Merge pull request #701 from Ventrella/particles

added life stages to particles for effects to change over time
This commit is contained in:
Philip Rosedale 2013-07-17 16:07:52 -07:00
commit 0bc0f3ca7a
4 changed files with 257 additions and 108 deletions

View file

@ -3546,6 +3546,7 @@ void Application::updateParticleSystem(float deltaTime) {
ParticleSystem::ParticleAttributes attributes; ParticleSystem::ParticleAttributes attributes;
attributes.radius = 0.01f;
attributes.gravity = 0.0f + 0.05f * sinf( t * 0.52f ); attributes.gravity = 0.0f + 0.05f * sinf( t * 0.52f );
attributes.airFriction = 2.5 + 2.0f * sinf( t * 0.32f ); attributes.airFriction = 2.5 + 2.0f * sinf( t * 0.32f );
attributes.jitter = 0.05f + 0.05f * sinf( t * 0.42f ); attributes.jitter = 0.05f + 0.05f * sinf( t * 0.42f );
@ -3562,7 +3563,7 @@ void Application::updateParticleSystem(float deltaTime) {
attributes.gravity = 0.0f; attributes.gravity = 0.0f;
} }
_particleSystem.setParticleAttributesForEmitter(_coolDemoParticleEmitter, attributes); _particleSystem.setParticleAttributes(_coolDemoParticleEmitter, attributes);
} }
_particleSystem.setUpDirection(glm::vec3(0.0f, 1.0f, 0.0f)); _particleSystem.setUpDirection(glm::vec3(0.0f, 1.0f, 0.0f));

View file

@ -29,6 +29,9 @@ Hand::Hand(Avatar* owningAvatar) :
// initialize all finger particle emitters with an invalid id as default // initialize all finger particle emitters with an invalid id as default
for (int f = 0; f< NUM_FINGERS_PER_HAND; f ++ ) { for (int f = 0; f< NUM_FINGERS_PER_HAND; f ++ ) {
_fingerParticleEmitter[f] = -1; _fingerParticleEmitter[f] = -1;
//glm::vec4 color(1.0f, 0.6f, 0.0f, 0.5f);
//_particleSystem.setEmitterBaseParticle(f, true, 0.012f, color);
} }
} }
@ -176,10 +179,43 @@ void Hand::setLeapHands(const std::vector<glm::vec3>& handPositions,
void Hand::updateFingerParticles(float deltaTime) { void Hand::updateFingerParticles(float deltaTime) {
if (!_particleSystemInitialized) { if (!_particleSystemInitialized) {
for ( int f = 0; f< NUM_FINGERS_PER_HAND; f ++ ) { for ( int f = 0; f< NUM_FINGERS_PER_HAND; f ++ ) {
_fingerParticleEmitter[f] = _particleSystem.addEmitter(); _fingerParticleEmitter[f] = _particleSystem.addEmitter();
_particleSystem.setShowingEmitter(_fingerParticleEmitter[f], true);
ParticleSystem::ParticleAttributes attributes;
// set attributes for each life stage of the particle:
attributes.radius = 0.0f;
attributes.color = glm::vec4( 1.0f, 1.0f, 0.5f, 0.5f);
attributes.gravity = 0.0f;
attributes.airFriction = 0.0f;
attributes.jitter = 0.002f;
attributes.emitterAttraction = 0.0f;
attributes.tornadoForce = 0.0f;
attributes.neighborAttraction = 0.0f;
attributes.neighborRepulsion = 0.0f;
attributes.bounce = 1.0f;
attributes.usingCollisionSphere = false;
_particleSystem.setParticleAttributes(_fingerParticleEmitter[f], 0, attributes);
attributes.radius = 0.01f;
attributes.jitter = 0.0f;
attributes.gravity = -0.005f;
attributes.color = glm::vec4( 1.0f, 0.2f, 0.0f, 0.4f);
_particleSystem.setParticleAttributes(_fingerParticleEmitter[f], 1, attributes);
attributes.radius = 0.01f;
attributes.gravity = 0.0f;
attributes.color = glm::vec4( 0.0f, 0.0f, 0.0f, 0.2f);
_particleSystem.setParticleAttributes(_fingerParticleEmitter[f], 2, attributes);
attributes.radius = 0.02f;
attributes.color = glm::vec4( 0.0f, 0.0f, 0.0f, 0.0f);
_particleSystem.setParticleAttributes(_fingerParticleEmitter[f], 3, attributes);
