEffectEntityRenderer::doRenderUpdateAsynchronousTyped(const TypedEntityPointer& entity) {
// Fill in Uniforms structure
ParticleUniforms particleUniforms;
withReadLock([&]{
withReadLock([&] {
particleUniforms.radius.start = _particleProperties.radius.range.start;
particleUniforms.radius.middle = _particleProperties.radius.gradient.target;
particleUniforms.radius.finish = _particleProperties.radius.range.finish;
@ -181,9 +196,32 @@ Item::Bound ParticleEffectEntityRenderer::getBound() {
return _bound;
}
static const size_t VERTEX_PER_PARTICLE = 4;
// FIXME: these methods assume uniform emitDimensions, need to importance sample based on dimensions
float importanceSample2DDimension(float startDim) {
float dimension = 1.0f;
if (startDim < 1.0f) {
float innerDimensionSquared = startDim * startDim;
float outerDimensionSquared = 1.0f; // pow(particle::MAXIMUM_EMIT_RADIUS_START, 2);
float randDimensionSquared = randFloatInRange(innerDimensionSquared, outerDimensionSquared);
dimension = std::sqrt(randDimensionSquared);
}
return dimension;
}
ParticleEffectEntityRenderer::CpuParticle ParticleEffectEntityRenderer::createParticle(uint64_t now, const Transform& baseTransform, const particle::Properties& particleProperties) {
float importanceSample3DDimension(float startDim) {
float dimension = 1.0f;
if (startDim < 1.0f) {
float innerDimensionCubed = startDim * startDim * startDim;
float outerDimensionCubed = 1.0f; // pow(particle::MAXIMUM_EMIT_RADIUS_START, 3);
float randDimensionCubed = randFloatInRange(innerDimensionCubed, outerDimensionCubed);
dimension = std::cbrt(randDimensionCubed);
}
return dimension;
}
ParticleEffectEntityRenderer::CpuParticle ParticleEffectEntityRenderer::createParticle(uint64_t now, const Transform& baseTransform, const particle::Properties& particleProperties,
const ShapeType& shapeType, const GeometryResource::Pointer& geometryResource,
const TriangleInfo& triangleInfo) {
CpuParticle particle;
const auto& accelerationSpread = particleProperties.emission.acceleration.spread;
@ -221,33 +259,130 @@ ParticleEffectEntityRenderer::CpuParticle ParticleEffectEntityRenderer::createPa
float azimuth;
if (azimuthFinish >= azimuthStart) {
azimuth = azimuthStart + (azimuthFinish - azimuthStart) * randFloat();
azimuth = azimuthStart + (azimuthFinish - azimuthStart) * randFloat();
} else {
azimuth = azimuthStart + (TWO_PI + azimuthFinish - azimuthStart) * randFloat();
}
// TODO: azimuth and elevation are only used for ellipsoids/circles, but could be used for other shapes too
if (emitDimensions == Vectors::ZERO) {
// Point
emitDirection = glm::quat(glm::vec3(PI_OVER_TWO - elevation, 0.0f, azimuth)) * Vectors::UNIT_Z;
} else {
// Ellipsoid
float radiusScale = 1.0f;
if (emitRadiusStart < 1.0f) {
float randRadius =
emitRadiusStart + randFloatInRange(0.0f, particle::MAXIMUM_EMIT_RADIUS_START - emitRadiusStart);
radiusScale = 1.0f - std::pow(1.0f - randRadius, 3.0f);
glm::vec3 emitPosition;
switch (shapeType) {
case SHAPE_TYPE_BOX: {
glm::vec3 dim = importanceSample3DDimension(emitRadiusStart) * 0.5f * emitDimensions;
int side = randIntInRange(0, 5);
int axis = side % 3;
float direction = side > 2 ? 1.0f : -1.0f;
emitDirection[axis] = direction;
emitPosition[axis] = direction * dim[axis];
axis = (axis + 1) % 3;
emitPosition[axis] = dim[axis] * randFloatInRange(-1.0f, 1.0f);
axis = (axis + 1) % 3;
emitPosition[axis] = dim[axis] * randFloatInRange(-1.0f, 1.0f);
break;
}
case SHAPE_TYPE_CYLINDER_X:
case SHAPE_TYPE_CYLINDER_Y:
case SHAPE_TYPE_CYLINDER_Z: {
glm::vec3 radii = importanceSample2DDimension(emitRadiusStart) * 0.5f * emitDimensions;
