Merge pull request #4031 from samcake/tot

Simpler shadows only casted by the Avatar + make it work with lighlmpped surfaces
This commit is contained in:
Philip Rosedale 2015-01-02 13:52:33 -08:00
commit 1563b7ea0a
4 changed files with 109 additions and 52 deletions

View file

@ -2907,7 +2907,7 @@ void Application::updateShadowMap() {
{
PerformanceTimer perfTimer("entities");
_entities.render(RenderArgs::SHADOW_RENDER_MODE);
// _entities.render(RenderArgs::SHADOW_RENDER_MODE);
}
// render JS/scriptable overlays

View file

@ -45,15 +45,13 @@ void main(void) {
// compute the view space position using the depth
float z = near / (depthVal * depthScale - 1.0);
vec4 position = vec4((depthTexCoordOffset + gl_TexCoord[0].st * depthTexCoordScale) * z, z, 0.0);
// get the normal from the map
vec4 normal = normalVal;
// Light mapped or not ?
if ((normalVal.a >= 0.45) && (normalVal.a <= 0.55)) {
normal.a = 1.0;
normalVal.a = 0.0;
gl_FragColor = vec4(diffuseVal.rgb * specularVal.rgb, 1.0);
} else {
vec3 normalizedNormal = normalize(normal.xyz * 2.0 - vec3(1.0));
// get the normal from the map
vec3 normalizedNormal = normalize(normalVal.xyz * 2.0 - vec3(1.0));
// compute the base color based on OpenGL lighting model
float diffuse = dot(normalizedNormal, gl_LightSource[0].position.xyz);
@ -67,6 +65,6 @@ void main(void) {
// add specular contribution
vec4 specularColor = specularVal;
gl_FragColor = vec4(baseColor.rgb + pow(specular, specularColor.a * 128.0) * specularColor.rgb, normal.a);
gl_FragColor = vec4(baseColor.rgb + pow(specular, specularColor.a * 128.0) * specularColor.rgb, normalVal.a);
}
}