} }
_particleSystemInitialized = true; _particleSystemInitialized = true;
} else { } else {
// update the particles // update the particles
@ -193,25 +229,25 @@ void Hand::updateFingerParticles(float deltaTime) {
glm::vec3 particleEmitterPosition = leapPositionToWorldPosition(_fingerTips[f]); glm::vec3 particleEmitterPosition = leapPositionToWorldPosition(_fingerTips[f]);
// this aspect is still being designed.... glm::vec3 fingerDirection = particleEmitterPosition - leapPositionToWorldPosition(_fingerRoots[f]);
float fingerLength = glm::length(fingerDirection);
glm::vec3 tilt = glm::vec3 if (fingerLength > 0.0f) {
( fingerDirection /= fingerLength;
30.0f * sinf( t * 0.55f ), } else {
0.0f, fingerDirection = IDENTITY_UP;
30.0f * cosf( t * 0.75f ) }
);
glm::quat particleEmitterRotation = glm::quat(glm::radians(tilt)); glm::quat particleEmitterRotation = rotationBetween(IDENTITY_UP, fingerDirection);
_particleSystem.setEmitterPosition(_fingerParticleEmitter[0], particleEmitterPosition); _particleSystem.setEmitterPosition(_fingerParticleEmitter[f], particleEmitterPosition);
_particleSystem.setEmitterRotation(_fingerParticleEmitter[0], particleEmitterRotation); _particleSystem.setEmitterRotation(_fingerParticleEmitter[f], particleEmitterRotation);
float radius = 0.005f; float radius = 0.005f;
glm::vec4 color(1.0f, 0.6f, 0.0f, 0.5f); glm::vec4 color(1.0f, 0.6f, 0.0f, 0.5f);
glm::vec3 velocity(0.0f, 0.005f, 0.0f); glm::vec3 velocity = fingerDirection * 0.002f;
float lifespan = 0.3f; float lifespan = 1.0f;
_particleSystem.emitParticlesNow(_fingerParticleEmitter[0], 1, radius, color, velocity, lifespan); _particleSystem.emitParticlesNow(_fingerParticleEmitter[f], 1, radius, color, velocity, lifespan);
} }
} }

View file

@ -11,12 +11,12 @@
#include "ParticleSystem.h" #include "ParticleSystem.h"
#include "Application.h" #include "Application.h"
const float DEFAULT_PARTICLE_RADIUS = 0.01f;
const float DEFAULT_PARTICLE_BOUNCE = 1.0f; const float DEFAULT_PARTICLE_BOUNCE = 1.0f;
const float DEFAULT_PARTICLE_AIR_FRICTION = 2.0f; const float DEFAULT_PARTICLE_AIR_FRICTION = 2.0f;
ParticleSystem::ParticleSystem() { ParticleSystem::ParticleSystem() {
_timer = 0.0f;
_numEmitters = 0; _numEmitters = 0;
_numParticles = 0; _numParticles = 0;
_upDirection = glm::vec3(0.0f, 1.0f, 0.0f); // default _upDirection = glm::vec3(0.0f, 1.0f, 0.0f); // default
@ -27,18 +27,31 @@ ParticleSystem::ParticleSystem() {
_emitter[e].right = IDENTITY_RIGHT; _emitter[e].right = IDENTITY_RIGHT;
_emitter[e].up = IDENTITY_UP; _emitter[e].up = IDENTITY_UP;
_emitter[e].front = IDENTITY_FRONT; _emitter[e].front = IDENTITY_FRONT;
_emitter[e].showingEmitter = false; _emitter[e].visible = false;
_emitter[e].particleAttributes.bounce = DEFAULT_PARTICLE_BOUNCE; _emitter[e].baseParticle.alive = false;
_emitter[e].particleAttributes.airFriction = DEFAULT_PARTICLE_AIR_FRICTION; _emitter[e].baseParticle.age = 0.0f;
_emitter[e].particleAttributes.gravity = 0.0f; _emitter[e].baseParticle.lifespan = 0.0f;
_emitter[e].particleAttributes.jitter = 0.0f; _emitter[e].baseParticle.radius = 0.0f;
_emitter[e].particleAttributes.emitterAttraction = 0.0f; _emitter[e].baseParticle.emitterIndex = 0;
_emitter[e].particleAttributes.tornadoForce = 0.0f; _emitter[e].baseParticle.position = glm::vec3(0.0f, 0.0f, 0.0f);
_emitter[e].particleAttributes.neighborAttraction = 0.0f; _emitter[e].baseParticle.velocity = glm::vec3(0.0f, 0.0f, 0.0f);
