merge upstream/master into andrew/inertia

This commit is contained in:
Andrew Meadows 2015-01-05 15:02:53 -08:00
commit 11de33b98b
6 changed files with 143 additions and 41 deletions

View file

@ -2514,7 +2514,7 @@ void Application::updateShadowMap() {
QOpenGLFramebufferObject* fbo = DependencyManager::get<TextureCache>()->getShadowFramebufferObject();
fbo->bind();
glEnable(GL_DEPTH_TEST);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glClear(GL_DEPTH_BUFFER_BIT);
glm::vec3 lightDirection = -getSunDirection();
glm::quat rotation = rotationBetween(IDENTITY_FRONT, lightDirection);
@ -2539,8 +2539,10 @@ void Application::updateShadowMap() {
const glm::vec2& coord = MAP_COORDS[i];
glViewport(coord.s * fbo->width(), coord.t * fbo->height(), targetSize, targetSize);
// if simple shadow then since the resolution is twice as much as with cascaded, cover 2 regions with the map, not just one
int regionIncrement = (matrixCount == 1 ? 2 : 1);
float nearScale = SHADOW_MATRIX_DISTANCES[i] * frustumScale;
float farScale = SHADOW_MATRIX_DISTANCES[i + 1] * frustumScale;
float farScale = SHADOW_MATRIX_DISTANCES[i + regionIncrement] * frustumScale;
glm::vec3 points[] = {
glm::mix(_viewFrustum.getNearTopLeft(), _viewFrustum.getFarTopLeft(), nearScale),
glm::mix(_viewFrustum.getNearTopRight(), _viewFrustum.getFarTopRight(), nearScale),
@ -2626,7 +2628,7 @@ void Application::updateShadowMap() {
{
PerformanceTimer perfTimer("entities");
// _entities.render(RenderArgs::SHADOW_RENDER_MODE);
_entities.render(RenderArgs::SHADOW_RENDER_MODE);
}
// render JS/scriptable overlays

View file

@ -166,7 +166,14 @@ void RenderableModelEntityItem::render(RenderArgs* args) {
// TODO: this is the majority of model render time. And rendering of a cube model vs the basic Box render
// is significantly more expensive. Is there a way to call this that doesn't cost us as much?
PerformanceTimer perfTimer("model->render");
_model->renderInScene(alpha, args);
// filter out if not needed to render
if (args && (args->_renderMode == RenderArgs::SHADOW_RENDER_MODE)) {
if (isMoving() || isAnimatingSomething()) {
_model->renderInScene(alpha, args);
}
} else {
_model->renderInScene(alpha, args);
}
} else {
// if we couldn't get a model, then just draw a cube
glColor3ub(getColor()[RED_INDEX],getColor()[GREEN_INDEX],getColor()[BLUE_INDEX]);