int axis = shapeType - SHAPE_TYPE_CYLINDER_X;
emitPosition[axis] = emitDimensions[axis] * randFloatInRange(-0.5f, 0.5f);
emitDirection[axis] = 0.0f;
axis = (axis + 1) % 3;
emitPosition[axis] = radii[axis] * glm::cos(azimuth);
emitDirection[axis] = radii[axis] > 0.0f ? emitPosition[axis] / (radii[axis] * radii[axis]) : 0.0f;
axis = (axis + 1) % 3;
emitPosition[axis] = radii[axis] * glm::sin(azimuth);
emitDirection[axis] = radii[axis] > 0.0f ? emitPosition[axis] / (radii[axis] * radii[axis]) : 0.0f;
emitDirection = glm::normalize(emitDirection);
break;
}
case SHAPE_TYPE_CIRCLE: {
glm::vec2 radii = importanceSample2DDimension(emitRadiusStart) * 0.5f * glm::vec2(emitDimensions.x, emitDimensions.z);
float x = radii.x * glm::cos(azimuth);
float z = radii.y * glm::sin(azimuth);
emitPosition = glm::vec3(x, 0.0f, z);
emitDirection = Vectors::UP;
break;
}
case SHAPE_TYPE_PLANE: {
glm::vec2 dim = importanceSample2DDimension(emitRadiusStart) * 0.5f * glm::vec2(emitDimensions.x, emitDimensions.z);
int side = randIntInRange(0, 3);
int axis = side % 2;
float direction = side > 1 ? 1.0f : -1.0f;
glm::vec2 pos;
pos[axis] = direction * dim[axis];
axis = (axis + 1) % 2;
pos[axis] = dim[axis] * randFloatInRange(-1.0f, 1.0f);
emitPosition = glm::vec3(pos.x, 0.0f, pos.y);
emitDirection = Vectors::UP;
break;
}
case SHAPE_TYPE_COMPOUND: {
// if we get here we know that geometryResource is loaded
size_t index = randFloat() * triangleInfo.totalSamples;
Triangle triangle;
for (size_t i = 0; i < triangleInfo.samplesPerTriangle.size(); i++) {
size_t numSamples = triangleInfo.samplesPerTriangle[i];
if (index < numSamples) {
triangle = triangleInfo.triangles[i];
break;
}
index -= numSamples;
}
float edgeLength1 = glm::length(triangle.v1 - triangle.v0);
float edgeLength2 = glm::length(triangle.v2 - triangle.v1);
float edgeLength3 = glm::length(triangle.v0 - triangle.v2);
float perimeter = edgeLength1 + edgeLength2 + edgeLength3;
float fraction1 = randFloatInRange(0.0f, 1.0f);
float fractionEdge1 = glm::min(fraction1 * perimeter / edgeLength1, 1.0f);
float fraction2 = fraction1 - edgeLength1 / perimeter;
float fractionEdge2 = glm::clamp(fraction2 * perimeter / edgeLength2, 0.0f, 1.0f);
float fraction3 = fraction2 - edgeLength2 / perimeter;
float fractionEdge3 = glm::clamp(fraction3 * perimeter / edgeLength3, 0.0f, 1.0f);
float dim = importanceSample2DDimension(emitRadiusStart);
triangle = triangle * (glm::scale(emitDimensions) * triangleInfo.transform);
glm::vec3 center = (triangle.v0 + triangle.v1 + triangle.v2) / 3.0f;
glm::vec3 v0 = (dim * (triangle.v0 - center)) + center;
glm::vec3 v1 = (dim * (triangle.v1 - center)) + center;
glm::vec3 v2 = (dim * (triangle.v2 - center)) + center;
emitPosition = glm::mix(v0, glm::mix(v1, glm::mix(v2, v0, fractionEdge3), fractionEdge2), fractionEdge1);
emitDirection = triangle.getNormal();
break;
}
case SHAPE_TYPE_SPHERE:
case SHAPE_TYPE_ELLIPSOID:
default: {
glm::vec3 radii = importanceSample3DDimension(emitRadiusStart) * 0.5f * emitDimensions;
float x = radii.x * glm::cos(elevation) * glm::cos(azimuth);
float y = radii.y * glm::cos(elevation) * glm::sin(azimuth);
float z = radii.z * glm::sin(elevation);
emitPosition = glm::vec3(x, y, z);
emitDirection = glm::normalize(glm::vec3(radii.x > 0.0f ? x / (radii.x * radii.x) : 0.0f,
radii.y > 0.0f ? y / (radii.y * radii.y) : 0.0f,
radii.z > 0.0f ? z / (radii.z * radii.z) : 0.0f));
break;
}
}
glm::vec3 radii = radiusScale * 0.5f * emitDimensions;
float x = radii.x * glm::cos(elevation) * glm::cos(azimuth);