_emitter[e].particleAttributes.neighborRepulsion = 0.0f;
_emitter[e].particleAttributes.collisionSphereRadius = 0.0f;
_emitter[e].particleAttributes.collisionSpherePosition = glm::vec3(0.0f, 0.0f, 0.0f); for (int s = 0; s<NUM_PARTICLE_LIFE_STAGES; s++) {
_emitter[e].particleAttributes.usingCollisionSphere = false; _emitter[e].particleAttributes[s].radius = DEFAULT_PARTICLE_RADIUS;
_emitter[e].particleAttributes[s].color = glm::vec4(0.0f, 0.0f, 0.0f, 0.0f);
_emitter[e].particleAttributes[s].bounce = DEFAULT_PARTICLE_BOUNCE;
_emitter[e].particleAttributes[s].airFriction = DEFAULT_PARTICLE_AIR_FRICTION;
_emitter[e].particleAttributes[s].gravity = 0.0f;
_emitter[e].particleAttributes[s].jitter = 0.0f;
_emitter[e].particleAttributes[s].emitterAttraction = 0.0f;
_emitter[e].particleAttributes[s].tornadoForce = 0.0f;
_emitter[e].particleAttributes[s].neighborAttraction = 0.0f;
_emitter[e].particleAttributes[s].neighborRepulsion = 0.0f;
_emitter[e].particleAttributes[s].collisionSphereRadius = 0.0f;
_emitter[e].particleAttributes[s].collisionSpherePosition = glm::vec3(0.0f, 0.0f, 0.0f);
_emitter[e].particleAttributes[s].usingCollisionSphere = false;
}
}; };
for (unsigned int p = 0; p < MAX_PARTICLES; p++) { for (unsigned int p = 0; p < MAX_PARTICLES; p++) {
@ -52,7 +65,6 @@ ParticleSystem::ParticleSystem() {
} }
} }
int ParticleSystem::addEmitter() { int ParticleSystem::addEmitter() {
_numEmitters ++; _numEmitters ++;
@ -75,11 +87,16 @@ void ParticleSystem::simulate(float deltaTime) {
// update particles // update particles
for (unsigned int p = 0; p < _numParticles; p++) { for (unsigned int p = 0; p < _numParticles; p++) {
if (_particle[p].alive) { if (_particle[p].alive) {
if (_particle[p].age > _particle[p].lifespan) {
killParticle(p);
} else {
updateParticle(p, deltaTime); updateParticle(p, deltaTime);
} }
} }
}
} }
void ParticleSystem::updateEmitter(int e, float deltaTime) { void ParticleSystem::updateEmitter(int e, float deltaTime) {
_emitter[e].front = _emitter[e].rotation * IDENTITY_FRONT; _emitter[e].front = _emitter[e].rotation * IDENTITY_FRONT;
@ -106,9 +123,11 @@ void ParticleSystem::createParticle(int e, glm::vec3 position, glm::vec3 velocit
_particle[p].age = 0.0f; _particle[p].age = 0.0f;
_particle[p].position = position; _particle[p].position = position;
_particle[p].velocity = velocity; _particle[p].velocity = velocity;
_particle[p].radius = radius;
_particle[p].color = color; _particle[p].color = color;
_particle[p].radius = _emitter[e].particleAttributes[0].radius;
_particle[p].color = _emitter[e].particleAttributes[0].color;
_numParticles ++; _numParticles ++;
assert(_numParticles <= MAX_PARTICLES); assert(_numParticles <= MAX_PARTICLES);
@ -146,45 +165,72 @@ void ParticleSystem::setOrangeBlueColorPalette() {
} }
void ParticleSystem::setParticleAttributesForEmitter(int emitterIndex, ParticleAttributes attributes) { void ParticleSystem::setParticleAttributes(int emitterIndex, ParticleAttributes attributes) {
_emitter[emitterIndex].particleAttributes.bounce = attributes.bounce; for (int lifeStage = 0; lifeStage < NUM_PARTICLE_LIFE_STAGES; lifeStage ++ ) {
_emitter[emitterIndex].particleAttributes.gravity = attributes.gravity; setParticleAttributes(emitterIndex, lifeStage, attributes);
_emitter[emitterIndex].particleAttributes.airFriction = attributes.airFriction; }
_emitter[emitterIndex].particleAttributes.jitter = attributes.jitter;