View file

@ -0,0 +1,115 @@
<!
// Shadow.slh
// libraries/render-utils/src
//
// Created by Sam Gateau on 1/4/15.
// Copyright 2013 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
!>
<@if not SHADOW_SLH@>
<@def SHADOW_SLH@>
// the shadow texture
uniform sampler2DShadow shadowMap;
// Fetching it
float fetchShadow(vec3 texcoord) {
<@if GLPROFILE == PC_GL @>
return texture(shadowMap, texcoord);
<@elif GLPROFILE == MAC_GL@>
return shadow2D(shadowMap, texcoord).r;
<@else@>
return shadow2D(shadowMap, texcoord).r;
<@endif@>
}
// the distances to the cascade sections
uniform vec3 shadowDistances;
// the inverse of the size of the shadow map
uniform float shadowScale;
vec2 samples[8] = vec2[8](
vec2(-2.0, -2.0),
vec2(2.0, -2.0),
vec2(2.0, 2.0),
vec2(-2.0, 2.0),
vec2(1.0, 0.0),
vec2(0.0, 1.0),
vec2(-1.0, 0.0),
vec2(0.0, -1.0)
);
vec4 evalShadowTexcoord(vec4 position) {
// compute the corresponding texture coordinates
vec3 shadowTexcoord = vec3(dot(gl_EyePlaneS[0], position), dot(gl_EyePlaneT[0], position), dot(gl_EyePlaneR[0], position));
return vec4(shadowTexcoord, 0.0);
}
vec4 evalCascadedShadowTexcoord(vec4 position) {
// compute the index of the cascade to use and the corresponding texture coordinates
int shadowIndex = int(dot(step(vec3(position.z), shadowDistances), vec3(1.0, 1.0, 1.0)));
vec3 shadowTexcoord = vec3(dot(gl_EyePlaneS[shadowIndex], position), dot(gl_EyePlaneT[shadowIndex], position),
dot(gl_EyePlaneR[shadowIndex], position));
return vec4(shadowTexcoord, shadowIndex);
}
float evalShadowAttenuationPCF(vec4 shadowTexcoord) {
float radiusScale = (shadowTexcoord.w + 1.0);
float shadowAttenuation = (0.25 * (
fetchShadow(shadowTexcoord.xyz + radiusScale * shadowScale * vec3(samples[0], 0.0)) +
fetchShadow(shadowTexcoord.xyz + radiusScale * shadowScale * vec3(samples[1], 0.0)) +
fetchShadow(shadowTexcoord.xyz + radiusScale * shadowScale * vec3(samples[2], 0.0)) +
fetchShadow(shadowTexcoord.xyz + radiusScale * shadowScale * vec3(samples[3], 0.0))
));
if ((shadowAttenuation > 0) && (shadowAttenuation < 1.0)) {
radiusScale *= 0.5;
shadowAttenuation = 0.5 * shadowAttenuation + (0.125 * (
fetchShadow(shadowTexcoord.xyz + radiusScale * shadowScale * vec3(samples[4], 0.0)) +
fetchShadow(shadowTexcoord.xyz + radiusScale * shadowScale * vec3(samples[5], 0.0)) +
fetchShadow(shadowTexcoord.xyz + radiusScale * shadowScale * vec3(samples[6], 0.0)) +
fetchShadow(shadowTexcoord.xyz + radiusScale * shadowScale * vec3(samples[7], 0.0))
));
}
return shadowAttenuation;
}
float evalShadowAttenuationBasic(vec4 shadowTexcoord) {
float radiusScale = 0.5;
float shadowAttenuation = (0.25 * (
fetchShadow(shadowTexcoord.xyz + radiusScale * shadowScale * vec3(samples[0], 0.0)) +
fetchShadow(shadowTexcoord.xyz + radiusScale * shadowScale * vec3(samples[1], 0.0)) +
fetchShadow(shadowTexcoord.xyz + radiusScale * shadowScale * vec3(samples[2], 0.0)) +
fetchShadow(shadowTexcoord.xyz + radiusScale * shadowScale * vec3(samples[3], 0.0))
));
return shadowAttenuation;
}
float evalShadowAttenuation(vec4 shadowTexcoord) {
return evalShadowAttenuationBasic(shadowTexcoord);
}
vec3 debugShadowMap(float shadowAttenuation, vec4 shadowTexcoord) {
vec3 colorArray[4];
colorArray[0].xyz = vec3(1.0, 1.0, 1.0);
colorArray[1].xyz = vec3(1.0, 0.0, 0.0);
colorArray[2].xyz = vec3(0.0, 1.0, 0.0);
colorArray[3].xyz = vec3(0.0, 0.0, 1.0);
vec2 offsetArray[4];
offsetArray[0] = vec2(0.0, 0.0);
offsetArray[1] = vec2(0.5, 0.0);
offsetArray[2] = vec2(0.0, 0.5);
offsetArray[3] = vec2(0.5, 0.5);
return shadowAttenuation * colorArray[int(shadowTexcoord.w)];
// return shadowAttenuation * vec3(2.0*(shadowTexcoord.xy - offsetArray[int(shadowTexcoord.w)]), 0);
}
<@endif@>

View file

@ -299,15 +299,16 @@ QOpenGLFramebufferObject* TextureCache::getShadowFramebufferObject() {
glGenTextures(1, &_shadowDepthTextureID);
glBindTexture(GL_TEXTURE_2D, _shadowDepthTextureID);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, SHADOW_MAP_SIZE, SHADOW_MAP_SIZE,
0, GL_DEPTH_COMPONENT, GL_UNSIGNED_BYTE, 0);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT32, SHADOW_MAP_SIZE, SHADOW_MAP_SIZE,
0, GL_DEPTH_COMPONENT, GL_FLOAT, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);
const float DISTANT_BORDER[] = { 1.0f, 1.0f, 1.0f, 1.0f };
glTexParameterfv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, DISTANT_BORDER);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_R_TO_TEXTURE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LEQUAL);
glBindTexture(GL_TEXTURE_2D, 0);
_shadowFramebufferObject->bind();