float y = radii.y * glm::cos(elevation) * glm::sin(azimuth);
float z = radii.z * glm::sin(elevation);
glm::vec3 emitPosition = glm::vec3(x, y, z);
emitDirection = glm::normalize(glm::vec3(
radii.x > 0.0f ? x / (radii.x * radii.x) : 0.0f,
radii.y > 0.0f ? y / (radii.y * radii.y) : 0.0f,
radii.z > 0.0f ? z / (radii.z * radii.z) : 0.0f
));
particle.relativePosition += emitOrientation * emitPosition;
}
}
@ -267,20 +402,28 @@ void ParticleEffectEntityRenderer::stepSimulation() {
const auto now = usecTimestampNow();
const auto interval = std::min<uint64_t>(USECS_PER_SECOND / 60, now - _lastSimulated);
_lastSimulated = now;
particle::Properties particleProperties;
withReadLock([&]{
ShapeType shapeType;
GeometryResource::Pointer geometryResource;
withReadLock([&] {
particleProperties = _particleProperties;
shapeType = _shapeType;
geometryResource = _geometryResource;
});
const auto& modelTransform = getModelTransform();
if (_emitting && particleProperties.emitting()) {
if (_emitting && particleProperties.emitting() &&
(shapeType != SHAPE_TYPE_COMPOUND || (geometryResource && geometryResource->isLoaded()))) {
uint64_t emitInterval = particleProperties.emitIntervalUsecs();
if (emitInterval > 0 && interval >= _timeUntilNextEmit) {
auto timeRemaining = interval;
while (timeRemaining > _timeUntilNextEmit) {
if (_shapeType == SHAPE_TYPE_COMPOUND && !_hasComputedTriangles) {
computeTriangles(geometryResource->getHFMModel());
}
// emit particle
_cpuParticles.push_back(createParticle(now, modelTransform, particleProperties));
_cpuParticles.push_back(createParticle(now, modelTransform, particleProperties, shapeType, geometryResource, _triangleInfo));
_timeUntilNextEmit = emitInterval;
if (emitInterval < timeRemaining) {
timeRemaining -= emitInterval;
@ -297,7 +440,7 @@ void ParticleEffectEntityRenderer::stepSimulation() {
}
const float deltaTime = (float)interval / (float)USECS_PER_SECOND;
// update the particles
// update the particles
for (auto& particle : _cpuParticles) {
if (_prevEmitterShouldTrail != particleProperties.emission.shouldTrail) {
if (_prevEmitterShouldTrail) {
@ -313,7 +456,7 @@ void ParticleEffectEntityRenderer::stepSimulation() {
static GpuParticles gpuParticles;
gpuParticles.clear();
gpuParticles.reserve(_cpuParticles.size()); // Reserve space
std::transform(_cpuParticles.begin(), _cpuParticles.end(), std::back_inserter(gpuParticles), [&particleProperties, &modelTransform](const CpuParticle& particle) {
std::transform(_cpuParticles.begin(), _cpuParticles.end(), std::back_inserter(gpuParticles), [&particleProperties, &modelTransform] (const CpuParticle& particle) {
glm::vec3 position = particle.relativePosition + (particleProperties.emission.shouldTrail ? particle.basePosition : modelTransform.getTranslation());
return GpuParticle(position, glm::vec2(particle.lifetime, particle.seed));
});
@ -356,5 +499,131 @@ void ParticleEffectEntityRenderer::doRender(RenderArgs* args) {
batch.setInputBuffer(0, _particleBuffer, 0, sizeof(GpuParticle));
auto numParticles = _particleBuffer->getSize() / sizeof(GpuParticle);
static const size_t VERTEX_PER_PARTICLE = 4;
batch.drawInstanced((gpu::uint32)numParticles, gpu::TRIANGLE_STRIP, (gpu::uint32)VERTEX_PER_PARTICLE);
}
void ParticleEffectEntityRenderer::fetchGeometryResource() {
QUrl hullURL(_compoundShapeURL);
if (hullURL.isEmpty()) {
_geometryResource.reset();
} else {
_geometryResource = DependencyManager::get<ModelCache>()->getCollisionGeometryResource(hullURL);
}
}
// FIXME: this is very similar to Model::calculateTriangleSets
void ParticleEffectEntityRenderer::computeTriangles(const hfm::Model& hfmModel) {