_emitter[emitterIndex].particleAttributes.emitterAttraction = attributes.emitterAttraction;
_emitter[emitterIndex].particleAttributes.tornadoForce = attributes.tornadoForce;
_emitter[emitterIndex].particleAttributes.neighborAttraction = attributes.neighborAttraction;
_emitter[emitterIndex].particleAttributes.neighborRepulsion = attributes.neighborRepulsion;
_emitter[emitterIndex].particleAttributes.usingCollisionSphere = attributes.usingCollisionSphere;
_emitter[emitterIndex].particleAttributes.collisionSpherePosition = attributes.collisionSpherePosition;
_emitter[emitterIndex].particleAttributes.collisionSphereRadius = attributes.collisionSphereRadius;
} }
void ParticleSystem::setParticleAttributes(int emitterIndex, int lifeStage, ParticleAttributes attributes) {
ParticleAttributes * a = &_emitter[emitterIndex].particleAttributes[lifeStage];
a->radius = attributes.radius;
a->color = attributes.color;
a->bounce = attributes.bounce;
a->gravity = attributes.gravity;
a->airFriction = attributes.airFriction;
a->jitter = attributes.jitter;
a->emitterAttraction = attributes.emitterAttraction;
a->tornadoForce = attributes.tornadoForce;
a->neighborAttraction = attributes.neighborAttraction;
a->neighborRepulsion = attributes.neighborRepulsion;
a->usingCollisionSphere = attributes.usingCollisionSphere;
a->collisionSpherePosition = attributes.collisionSpherePosition;
a->collisionSphereRadius = attributes.collisionSphereRadius;
}
void ParticleSystem::updateParticle(int p, float deltaTime) { void ParticleSystem::updateParticle(int p, float deltaTime) {
_particle[p].age += deltaTime; assert(_particle[p].age <= _particle[p].lifespan);
if (_particle[p].age > _particle[p].lifespan) { float ageFraction = _particle[p].age / _particle[p].lifespan;
killParticle(p);
int lifeStage = (int)( ageFraction * (NUM_PARTICLE_LIFE_STAGES-1) );
float lifeStageFraction = ageFraction * ( NUM_PARTICLE_LIFE_STAGES - 1 ) - lifeStage;
/*
if ( p == 0 ) {
printf( "lifespan = %f ageFraction = %f lifeStage = %d lifeStageFraction = %f\n", _particle[p].lifespan, ageFraction, lifeStage, lifeStageFraction );
} }
*/
_particle[p].radius
= _emitter[_particle[p].emitterIndex].particleAttributes[lifeStage ].radius * (1.0f - lifeStageFraction)
+ _emitter[_particle[p].emitterIndex].particleAttributes[lifeStage+1].radius * lifeStageFraction;
_particle[p].color
= _emitter[_particle[p].emitterIndex].particleAttributes[lifeStage ].color * (1.0f - lifeStageFraction)
+ _emitter[_particle[p].emitterIndex].particleAttributes[lifeStage+1].color * lifeStageFraction;
Emitter myEmitter = _emitter[_particle[p].emitterIndex]; Emitter myEmitter = _emitter[_particle[p].emitterIndex];
// apply random jitter // apply random jitter
float j = myEmitter.particleAttributes[lifeStage].jitter;
_particle[p].velocity += _particle[p].velocity +=
glm::vec3 glm::vec3
( (
-myEmitter.particleAttributes.jitter * ONE_HALF + myEmitter.particleAttributes.jitter * randFloat(), -j * ONE_HALF + j * randFloat(),
-myEmitter.particleAttributes.jitter * ONE_HALF + myEmitter.particleAttributes.jitter * randFloat(), -j * ONE_HALF + j * randFloat(),
-myEmitter.particleAttributes.jitter * ONE_HALF + myEmitter.particleAttributes.jitter * randFloat() -j * ONE_HALF + j * randFloat()
) * deltaTime; ) * deltaTime;
// apply attraction to home position // apply attraction to home position
