mirror of
https://github.com/overte-org/overte.git
synced 2025-04-20 18:23:54 +02:00
Merge pull request #539 from ey6es/master
Better iris texture, fixed iris rotations.
This commit is contained in:
commit
17ea2d0d0d
5 changed files with 51 additions and 46 deletions
Binary file not shown.
Before Width: | Height: | Size: 152 KiB After Width: | Height: | Size: 71 KiB |
|
@ -15,7 +15,10 @@ uniform sampler2D texture;
|
|||
varying vec4 normal;
|
||||
|
||||
void main(void) {
|
||||
// compute the specular component (sans exponent) based on the normal OpenGL lighting model
|
||||
float specular = max(0.0, dot(normalize(gl_LightSource[0].position + vec4(0.0, 0.0, 1.0, 0.0)), normalize(normal)));
|
||||
gl_FragColor = vec4(gl_Color.rgb * texture2D(texture, gl_TexCoord[0].st).rgb +
|
||||
pow(specular, gl_FrontMaterial.shininess) * gl_FrontLightProduct[0].specular.rgb, 1.0);
|
||||
|
||||
// modulate texture by diffuse color and add specular contribution
|
||||
gl_FragColor = gl_Color * texture2D(texture, gl_TexCoord[0].st) +
|
||||
pow(specular, gl_FrontMaterial.shininess) * gl_FrontLightProduct[0].specular;
|
||||
}
|
||||
|
|
|
@ -11,10 +11,23 @@
|
|||
// the interpolated normal
|
||||
varying vec4 normal;
|
||||
|
||||
// the ratio of the indices of refraction
|
||||
const float refractionEta = 0.75;
|
||||
|
||||
void main(void) {
|
||||
|
||||
// transform and store the normal for interpolation
|
||||
normal = normalize(gl_ModelViewMatrix * vec4(gl_Normal, 0.0));
|
||||
gl_FrontColor = gl_Color * (gl_LightModel.ambient + gl_LightSource[0].ambient +
|
||||
gl_LightSource[0].diffuse * max(0.0, dot(normal, gl_LightSource[0].position)));
|
||||
gl_TexCoord[0] = gl_MultiTexCoord0;
|
||||
|
||||
// compute standard diffuse lighting per-vertex
|
||||
gl_FrontColor = vec4(gl_Color.rgb * (gl_LightModel.ambient.rgb + gl_LightSource[0].ambient.rgb +
|
||||
gl_LightSource[0].diffuse.rgb * max(0.0, dot(normal, gl_LightSource[0].position))), gl_Color.a);
|
||||
|
||||
// compute the texture coordinate based on where refracted vector hits z=0 in model space
|
||||
vec4 incidence = normalize(gl_Vertex - gl_ModelViewMatrixInverse * vec4(0.0, 0.0, 0.0, 1.0));
|
||||
vec4 refracted = refract(incidence, normalize(vec4(gl_Normal, 0.0)), refractionEta);
|
||||
gl_TexCoord[0] = (gl_Vertex - (gl_Vertex.z / refracted.z) * refracted) + vec4(0.5, 0.5, 0.0, 0.0);
|
||||
|
||||
// use standard pipeline transform
|
||||
gl_Position = ftransform();
|
||||
}
|
||||
|
|
|
@ -87,12 +87,14 @@ void Head::init() {
|
|||
|
||||
_irisProgram->setUniformValue("texture", 0);
|
||||
|
||||
QImage image = QImage(IRIS_TEXTURE_FILENAME).convertToFormat(QImage::Format_RGB888);
|
||||
QImage image = QImage(IRIS_TEXTURE_FILENAME).convertToFormat(QImage::Format_ARGB32);
|
||||
|
||||
glGenTextures(1, &_irisTextureID);
|
||||
glBindTexture(GL_TEXTURE_2D, _irisTextureID);
|
||||
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, image.width(), image.height(), 0, GL_RGB, GL_UNSIGNED_BYTE, image.constBits());
|
||||
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
|
||||
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, image.width(), image.height(), 1, GL_BGRA, GL_UNSIGNED_BYTE, image.constBits());
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);
|
||||
glBindTexture(GL_TEXTURE_2D, 0);
|
||||
}
|
||||
}
|
||||
|
@ -462,73 +464,60 @@ void Head::renderEyeBrows() {
|
|||
|
||||
void Head::renderEyeBalls() {
|
||||
|
||||
// setup the texture to be used on each iris
|
||||
GLUquadric* irisQuadric = gluNewQuadric();
|
||||
gluQuadricTexture(irisQuadric, GL_TRUE);
|
||||
|
||||
gluQuadricOrientation(irisQuadric, GLU_OUTSIDE);
|
||||
|
||||
// render white ball of left eyeball
|
||||
glPushMatrix();
|
||||
glColor3fv(EYEBALL_COLOR);
|
||||
glTranslatef(_leftEyePosition.x, _leftEyePosition.y, _leftEyePosition.z);
|
||||
gluSphere(irisQuadric, EYEBALL_RADIUS, 30, 30);
|
||||
glutSolidSphere(EYEBALL_RADIUS, 30, 30);
|
||||
glPopMatrix();
|
||||
|
||||
//render white ball of right eyeball
|
||||
glPushMatrix();
|
||||
glColor3fv(EYEBALL_COLOR);
|
||||
glTranslatef(_rightEyePosition.x, _rightEyePosition.y, _rightEyePosition.z);
|
||||
gluSphere(irisQuadric, EYEBALL_RADIUS, 30, 30);