PROFILE_RANGE(render, __FUNCTION__);
int numberOfMeshes = hfmModel.meshes.size();
_hasComputedTriangles = true;
_triangleInfo.triangles.clear();
_triangleInfo.samplesPerTriangle.clear();
std::vector<float> areas;
float minArea = FLT_MAX;
AABox bounds;
for (int i = 0; i < numberOfMeshes; i++) {
const HFMMesh& mesh = hfmModel.meshes.at(i);
const int numberOfParts = mesh.parts.size();
for (int j = 0; j < numberOfParts; j++) {
const HFMMeshPart& part = mesh.parts.at(j);
const int INDICES_PER_TRIANGLE = 3;
const int INDICES_PER_QUAD = 4;
const int TRIANGLES_PER_QUAD = 2;
// tell our triangleSet how many triangles to expect.
int numberOfQuads = part.quadIndices.size() / INDICES_PER_QUAD;
int numberOfTris = part.triangleIndices.size() / INDICES_PER_TRIANGLE;
int totalTriangles = (numberOfQuads * TRIANGLES_PER_QUAD) + numberOfTris;
_triangleInfo.triangles.reserve(_triangleInfo.triangles.size() + totalTriangles);
areas.reserve(areas.size() + totalTriangles);
auto meshTransform = hfmModel.offset * mesh.modelTransform;
if (part.quadIndices.size() > 0) {
int vIndex = 0;
for (int q = 0; q < numberOfQuads; q++) {
int i0 = part.quadIndices[vIndex++];
int i1 = part.quadIndices[vIndex++];
int i2 = part.quadIndices[vIndex++];
int i3 = part.quadIndices[vIndex++];
// track the model space version... these points will be transformed by the FST's offset,
// which includes the scaling, rotation, and translation specified by the FST/FBX,
// this can't change at runtime, so we can safely store these in our TriangleSet
glm::vec3 v0 = glm::vec3(meshTransform * glm::vec4(mesh.vertices[i0], 1.0f));
glm::vec3 v1 = glm::vec3(meshTransform * glm::vec4(mesh.vertices[i1], 1.0f));
glm::vec3 v2 = glm::vec3(meshTransform * glm::vec4(mesh.vertices[i2], 1.0f));
glm::vec3 v3 = glm::vec3(meshTransform * glm::vec4(mesh.vertices[i3], 1.0f));
Triangle tri1 = { v0, v1, v3 };
Triangle tri2 = { v1, v2, v3 };
_triangleInfo.triangles.push_back(tri1);
_triangleInfo.triangles.push_back(tri2);
float area1 = tri1.getArea();
areas.push_back(area1);
if (area1 > EPSILON) {
minArea = std::min(minArea, area1);
}
float area2 = tri2.getArea();
areas.push_back(area2);
if (area2 > EPSILON) {
minArea = std::min(minArea, area2);
}
bounds += v0;
bounds += v1;
bounds += v2;
bounds += v3;
}
}
if (part.triangleIndices.size() > 0) {
int vIndex = 0;
for (int t = 0; t < numberOfTris; t++) {
int i0 = part.triangleIndices[vIndex++];
int i1 = part.triangleIndices[vIndex++];
int i2 = part.triangleIndices[vIndex++];
// track the model space version... these points will be transformed by the FST's offset,
// which includes the scaling, rotation, and translation specified by the FST/FBX,
// this can't change at runtime, so we can safely store these in our TriangleSet
glm::vec3 v0 = glm::vec3(meshTransform * glm::vec4(mesh.vertices[i0], 1.0f));
glm::vec3 v1 = glm::vec3(meshTransform * glm::vec4(mesh.vertices[i1], 1.0f));
glm::vec3 v2 = glm::vec3(meshTransform * glm::vec4(mesh.vertices[i2], 1.0f));
Triangle tri = { v0, v1, v2 };
_triangleInfo.triangles.push_back(tri);
float area = tri.getArea();
areas.push_back(area);
if (area > EPSILON) {
minArea = std::min(minArea, area);
}
bounds += v0;
bounds += v1;
bounds += v2;
}
}
}
}
_triangleInfo.totalSamples = 0;
for (auto& area : areas) {
size_t numSamples = area / minArea;
_triangleInfo.samplesPerTriangle.push_back(numSamples);
_triangleInfo.totalSamples += numSamples;
}
glm::vec3 scale = bounds.getScale();
_triangleInfo.transform = glm::scale(1.0f / scale) * glm::translate(-bounds.calcCenter());
}