glm::vec3 vectorToHome = myEmitter.position - _particle[p].position; glm::vec3 vectorToHome = myEmitter.position - _particle[p].position;
_particle[p].velocity += vectorToHome * myEmitter.particleAttributes.emitterAttraction * deltaTime; _particle[p].velocity += vectorToHome * myEmitter.particleAttributes[lifeStage].emitterAttraction * deltaTime;
// apply neighbor attraction // apply neighbor attraction
int neighbor = p + 1; int neighbor = p + 1;
@ -195,20 +241,20 @@ void ParticleSystem::updateParticle(int p, float deltaTime) {
if ( _particle[neighbor].emitterIndex == _particle[p].emitterIndex) { if ( _particle[neighbor].emitterIndex == _particle[p].emitterIndex) {
glm::vec3 vectorToNeighbor = _particle[p].position - _particle[neighbor].position; glm::vec3 vectorToNeighbor = _particle[p].position - _particle[neighbor].position;
_particle[p].velocity -= vectorToNeighbor * myEmitter.particleAttributes.neighborAttraction * deltaTime; _particle[p].velocity -= vectorToNeighbor * myEmitter.particleAttributes[lifeStage].neighborAttraction * deltaTime;
float distanceToNeighbor = glm::length(vectorToNeighbor); float distanceToNeighbor = glm::length(vectorToNeighbor);
if (distanceToNeighbor > 0.0f) { if (distanceToNeighbor > 0.0f) {
_particle[neighbor].velocity += (vectorToNeighbor / ( 1.0f + distanceToNeighbor * distanceToNeighbor)) * myEmitter.particleAttributes.neighborRepulsion * deltaTime; _particle[neighbor].velocity += (vectorToNeighbor / ( 1.0f + distanceToNeighbor * distanceToNeighbor)) * myEmitter.particleAttributes[lifeStage].neighborRepulsion * deltaTime;
} }
} }
// apply tornado force // apply tornado force
glm::vec3 tornadoDirection = glm::cross(vectorToHome, myEmitter.up); glm::vec3 tornadoDirection = glm::cross(vectorToHome, myEmitter.up);
_particle[p].velocity += tornadoDirection * myEmitter.particleAttributes.tornadoForce * deltaTime; _particle[p].velocity += tornadoDirection * myEmitter.particleAttributes[lifeStage].tornadoForce * deltaTime;
// apply air friction // apply air friction
float drag = 1.0 - myEmitter.particleAttributes.airFriction * deltaTime; float drag = 1.0 - myEmitter.particleAttributes[lifeStage].airFriction * deltaTime;
if (drag < 0.0f) { if (drag < 0.0f) {
_particle[p].velocity = glm::vec3(0.0f, 0.0f, 0.0f); _particle[p].velocity = glm::vec3(0.0f, 0.0f, 0.0f);
} else { } else {
@ -216,7 +262,7 @@ void ParticleSystem::updateParticle(int p, float deltaTime) {
} }
// apply gravity // apply gravity
_particle[p].velocity -= _upDirection * myEmitter.particleAttributes.gravity * deltaTime; _particle[p].velocity -= _upDirection * myEmitter.particleAttributes[lifeStage].gravity * deltaTime;
// update position by velocity // update position by velocity
_particle[p].position += _particle[p].velocity; _particle[p].position += _particle[p].velocity;
@ -226,36 +272,66 @@ void ParticleSystem::updateParticle(int p, float deltaTime) {
_particle[p].position.y = _particle[p].radius; _particle[p].position.y = _particle[p].radius;
if (_particle[p].velocity.y < 0.0f) { if (_particle[p].velocity.y < 0.0f) {
_particle[p].velocity.y *= -myEmitter.particleAttributes.bounce; _particle[p].velocity.y *= -myEmitter.particleAttributes[lifeStage].bounce;
} }
} }
// collision with sphere // collision with sphere
if (myEmitter.particleAttributes.usingCollisionSphere) { if (myEmitter.particleAttributes[lifeStage].usingCollisionSphere) {