View file

@ -46,36 +46,66 @@ uniform vec2 depthTexCoordOffset;
uniform vec2 depthTexCoordScale;
void main(void) {
float depthVal = texture2D(depthMap, gl_TexCoord[0].st).r;
vec4 normalVal = texture2D(normalMap, gl_TexCoord[0].st);
vec4 diffuseVal = texture2D(diffuseMap, gl_TexCoord[0].st);
vec4 specularVal = texture2D(specularMap, gl_TexCoord[0].st);
// compute the view space position using the depth
float z = near / (texture2D(depthMap, gl_TexCoord[0].st).r * depthScale - 1.0);
float z = near / (depthVal * depthScale - 1.0);
vec4 position = vec4((depthTexCoordOffset + gl_TexCoord[0].st * depthTexCoordScale) * z, z, 1.0);
// compute the index of the cascade to use and the corresponding texture coordinates
int shadowIndex = int(dot(step(vec3(position.z), shadowDistances), vec3(1.0, 1.0, 1.0)));
vec3 shadowTexCoord = vec3(dot(gl_EyePlaneS[shadowIndex], position), dot(gl_EyePlaneT[shadowIndex], position),
dot(gl_EyePlaneR[shadowIndex], position));
// get the normal from the map
vec4 normal = texture2D(normalMap, gl_TexCoord[0].st);
vec4 normalizedNormal = normalize(normal * 2.0 - vec4(1.0, 1.0, 1.0, 2.0));
// average values from the shadow map
float diffuse = dot(normalizedNormal, gl_LightSource[0].position);
float facingLight = step(0.0, diffuse) * 0.25 *
// evaluate the shadow test but only relevant for light facing fragments
float shadowAttenuation = (0.25 *
(shadow2D(shadowMap, shadowTexCoord + vec3(-shadowScale, -shadowScale, 0.0)).r +
shadow2D(shadowMap, shadowTexCoord + vec3(-shadowScale, shadowScale, 0.0)).r +
shadow2D(shadowMap, shadowTexCoord + vec3(shadowScale, -shadowScale, 0.0)).r +
shadow2D(shadowMap, shadowTexCoord + vec3(shadowScale, shadowScale, 0.0)).r);
// compute the base color based on OpenGL lighting model
vec4 baseColor = texture2D(diffuseMap, gl_TexCoord[0].st) * (gl_FrontLightModelProduct.sceneColor +
gl_FrontLightProduct[0].ambient + gl_FrontLightProduct[0].diffuse * (diffuse * facingLight));
// compute the specular multiplier (sans exponent)
float specular = facingLight * max(0.0, dot(normalize(gl_LightSource[0].position - normalize(vec4(position.xyz, 0.0))),
normalizedNormal));
// add specular contribution
vec4 specularColor = texture2D(specularMap, gl_TexCoord[0].st);
gl_FragColor = vec4(baseColor.rgb + pow(specular, specularColor.a * 128.0) * specularColor.rgb, normal.a);
shadow2D(shadowMap, shadowTexCoord + vec3(shadowScale, shadowScale, 0.0)).r));
// get the normal from the map
vec3 normalizedNormal = normalize(normalVal.xyz * 2.0 - vec3(1.0));
// how much this fragment faces the light direction
float diffuse = dot(normalizedNormal, gl_LightSource[0].position.xyz);
// Light mapped or not ?
if ((normalVal.a >= 0.45) && (normalVal.a <= 0.55)) {
normalVal.a = 0.0;
// need to catch normals perpendicular to the projection plane hence the magic number for the threshold
// it should be just 0, but we have innacurracy so we need to overshoot
const float PERPENDICULAR_THRESHOLD = -0.005;
float facingLight = step(PERPENDICULAR_THRESHOLD, diffuse);
// evaluate the shadow test but only relevant for light facing fragments
float lightAttenuation = (1 - facingLight) + facingLight * shadowAttenuation;
// diffuse light is the lightmap dimmed by shadow
vec3 diffuseLight = lightAttenuation * specularVal.rgb;
// ambient is a tiny percentage of the lightmap and only when in the shadow
vec3 ambientLight = (1 - lightAttenuation) * 0.5 * specularVal.rgb;
gl_FragColor = vec4(diffuseVal.rgb * (ambientLight + diffuseLight), 1.0);
} else {
// average values from the shadow map
float facingLight = step(0.0, diffuse) * shadowAttenuation;
// compute the base color based on OpenGL lighting model
vec3 baseColor = diffuseVal.rgb * (gl_FrontLightModelProduct.sceneColor.rgb +
gl_FrontLightProduct[0].ambient.rgb + gl_FrontLightProduct[0].diffuse.rgb * (diffuse * facingLight));
// compute the specular multiplier (sans exponent)
float specular = facingLight * max(0.0, dot(normalize(gl_LightSource[0].position.xyz - normalize(position.xyz)),
normalizedNormal));
// add specular contribution
vec4 specularColor = specularVal;
gl_FragColor = vec4(baseColor.rgb + pow(specular, specularColor.a * 128.0) * specularColor.rgb, normalVal.a);
}
}