View file

@ -81,7 +81,18 @@ private:
glm::vec2 spare;
};
static CpuParticle createParticle(uint64_t now, const Transform& baseTransform, const particle::Properties& particleProperties);
void computeTriangles(const hfm::Model& hfmModel);
bool _hasComputedTriangles{ false };
struct TriangleInfo {
std::vector<Triangle> triangles;
std::vector<size_t> samplesPerTriangle;
size_t totalSamples;
glm::mat4 transform;
} _triangleInfo;
static CpuParticle createParticle(uint64_t now, const Transform& baseTransform, const particle::Properties& particleProperties,
const ShapeType& shapeType, const GeometryResource::Pointer& geometryResource,
const TriangleInfo& triangleInfo);
void stepSimulation();
particle::Properties _particleProperties;
@ -90,11 +101,16 @@ private:
CpuParticles _cpuParticles;
bool _emitting { false };
uint64_t _timeUntilNextEmit { 0 };
BufferPointer _particleBuffer{ std::make_shared<Buffer>() };
BufferPointer _particleBuffer { std::make_shared<Buffer>() };
BufferView _uniformBuffer;
quint64 _lastSimulated { 0 };
PulsePropertyGroup _pulseProperties;
ShapeType _shapeType;
QString _compoundShapeURL;
void fetchGeometryResource();
GeometryResource::Pointer _geometryResource;
NetworkTexturePointer _networkTexture;
ScenePointer _scene;