View file

@ -24,14 +24,8 @@ uniform sampler2D specularMap;
// the depth texture
uniform sampler2D depthMap;
// the shadow texture
uniform sampler2DShadow shadowMap;
// the distances to the cascade sections
uniform vec3 shadowDistances;
// the inverse of the size of the shadow map
uniform float shadowScale;
// Everything about shadow
<@include Shadow.slh@>
// the distance to the near clip plane
uniform float near;
@ -55,17 +49,9 @@ void main(void) {
float z = near / (depthVal * depthScale - 1.0);
vec4 position = vec4((depthTexCoordOffset + gl_TexCoord[0].st * depthTexCoordScale) * z, z, 1.0);
// compute the index of the cascade to use and the corresponding texture coordinates
int shadowIndex = int(dot(step(vec3(position.z), shadowDistances), vec3(1.0, 1.0, 1.0)));
vec3 shadowTexCoord = vec3(dot(gl_EyePlaneS[shadowIndex], position), dot(gl_EyePlaneT[shadowIndex], position),
dot(gl_EyePlaneR[shadowIndex], position));
// evaluate the shadow test but only relevant for light facing fragments
float shadowAttenuation = (0.25 *
(shadow2D(shadowMap, shadowTexCoord + vec3(-shadowScale, -shadowScale, 0.0)).r +
shadow2D(shadowMap, shadowTexCoord + vec3(-shadowScale, shadowScale, 0.0)).r +
shadow2D(shadowMap, shadowTexCoord + vec3(shadowScale, -shadowScale, 0.0)).r +
shadow2D(shadowMap, shadowTexCoord + vec3(shadowScale, shadowScale, 0.0)).r));
// Eval shadow Texcoord and then Attenuation
vec4 shadowTexcoord = evalCascadedShadowTexcoord(position);
float shadowAttenuation = evalShadowAttenuation(shadowTexcoord);
// get the normal from the map
vec3 normalizedNormal = normalize(normalVal.xyz * 2.0 - vec3(1.0));
@ -75,7 +61,7 @@ void main(void) {
// Light mapped or not ?
if ((normalVal.a >= 0.45) && (normalVal.a <= 0.55)) {
normalVal.a = 0.0;
normalVal.a = 1.0;
// need to catch normals perpendicular to the projection plane hence the magic number for the threshold
// it should be just 0, but we have innacurracy so we need to overshoot

View file

@ -24,11 +24,8 @@ uniform sampler2D specularMap;
// the depth texture
uniform sampler2D depthMap;
// the shadow texture
uniform sampler2DShadow shadowMap;
// the inverse of the size of the shadow map
uniform float shadowScale;
// Everything about shadow
<@include Shadow.slh@>
// the distance to the near clip plane
uniform float near;
@ -52,15 +49,9 @@ void main(void) {
float z = near / (depthVal * depthScale - 1.0);
vec4 position = vec4((depthTexCoordOffset + gl_TexCoord[0].st * depthTexCoordScale) * z, z, 1.0);
// compute the corresponding texture coordinates
vec3 shadowTexCoord = vec3(dot(gl_EyePlaneS[0], position), dot(gl_EyePlaneT[0], position), dot(gl_EyePlaneR[0], position));
// evaluate the shadow test but only relevant for light facing fragments
float shadowAttenuation = (0.25 *
(shadow2D(shadowMap, shadowTexCoord + vec3(-shadowScale, -shadowScale, 0.0)).r +
shadow2D(shadowMap, shadowTexCoord + vec3(-shadowScale, shadowScale, 0.0)).r +
shadow2D(shadowMap, shadowTexCoord + vec3(shadowScale, -shadowScale, 0.0)).r +
shadow2D(shadowMap, shadowTexCoord + vec3(shadowScale, shadowScale, 0.0)).r));
// Eval shadow Texcoord and then Attenuation
vec4 shadowTexcoord = evalShadowTexcoord(position);
float shadowAttenuation = evalShadowAttenuation(shadowTexcoord);
// get the normal from the map
vec3 normalizedNormal = normalize(normalVal.xyz * 2.0 - vec3(1.0));