View file

@ -43,34 +43,63 @@ uniform vec2 depthTexCoordOffset;
uniform vec2 depthTexCoordScale;
void main(void) {
float depthVal = texture2D(depthMap, gl_TexCoord[0].st).r;
vec4 normalVal = texture2D(normalMap, gl_TexCoord[0].st);
vec4 diffuseVal = texture2D(diffuseMap, gl_TexCoord[0].st);
vec4 specularVal = texture2D(specularMap, gl_TexCoord[0].st);
// compute the view space position using the depth
float z = near / (texture2D(depthMap, gl_TexCoord[0].st).r * depthScale - 1.0);
float z = near / (depthVal * depthScale - 1.0);
vec4 position = vec4((depthTexCoordOffset + gl_TexCoord[0].st * depthTexCoordScale) * z, z, 1.0);
// compute the corresponding texture coordinates
vec3 shadowTexCoord = vec3(dot(gl_EyePlaneS[0], position), dot(gl_EyePlaneT[0], position), dot(gl_EyePlaneR[0], position));
// get the normal from the map
vec4 normal = texture2D(normalMap, gl_TexCoord[0].st);
vec4 normalizedNormal = normalize(normal * 2.0 - vec4(1.0, 1.0, 1.0, 2.0));
// average values from the shadow map
float diffuse = dot(normalizedNormal, gl_LightSource[0].position);
float facingLight = step(0.0, diffuse) * 0.25 *
// evaluate the shadow test but only relevant for light facing fragments
float shadowAttenuation = (0.25 *
(shadow2D(shadowMap, shadowTexCoord + vec3(-shadowScale, -shadowScale, 0.0)).r +
shadow2D(shadowMap, shadowTexCoord + vec3(-shadowScale, shadowScale, 0.0)).r +
shadow2D(shadowMap, shadowTexCoord + vec3(shadowScale, -shadowScale, 0.0)).r +
shadow2D(shadowMap, shadowTexCoord + vec3(shadowScale, shadowScale, 0.0)).r);
shadow2D(shadowMap, shadowTexCoord + vec3(shadowScale, shadowScale, 0.0)).r));
// get the normal from the map
vec3 normalizedNormal = normalize(normalVal.xyz * 2.0 - vec3(1.0));
// how much this fragment faces the light direction
float diffuse = dot(normalizedNormal, gl_LightSource[0].position.xyz);
// Light mapped or not ?
if ((normalVal.a >= 0.45) && (normalVal.a <= 0.55)) {
normalVal.a = 0.0;
// need to catch normals perpendicular to the projection plane hence the magic number for the threshold
// it should be just 0, be we have innacurracy so we need to overshoot
const float PERPENDICULAR_THRESHOLD = -0.005;
float facingLight = step(PERPENDICULAR_THRESHOLD, diffuse);
// compute the base color based on OpenGL lighting model
vec4 baseColor = texture2D(diffuseMap, gl_TexCoord[0].st) * (gl_FrontLightModelProduct.sceneColor +
gl_FrontLightProduct[0].ambient + gl_FrontLightProduct[0].diffuse * (diffuse * facingLight));
// compute the specular multiplier (sans exponent)
float specular = facingLight * max(0.0, dot(normalize(gl_LightSource[0].position - normalize(vec4(position.xyz, 0.0))),
normalizedNormal));
// add specular contribution
vec4 specularColor = texture2D(specularMap, gl_TexCoord[0].st);
gl_FragColor = vec4(baseColor.rgb + pow(specular, specularColor.a * 128.0) * specularColor.rgb, normal.a);
// evaluate the shadow test but only relevant for light facing fragments
float lightAttenuation = (1 - facingLight) + facingLight * shadowAttenuation;
// diffuse light is the lightmap dimmed by shadow
vec3 diffuseLight = lightAttenuation * specularVal.rgb;
// ambient is a tiny percentage of the lightmap and only when in the shadow
vec3 ambientLight = (1 - lightAttenuation) * 0.5 * specularVal.rgb;
gl_FragColor = vec4(diffuseVal.rgb * (ambientLight + diffuseLight), 1.0);
} else {
// average values from the shadow map
float facingLight = step(0.0, diffuse) * shadowAttenuation;
// compute the base color based on OpenGL lighting model
vec3 baseColor = diffuseVal.rgb * (gl_FrontLightModelProduct.sceneColor.rgb +
gl_FrontLightProduct[0].ambient.rgb + gl_FrontLightProduct[0].diffuse.rgb * (diffuse * facingLight));
// compute the specular multiplier (sans exponent)
float specular = facingLight * max(0.0, dot(normalize(gl_LightSource[0].position.xyz - normalize(position.xyz)),
normalizedNormal));
// add specular contribution
vec4 specularColor = specularVal;
gl_FragColor = vec4(baseColor.rgb + pow(specular, specularColor.a * 128.0) * specularColor.rgb, normalVal.a);
}
}