View file

@ -127,6 +127,7 @@ void buildStringToShapeTypeLookup() {
addShapeType(SHAPE_TYPE_SIMPLE_COMPOUND);
addShapeType(SHAPE_TYPE_STATIC_MESH);
addShapeType(SHAPE_TYPE_ELLIPSOID);
addShapeType(SHAPE_TYPE_CIRCLE);
}
QHash<QString, MaterialMappingMode> stringToMaterialMappingModeLookup;
@ -1114,23 +1115,28 @@ EntityPropertyFlags EntityItemProperties::getChangedProperties() const {
* default, particles emit along the entity's local z-axis, and <code>azimuthStart</code> and <code>azimuthFinish</code>
* are relative to the entity's local x-axis. The default value is a rotation of -90 degrees about the local x-axis, i.e.,
* the particles emit vertically.
* @property {Vec3} emitDimensions=0,0,0 - The dimensions of the ellipsoid from which particles are emitted.
* @property {number} emitRadiusStart=1 - The starting radius within the ellipsoid at which particles start being emitted;
* range <code>0.0</code> &ndash; <code>1.0</code> for the ellipsoid center to the ellipsoid surface, respectively.
* Particles are emitted from the portion of the ellipsoid that lies between <code>emitRadiusStart</code> and the
* ellipsoid's surface.
* @property {Vec3} emitDimensions=0,0,0 - The dimensions of the shape from which particles are emitted. The shape is specified with
* <code>shapeType</code>.
* @property {number} emitRadiusStart=1 - The starting radius within the shape at which particles start being emitted;
* range <code>0.0</code> &ndash; <code>1.0</code> for the center to the surface, respectively.
* Particles are emitted from the portion of the shape that lies between <code>emitRadiusStart</code> and the
* shape's surface.
* @property {number} polarStart=0 - The angle in radians from the entity's local z-axis at which particles start being emitted
* within the ellipsoid; range <code>0</code> &ndash; <code>Math.PI</code>. Particles are emitted from the portion of the
* ellipsoid that lies between <code>polarStart<code> and <code>polarFinish</code>.
* within the shape; range <code>0</code> &ndash; <code>Math.PI</code>. Particles are emitted from the portion of the
* shape that lies between <code>polarStart<code> and <code>polarFinish</code>. Only used if <code>shapeType</code> is
* <code>ellipsoid</code> or <code>sphere</code>.
* @property {number} polarFinish=0 - The angle in radians from the entity's local z-axis at which particles stop being emitted
* within the ellipsoid; range <code>0</code> &ndash; <code>Math.PI</code>. Particles are emitted from the portion of the
* ellipsoid that lies between <code>polarStart<code> and <code>polarFinish</code>.
* within the shape; range <code>0</code> &ndash; <code>Math.PI</code>. Particles are emitted from the portion of the
* shape that lies between <code>polarStart<code> and <code>polarFinish</code>. Only used if <code>shapeType</code> is
* <code>ellipsoid</code> or <code>sphere</code>.
* @property {number} azimuthStart=-Math.PI - The angle in radians from the entity's local x-axis about the entity's local
* z-axis at which particles start being emitted; range <code>-Math.PI</code> &ndash; <code>Math.PI</code>. Particles are
* emitted from the portion of the ellipsoid that lies between <code>azimuthStart<code> and <code>azimuthFinish</code>.
* emitted from the portion of the shape that lies between <code>azimuthStart<code> and <code>azimuthFinish</code>.
* Only used if <code>shapeType</code> is <code>ellipsoid</code>, <code>sphere</code>, or <code>circle</code>.
* @property {number} azimuthFinish=Math.PI - The angle in radians from the entity's local x-axis about the entity's local
* z-axis at which particles stop being emitted; range <code>-Math.PI</code> &ndash; <code>Math.PI</code>. Particles are
* emitted from the portion of the ellipsoid that lies between <code>azimuthStart<code> and <code>azimuthFinish</code>.
* emitted from the portion of the shape that lies between <code>azimuthStart<code> and <code>azimuthFinish</code>.
* Only used if <code>shapeType</code> is <code>ellipsoid</code>, <code>sphere</code>, or <code>circle</code>..
*
* @property {string} textures="" - The URL of a JPG or PNG image file to display for each particle. If you want transparency,
* use PNG format.
@ -1170,7 +1176,9 @@ EntityPropertyFlags EntityItemProperties::getChangedProperties() const {
* up in the world. If true, they will point towards the entity's up vector, based on its orientation.
* @property {Entities.Pulse} pulse - The pulse-related properties. Deprecated.
*
* @property {ShapeType} shapeType="none" - <em>Currently not used.</em> <em>Read-only.</em>
* @property {ShapeType} shapeType="ellipsoid" - The shape of the collision hull used if collisions are enabled.
* @property {string} compoundShapeURL="" - The model file to use for the compound shape if <code>shapeType</code> is
* <code>"compound"</code>.
*
* @example <caption>Create a ball of green smoke.</caption>
* particles = Entities.addEntity({
@ -1658,6 +1666,7 @@ QScriptValue EntityItemProperties::copyToScriptValue(QScriptEngine* engine, bool
// Particles only
if (_type == EntityTypes::ParticleEffect) {
COPY_PROPERTY_TO_QSCRIPTVALUE_GETTER(PROP_SHAPE_TYPE, shapeType, getShapeTypeAsString());
COPY_PROPERTY_TO_QSCRIPTVALUE(PROP_COMPOUND_SHAPE_URL, compoundShapeURL);
COPY_PROPERTY_TO_QSCRIPTVALUE_TYPED(PROP_COLOR, color, u8vec3Color);
COPY_PROPERTY_TO_QSCRIPTVALUE(PROP_ALPHA, alpha);
_pulse.copyToScriptValue(_desiredProperties, properties, engine, skipDefaults, defaultEntityProperties);
@ -3104,6 +3113,7 @@ OctreeElement::AppendState EntityItemProperties::encodeEntityEditPacket(PacketTy
if (properties.getType() == EntityTypes::ParticleEffect) {
APPEND_ENTITY_PROPERTY(PROP_SHAPE_TYPE, (uint32_t)(properties.getShapeType()));
APPEND_ENTITY_PROPERTY(PROP_COMPOUND_SHAPE_URL, properties.getCompoundShapeURL());
APPEND_ENTITY_PROPERTY(PROP_COLOR, properties.getColor());
APPEND_ENTITY_PROPERTY(PROP_ALPHA, properties.getAlpha());
_staticPulse.setProperties(properties);
@ -3584,6 +3594,7 @@ bool EntityItemProperties::decodeEntityEditPacket(const unsigned char* data, int
if (properties.getType() == EntityTypes::ParticleEffect) {
READ_ENTITY_PROPERTY_TO_PROPERTIES(PROP_SHAPE_TYPE, ShapeType, setShapeType);
READ_ENTITY_PROPERTY_TO_PROPERTIES(PROP_COMPOUND_SHAPE_URL, QString, setCompoundShapeURL);
READ_ENTITY_PROPERTY_TO_PROPERTIES(PROP_COLOR, u8vec3Color, setColor);
READ_ENTITY_PROPERTY_TO_PROPERTIES(PROP_ALPHA, float, setAlpha);
properties.getPulse().decodeFromEditPacket(propertyFlags, dataAt, processedBytes);