glm::vec3 vectorToSphereCenter = myEmitter.particleAttributes.collisionSpherePosition - _particle[p].position; glm::vec3 vectorToSphereCenter = myEmitter.particleAttributes[lifeStage].collisionSpherePosition - _particle[p].position;
float distanceToSphereCenter = glm::length(vectorToSphereCenter); float distanceToSphereCenter = glm::length(vectorToSphereCenter);
float combinedRadius = myEmitter.particleAttributes.collisionSphereRadius + _particle[p].radius; float combinedRadius = myEmitter.particleAttributes[lifeStage].collisionSphereRadius + _particle[p].radius;
if (distanceToSphereCenter < combinedRadius) { if (distanceToSphereCenter < combinedRadius) {
if (distanceToSphereCenter > 0.0f){ if (distanceToSphereCenter > 0.0f){
glm::vec3 directionToSphereCenter = vectorToSphereCenter / distanceToSphereCenter; glm::vec3 directionToSphereCenter = vectorToSphereCenter / distanceToSphereCenter;
_particle[p].position = myEmitter.particleAttributes.collisionSpherePosition - directionToSphereCenter * combinedRadius; _particle[p].position = myEmitter.particleAttributes[lifeStage].collisionSpherePosition - directionToSphereCenter * combinedRadius;
} }
} }
} }
// do this at the end...
_particle[p].age += deltaTime;
} }
void ParticleSystem::setCollisionSphere(int e, glm::vec3 position, float radius) { void ParticleSystem::setCollisionSphere(int e, glm::vec3 position, float radius) {
_emitter[e].particleAttributes.usingCollisionSphere = true;
_emitter[e].particleAttributes.collisionSpherePosition = position; int lifeStage = 0;
_emitter[e].particleAttributes.collisionSphereRadius = radius;
_emitter[e].particleAttributes[lifeStage].usingCollisionSphere = true;
_emitter[e].particleAttributes[lifeStage].collisionSpherePosition = position;
_emitter[e].particleAttributes[lifeStage].collisionSphereRadius = radius;
} }
void ParticleSystem::setEmitterBaseParticle(int emitterIndex, bool showing ) {
_emitter[emitterIndex].baseParticle.alive = true;
_emitter[emitterIndex].baseParticle.emitterIndex = emitterIndex;
}
void ParticleSystem::setEmitterBaseParticle(int emitterIndex, bool showing, float radius, glm::vec4 color ) {
_emitter[emitterIndex].baseParticle.alive = true;
_emitter[emitterIndex].baseParticle.emitterIndex = emitterIndex;
_emitter[emitterIndex].baseParticle.radius = radius;
_emitter[emitterIndex].baseParticle.color = color;
}
void ParticleSystem::render() { void ParticleSystem::render() {
// render the emitters // render the emitters
for (unsigned int e = 0; e < _numEmitters; e++) { for (int e = 0; e < _numEmitters; e++) {
if (_emitter[e].showingEmitter) {
if (_emitter[e].baseParticle.alive) {
glColor4f(_emitter[e].baseParticle.color.r, _emitter[e].baseParticle.color.g, _emitter[e].baseParticle.color.b, _emitter[e].baseParticle.color.a );
glPushMatrix();
glTranslatef(_emitter[e].position.x, _emitter[e].position.y, _emitter[e].position.z);
glutSolidSphere(_emitter[e].baseParticle.radius, 6, 6);
glPopMatrix();
}
if (_emitter[e].visible) {
renderEmitter(e, 0.2f); renderEmitter(e, 0.2f);
} }
}; };
@ -271,19 +347,49 @@ void ParticleSystem::render() {
void ParticleSystem::renderParticle(int p) { void ParticleSystem::renderParticle(int p) {
glColor4f(_particle[p].color.r, _particle[p].color.g, _particle[p].color.b, _particle[p].color.a ); glColor4f(_particle[p].color.r, _particle[p].color.g, _particle[p].color.b, _particle[p].color.a );
if (USE_BILLBOARD_RENDERING) {