|
||||
glTranslatef(_rightEyePosition.x, _rightEyePosition.y, _rightEyePosition.z);
|
||||
glutSolidSphere(EYEBALL_RADIUS, 30, 30);
|
||||
glPopMatrix();
|
||||
|
||||
_irisProgram->bind();
|
||||
glBindTexture(GL_TEXTURE_2D, _irisTextureID);
|
||||
glEnable(GL_TEXTURE_2D);
|
||||
|
||||
glm::vec3 front = getFrontDirection();
|
||||
glm::quat orientation = getOrientation();
|
||||
glm::vec3 front = orientation * IDENTITY_FRONT;
|
||||
|
||||
// render left iris
|
||||
glPushMatrix(); {
|
||||
glTranslatef(_leftEyePosition.x, _leftEyePosition.y, _leftEyePosition.z); //translate to eyeball position
|
||||
glPushMatrix();
|
||||
//rotate the eyeball to aim towards the lookat position
|
||||
glm::vec3 targetLookatAxis = glm::normalize(_lookAtPosition + _saccade - _leftEyePosition);
|
||||
glm::vec3 rotationAxis = glm::cross(targetLookatAxis, IDENTITY_UP);
|
||||
float angle = 180.0f - angleBetween(targetLookatAxis, IDENTITY_UP);
|
||||
glRotatef(angle, rotationAxis.x, rotationAxis.y, rotationAxis.z);
|
||||
glRotatef(180.0, 0.0f, 1.0f, 0.0f); //adjust roll to correct after previous rotations
|
||||
glTranslatef( 0.0f, -IRIS_PROTRUSION, 0.0f);
|
||||
glScalef( 1.0f, 0.5f, 1.0f); // flatten the iris
|
||||
gluSphere(irisQuadric, IRIS_RADIUS, 15, 15);
|
||||
glPopMatrix();
|
||||
|
||||
//rotate the eyeball to aim towards the lookat position
|
||||
glm::vec3 targetLookatVector = _lookAtPosition + _saccade - _leftEyePosition;
|
||||
glm::quat rotation = rotationBetween(front, targetLookatVector) * orientation;
|
||||
glm::vec3 rotationAxis = glm::axis(rotation);
|
||||
glRotatef(glm::angle(rotation), rotationAxis.x, rotationAxis.y, rotationAxis.z);
|
||||
glTranslatef(0.0f, 0.0f, -IRIS_PROTRUSION);
|
||||
glScalef(IRIS_RADIUS * 2.0f, IRIS_RADIUS * 2.0f, IRIS_RADIUS); // flatten the iris
|
||||
glutSolidSphere(0.5f, 15, 15);
|
||||
}
|
||||
glPopMatrix();
|
||||
|
||||
// render right iris
|
||||
glPushMatrix(); {
|
||||
glTranslatef(_rightEyePosition.x, _rightEyePosition.y, _rightEyePosition.z); //translate to eyeball position
|
||||
glPushMatrix();
|
||||
|
||||
//rotate the eyeball to aim towards the lookat position
|
||||
glm::vec3 targetLookatAxis = glm::normalize(_lookAtPosition + _saccade - _rightEyePosition);
|
||||
glm::vec3 rotationAxis = glm::cross(targetLookatAxis, IDENTITY_UP);
|
||||
float angle = 180.0f - angleBetween(targetLookatAxis, IDENTITY_UP);
|
||||
glRotatef(angle, rotationAxis.x, rotationAxis.y, rotationAxis.z);
|
||||
glRotatef(180.0f, 0.0f, 1.0f, 0.0f); //adjust roll to correct after previous rotations
|
||||
glTranslatef( 0.0f, -IRIS_PROTRUSION, 0.0f);
|
||||
glScalef( 1.0f, 0.5f, 1.0f); // flatten the iris
|
||||
gluSphere(irisQuadric, IRIS_RADIUS, 15, 15);
|
||||
glPopMatrix();
|
||||
|
||||
//rotate the eyeball to aim towards the lookat position
|
||||
glm::vec3 targetLookatVector = _lookAtPosition + _saccade - _rightEyePosition;
|
||||
glm::quat rotation = rotationBetween(front, targetLookatVector) * orientation;
|
||||
glm::vec3 rotationAxis = glm::axis(rotation);
|
||||
glRotatef(glm::angle(rotation), rotationAxis.x, rotationAxis.y, rotationAxis.z);
|
||||
glTranslatef(0.0f, 0.0f, -IRIS_PROTRUSION);
|
||||
glScalef(IRIS_RADIUS * 2.0f, IRIS_RADIUS * 2.0f, IRIS_RADIUS); // flatten the iris
|
||||
glutSolidSphere(0.5f, 15, 15);
|
||||
}
|
||||
glPopMatrix();
|
||||
|
||||
_irisProgram->release();
|
||||
glBindTexture(GL_TEXTURE_2D, 0);
|
||||
glDisable(GL_TEXTURE_2D);
|
||||
|
||||
// delete the iris quadric now that we're done with it
|
||||
gluDeleteQuadric(irisQuadric);
|
||||
glPopMatrix();
|
||||
}
|
||||
|
||||
void Head::renderLookatVectors(glm::vec3 leftEyePosition, glm::vec3 rightEyePosition, glm::vec3 lookatPosition) {
|
||||
|
|
|
@ -85,7 +85,7 @@ glm::quat rotationBetween(const glm::vec3& v1, const glm::vec3& v2) {
|
|||
if (isnan(angle) || angle < EPSILON) {
|
||||
return glm::quat();
|
||||
}
|
||||
glm::vec3 axis = glm::cross(v1, v2);
|
||||
glm::vec3 axis;
|
||||
if (angle > 179.99f) { // 180 degree rotation; must use another axis
|
||||
axis = glm::cross(v1, glm::vec3(1.0f, 0.0f, 0.0f));
|
||||
float axisLength = glm::length(axis);
|
||||
|
|
Loading…
Reference in a new issue