View file

@ -49,8 +49,6 @@ class LineEntityItem : public EntityItem {
QVector<glm::vec3> getLinePoints() const;
virtual ShapeType getShapeType() const override { return SHAPE_TYPE_NONE; }
// never have a ray intersection pick a LineEntityItem.
virtual bool supportsDetailedIntersection() const override { return true; }
virtual bool findDetailedRayIntersection(const glm::vec3& origin, const glm::vec3& direction,

View file

@ -175,7 +175,7 @@ protected:
QString _textures;
ShapeType _shapeType = SHAPE_TYPE_NONE;
ShapeType _shapeType { SHAPE_TYPE_NONE };
private:
uint64_t _lastAnimated{ 0 };

View file

@ -410,6 +410,7 @@ EntityItemProperties ParticleEffectEntityItem::getProperties(const EntityPropert
EntityItemProperties properties = EntityItem::getProperties(desiredProperties, allowEmptyDesiredProperties); // get the properties from our base class
COPY_ENTITY_PROPERTY_TO_PROPERTIES(shapeType, getShapeType);
COPY_ENTITY_PROPERTY_TO_PROPERTIES(compoundShapeURL, getCompoundShapeURL);
COPY_ENTITY_PROPERTY_TO_PROPERTIES(color, getColor);
COPY_ENTITY_PROPERTY_TO_PROPERTIES(alpha, getAlpha);
withReadLock([&] {
@ -464,6 +465,7 @@ bool ParticleEffectEntityItem::setProperties(const EntityItemProperties& propert
bool somethingChanged = EntityItem::setProperties(properties); // set the properties in our base class
SET_ENTITY_PROPERTY_FROM_PROPERTIES(shapeType, setShapeType);
SET_ENTITY_PROPERTY_FROM_PROPERTIES(compoundShapeURL, setCompoundShapeURL);
SET_ENTITY_PROPERTY_FROM_PROPERTIES(color, setColor);
SET_ENTITY_PROPERTY_FROM_PROPERTIES(alpha, setAlpha);
withWriteLock([&] {
@ -540,6 +542,7 @@ int ParticleEffectEntityItem::readEntitySubclassDataFromBuffer(const unsigned ch
const unsigned char* dataAt = data;
READ_ENTITY_PROPERTY(PROP_SHAPE_TYPE, ShapeType, setShapeType);
READ_ENTITY_PROPERTY(PROP_COMPOUND_SHAPE_URL, QString, setCompoundShapeURL);
READ_ENTITY_PROPERTY(PROP_COLOR, u8vec3Color, setColor);
READ_ENTITY_PROPERTY(PROP_ALPHA, float, setAlpha);
withWriteLock([&] {
@ -598,6 +601,7 @@ EntityPropertyFlags ParticleEffectEntityItem::getEntityProperties(EncodeBitstrea
EntityPropertyFlags requestedProperties = EntityItem::getEntityProperties(params);
requestedProperties += PROP_SHAPE_TYPE;
requestedProperties += PROP_COMPOUND_SHAPE_URL;
requestedProperties += PROP_COLOR;
requestedProperties += PROP_ALPHA;
requestedProperties += _pulseProperties.getEntityProperties(params);
@ -656,6 +660,7 @@ void ParticleEffectEntityItem::appendSubclassData(OctreePacketData* packetData,
bool successPropertyFits = true;
APPEND_ENTITY_PROPERTY(PROP_SHAPE_TYPE, (uint32_t)getShapeType());
APPEND_ENTITY_PROPERTY(PROP_COMPOUND_SHAPE_URL, getCompoundShapeURL());
APPEND_ENTITY_PROPERTY(PROP_COLOR, getColor());
APPEND_ENTITY_PROPERTY(PROP_ALPHA, getAlpha());
withReadLock([&] {
@ -718,11 +723,42 @@ void ParticleEffectEntityItem::debugDump() const {
}
void ParticleEffectEntityItem::setShapeType(ShapeType type) {
switch (type) {
case SHAPE_TYPE_NONE:
case SHAPE_TYPE_CAPSULE_X:
case SHAPE_TYPE_CAPSULE_Y:
case SHAPE_TYPE_CAPSULE_Z:
case SHAPE_TYPE_HULL:
case SHAPE_TYPE_SIMPLE_HULL:
case SHAPE_TYPE_SIMPLE_COMPOUND:
case SHAPE_TYPE_STATIC_MESH:
// these types are unsupported for ParticleEffectEntity
type = particle::DEFAULT_SHAPE_TYPE;
break;
default:
break;
}
withWriteLock([&] {
if (type != _shapeType) {
_shapeType = type;
_flags |= Simulation::DIRTY_SHAPE | Simulation::DIRTY_MASS;
}
_shapeType = type;
});
}
ShapeType ParticleEffectEntityItem::getShapeType() const {
return resultWithReadLock<ShapeType>([&] {
return _shapeType;
});
}
void ParticleEffectEntityItem::setCompoundShapeURL(const QString& compoundShapeURL) {
withWriteLock([&] {
_compoundShapeURL = compoundShapeURL;
});
}
QString ParticleEffectEntityItem::getCompoundShapeURL() const {
return resultWithReadLock<QString>([&] {
return _compoundShapeURL;
});
}

View file

@ -79,6 +79,7 @@ namespace particle {
static const QString DEFAULT_TEXTURES = "";
static const bool DEFAULT_EMITTER_SHOULD_TRAIL = false;
static const bool DEFAULT_ROTATE_WITH_ENTITY = false;
static const ShapeType DEFAULT_SHAPE_TYPE = ShapeType::SHAPE_TYPE_ELLIPSOID;
template <typename T>
struct Range {
@ -255,7 +256,10 @@ public:
float getAlphaSpread() const { return _particleProperties.alpha.gradient.spread; }
void setShapeType(ShapeType type) override;
virtual ShapeType getShapeType() const override { return _shapeType; }
virtual ShapeType getShapeType() const override;
QString getCompoundShapeURL() const;
virtual void setCompoundShapeURL(const QString& url);
virtual void debugDump() const override;
@ -349,7 +353,8 @@ protected:
PulsePropertyGroup _pulseProperties;
bool _isEmitting { true };
ShapeType _shapeType { SHAPE_TYPE_NONE };
ShapeType _shapeType{ particle::DEFAULT_SHAPE_TYPE };
QString _compoundShapeURL { "" };
};
#endif // hifi_ParticleEffectEntityItem_h