glm::vec3 cameraPosition = Application::getInstance()->getCamera()->getPosition();
glm::vec3 viewVector = _particle[p].position - cameraPosition;
float distance = glm::length(viewVector);
if (distance >= 0.0f) {
viewVector /= distance;
glm::vec3 up = glm::vec3(viewVector.y, viewVector.z, viewVector.x);
glm::vec3 right = glm::vec3(viewVector.z, viewVector.x, viewVector.y);
glm::vec3 p0 = _particle[p].position - right * _particle[p].radius - up * _particle[p].radius;
glm::vec3 p1 = _particle[p].position + right * _particle[p].radius - up * _particle[p].radius;
glm::vec3 p2 = _particle[p].position + right * _particle[p].radius + up * _particle[p].radius;
glm::vec3 p3 = _particle[p].position - right * _particle[p].radius + up * _particle[p].radius;
glBegin(GL_TRIANGLES);
glVertex3f(p0.x, p0.y, p0.z);
glVertex3f(p1.x, p1.y, p1.z);
glVertex3f(p2.x, p2.y, p2.z);
glEnd();
glBegin(GL_TRIANGLES);
glVertex3f(p0.x, p0.y, p0.z);
glVertex3f(p2.x, p2.y, p2.z);
glVertex3f(p3.x, p3.y, p3.z);
glEnd();
}
} else {
glPushMatrix(); glPushMatrix();
glTranslatef(_particle[p].position.x, _particle[p].position.y, _particle[p].position.z); glTranslatef(_particle[p].position.x, _particle[p].position.y, _particle[p].position.z);
glutSolidSphere(_particle[p].radius, 6, 6); glutSolidSphere(_particle[p].radius, 6, 6);
glPopMatrix(); glPopMatrix();
// render velocity lines if (SHOW_VELOCITY_TAILS) {
glColor4f( _particle[p].color.x, _particle[p].color.y, _particle[p].color.z, 0.5f); glColor4f( _particle[p].color.x, _particle[p].color.y, _particle[p].color.z, 0.5f);
glm::vec3 end = _particle[p].position - _particle[p].velocity * 2.0f; glm::vec3 end = _particle[p].position - _particle[p].velocity * 2.0f;
glBegin(GL_LINES); glBegin(GL_LINES);
glVertex3f(_particle[p].position.x, _particle[p].position.y, _particle[p].position.z); glVertex3f(_particle[p].position.x, _particle[p].position.y, _particle[p].position.z);
glVertex3f(end.x, end.y, end.z); glVertex3f(end.x, end.y, end.z);
glEnd(); glEnd();
}
}
} }

View file

@ -13,11 +13,16 @@
const int MAX_PARTICLES = 5000; const int MAX_PARTICLES = 5000;
const int MAX_EMITTERS = 20; const int MAX_EMITTERS = 20;
const int NUM_PARTICLE_LIFE_STAGES = 4;
const bool USE_BILLBOARD_RENDERING = false;
const bool SHOW_VELOCITY_TAILS = false;
class ParticleSystem { class ParticleSystem {
public: public:
struct ParticleAttributes { struct ParticleAttributes {
float radius;
glm::vec4 color;
float bounce; float bounce;
float gravity; float gravity;
float airFriction; float airFriction;
@ -34,31 +39,23 @@ public:
ParticleSystem(); ParticleSystem();
int addEmitter(); // add (create) an emitter and get its unique id int addEmitter(); // add (create) an emitter and get its unique id
void emitParticlesNow(int e, int numParticles, float radius, glm::vec4 color, glm::vec3 velocity, float lifespan); void emitParticlesNow(int emitterIndex, int numParticles, float radius, glm::vec4 color, glm::vec3 velocity, float lifespan);
void simulate(float deltaTime); void simulate(float deltaTime);
void render(); void render();
void setEmitterBaseParticle(int emitterIndex, bool showing );
void setEmitterBaseParticle(int emitterIndex, bool showing, float radius, glm::vec4 color );
void setParticleAttributesForEmitter(int emitterIndex, ParticleAttributes attributes);
void setOrangeBlueColorPalette(); // apply a nice preset color palette to the particles void setOrangeBlueColorPalette(); // apply a nice preset color palette to the particles