View file

@ -112,7 +112,7 @@ protected:
//! This is SHAPE_TYPE_ELLIPSOID rather than SHAPE_TYPE_NONE to maintain
//! prior functionality where new or unsupported shapes are treated as
//! ellipsoids.
ShapeType _collisionShapeType{ ShapeType::SHAPE_TYPE_ELLIPSOID };
ShapeType _collisionShapeType { ShapeType::SHAPE_TYPE_ELLIPSOID };
};
#endif // hifi_ShapeEntityItem_h

View file

@ -13,7 +13,6 @@
#include <glm/gtx/transform.hpp>
#include <QDebug>
#include <QUrlQuery>
#include <ByteCountCoding.h>
@ -353,7 +352,7 @@ bool ZoneEntityItem::contains(const glm::vec3& point) const {
Extents meshExtents = hfmModel.getMeshExtents();
glm::vec3 meshExtentsDiagonal = meshExtents.maximum - meshExtents.minimum;
glm::vec3 offset = -meshExtents.minimum- (meshExtentsDiagonal * getRegistrationPoint());
glm::vec3 offset = -meshExtents.minimum - (meshExtentsDiagonal * getRegistrationPoint());
glm::vec3 scale(getScaledDimensions() / meshExtentsDiagonal);
glm::mat4 hfmToEntityMatrix = glm::scale(scale) * glm::translate(offset);
@ -463,9 +462,6 @@ void ZoneEntityItem::fetchCollisionGeometryResource() {
if (hullURL.isEmpty()) {
_shapeResource.reset();
} else {
QUrlQuery queryArgs(hullURL);
queryArgs.addQueryItem("collision-hull", "");
hullURL.setQuery(queryArgs);
_shapeResource = DependencyManager::get<ModelCache>()->getCollisionGeometryResource(hullURL);
}
}

View file

@ -133,7 +133,7 @@ protected:
KeyLightPropertyGroup _keyLightProperties;
AmbientLightPropertyGroup _ambientLightProperties;
ShapeType _shapeType = DEFAULT_SHAPE_TYPE;
ShapeType _shapeType { DEFAULT_SHAPE_TYPE };
QString _compoundShapeURL;
// The following 3 values are the defaults for zone creation

View file

@ -267,6 +267,7 @@ enum class EntityVersion : PacketVersion {
ReOrderParentIDProperties,
CertificateTypeProperty,
DisableWebMedia,
ParticleShapeType,
// Add new versions above here
NUM_PACKET_TYPE,

View file

@ -358,6 +358,12 @@ glm::vec3 Triangle::getNormal() const {
return glm::normalize(glm::cross(edge1, edge2));
}
float Triangle::getArea() const {
glm::vec3 edge1 = v1 - v0;
glm::vec3 edge2 = v2 - v0;
return 0.5f * glm::length(glm::cross(edge1, edge2));
}
Triangle Triangle::operator*(const glm::mat4& transform) const {
return {
glm::vec3(transform * glm::vec4(v0, 1.0f)),

View file

@ -125,6 +125,7 @@ public:
glm::vec3 v1;
glm::vec3 v2;
glm::vec3 getNormal() const;
float getArea() const;
Triangle operator*(const glm::mat4& transform) const;
};

View file

@ -227,6 +227,14 @@
"speedSpread": {
"tooltip": "The spread in speeds at which particles are emitted at, resulting in a variety of speeds."
},
"particleShapeType": {
"tooltip": "The shape of the surface from which to emit particles.",
"jsPropertyName": "shapeType"
},
"particleCompoundShapeURL": {
"tooltip": "The model file to use for the particle emitter if Shape Type is \"Use Compound Shape URL\".",
"jsPropertyName": "compoundShapeURL"
},
"emitDimensions": {
"tooltip": "The outer limit radius in dimensions that the particles can be emitted from."
},

View file

@ -807,6 +807,21 @@ const GROUPS = [
decimals: 2,
propertyID: "speedSpread",
},
{
label: "Shape Type",
type: "dropdown",
options: { "box": "Box", "ellipsoid": "Ellipsoid",
"cylinder-y": "Cylinder", "circle": "Circle", "plane": "Plane",
"compound": "Use Compound Shape URL" },
propertyID: "particleShapeType",
propertyName: "shapeType",
},
{
label: "Compound Shape URL",
type: "string",
propertyID: "particleCompoundShapeURL",
propertyName: "compoundShapeURL",
},
{
label: "Emit Dimensions",
type: "vec3",