void setUpDirection(glm::vec3 upDirection) {_upDirection = upDirection;} // tell particle system which direction is up void setUpDirection(glm::vec3 upDirection) {_upDirection = upDirection;} // tell particle system which direction is up
void setParticleAttributes(int emitterIndex, ParticleAttributes attributes);
void setCollisionSphere(int emitterIndex, glm::vec3 position, float radius); // specify a sphere for the particles to collide with void setParticleAttributes(int emitterIndex, int lifeStage, ParticleAttributes attributes);
void setEmitterPosition(int emitterIndex, glm::vec3 position) { _emitter[emitterIndex].position = position; } // set position of emitter void setCollisionSphere (int emitterIndex, glm::vec3 position, float radius); // specify a sphere for the particles to collide with
void setEmitterRotation(int emitterIndex, glm::quat rotation) { _emitter[emitterIndex].rotation = rotation; } // set rotation of emitter void setEmitterPosition (int emitterIndex, glm::vec3 position) { _emitter[emitterIndex].position = position; } // set position of emitter
void setShowingEmitter (int emitterIndex, bool showing ) { _emitter[emitterIndex].showingEmitter = showing; } // set its visibiity void setEmitterRotation (int emitterIndex, glm::quat rotation) { _emitter[emitterIndex].rotation = rotation; } // set rotation of emitter
void setShowingEmitter (int emitterIndex, bool showing ) { _emitter[emitterIndex].visible = showing; } // set its visibiity
private: private:
struct Emitter {
glm::vec3 position;
glm::quat rotation;
glm::vec3 right;
glm::vec3 up;
glm::vec3 front;
bool showingEmitter;
ParticleAttributes particleAttributes;
};
struct Particle { struct Particle {
bool alive; // is the particle active? bool alive; // is the particle active?
glm::vec3 position; // position glm::vec3 position; // position
@ -70,8 +67,18 @@ private:
int emitterIndex; // which emitter created this particle? int emitterIndex; // which emitter created this particle?
}; };
struct Emitter {
glm::vec3 position;
glm::quat rotation;
glm::vec3 right; // derived from rotation
glm::vec3 up; // derived from rotation
glm::vec3 front; // derived from rotation
bool visible;
Particle baseParticle; // a non-physical particle at the emitter position
ParticleAttributes particleAttributes[NUM_PARTICLE_LIFE_STAGES]; // the attributes of particles emitted from this emitter
};
glm::vec3 _upDirection; glm::vec3 _upDirection;
float _timer;
Emitter _emitter[MAX_EMITTERS]; Emitter _emitter[MAX_EMITTERS];
Particle _particle[MAX_PARTICLES]; Particle _particle[MAX_PARTICLES];
int _numParticles; int _numParticles;
@ -81,7 +88,6 @@ private:
void updateEmitter(int e, float deltaTime); void updateEmitter(int e, float deltaTime);
void updateParticle(int index, float deltaTime); void updateParticle(int index, float deltaTime);
void createParticle(int e, glm::vec3 position, glm::vec3 velocity, float radius, glm::vec4 color, float lifespan); void createParticle(int e, glm::vec3 position, glm::vec3 velocity, float radius, glm::vec4 color, float lifespan);
//void runSpecialEffectsTest(int e, float deltaTime); // for debugging and artistic exploration
void killParticle(int p); void killParticle(int p);
void renderEmitter(int emitterIndex, float size); void renderEmitter(int emitterIndex, float size);
void renderParticle(int p); void renderParticle(int p);