Working flow as rig param

This commit is contained in:
luiscuenca 2019-02-07 14:09:53 -07:00
parent cf8f9fa1b6
commit 02646fb8a9
5 changed files with 1052 additions and 1 deletions

View file

@ -0,0 +1,714 @@
//
// Flow.cpp
//
// Created by Luis Cuenca on 1/21/2019.
// Copyright 2019 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "Flow.h"
#include "Rig.h"
#include "AnimSkeleton.h"
FlowCollisionSphere::FlowCollisionSphere(const int& jointIndex, const FlowCollisionSettings& settings) {
_jointIndex = jointIndex;
_radius = _initialRadius = settings._radius;
_offset = _initialOffset = settings._offset;
_entityID = settings._entityID;
}
FlowCollisionResult FlowCollisionSphere::computeSphereCollision(const glm::vec3& point, float radius) const {
FlowCollisionResult result;
auto centerToJoint = point - _position;
result._distance = glm::length(centerToJoint) - radius;
result._offset = _radius - result._distance;
result._normal = glm::normalize(centerToJoint);
result._radius = _radius;
result._position = _position;
return result;
}
FlowCollisionResult FlowCollisionSphere::checkSegmentCollision(const glm::vec3& point1, const glm::vec3& point2, const FlowCollisionResult& collisionResult1, const FlowCollisionResult& collisionResult2) {
FlowCollisionResult result;
auto segment = point2 - point1;
auto segmentLength = glm::length(segment);
auto maxDistance = glm::sqrt(glm::pow(collisionResult1._radius, 2) + glm::pow(segmentLength, 2));
if (collisionResult1._distance < maxDistance && collisionResult2._distance < maxDistance) {
float segmentPercentage = collisionResult1._distance / (collisionResult1._distance + collisionResult2._distance);
glm::vec3 collisionPoint = point1 + segment * segmentPercentage;
glm::vec3 centerToSegment = collisionPoint - _position;
float distance = glm::length(centerToSegment);
if (distance < _radius) {
result._offset = _radius - distance;
result._position = _position;
result._radius = _radius;
result._normal = glm::normalize(centerToSegment);
result._distance = distance;
}
}
return result;
}
void FlowCollisionSphere::update() {
// TODO
// Fill this
}
void FlowCollisionSystem::addCollisionSphere(int jointIndex, const FlowCollisionSettings& settings) {
_collisionSpheres.push_back(FlowCollisionSphere(jointIndex, settings));
};
void FlowCollisionSystem::addCollisionShape(int jointIndex, const FlowCollisionSettings& settings) {
auto name = JOINT_COLLISION_PREFIX + jointIndex;
switch (settings._type) {
case FlowCollisionType::CollisionSphere:
addCollisionSphere(jointIndex, settings);
break;
default:
break;
}
};
bool FlowCollisionSystem::addCollisionToJoint(int jointIndex) {
if (_collisionSpheres.size() >= COLLISION_SHAPES_LIMIT) {
return false;
}
int collisionIndex = findCollisionWithJoint(jointIndex);
if (collisionIndex == -1) {
addCollisionShape(jointIndex, FlowCollisionSettings());
return true;
}
else {
return false;
}
};
void FlowCollisionSystem::removeCollisionFromJoint(int jointIndex) {
int collisionIndex = findCollisionWithJoint(jointIndex);
if (collisionIndex > -1) {
_collisionSpheres.erase(_collisionSpheres.begin() + collisionIndex);
}
};
void FlowCollisionSystem::update() {
for (size_t i = 0; i < _collisionSpheres.size(); i++) {
_collisionSpheres[i].update();
}
};
FlowCollisionResult FlowCollisionSystem::computeCollision(const std::vector<FlowCollisionResult> collisions) {
FlowCollisionResult result;
if (collisions.size() > 1) {
for (size_t i = 0; i < collisions.size(); i++) {
result._offset += collisions[i]._offset;
result._normal = result._normal + collisions[i]._normal * collisions[i]._distance;
result._position = result._position + collisions[i]._position;
result._radius += collisions[i]._radius;
result._distance += collisions[i]._distance;
}
result._offset = result._offset / collisions.size();
result._radius = 0.5f * glm::length(result._normal);
result._normal = glm::normalize(result._normal);
result._position = result._position / (float)collisions.size();
result._distance = result._distance / collisions.size();
}
else if (collisions.size() == 1) {
result = collisions[0];
}
result._count = (int)collisions.size();
return result;
};
void FlowCollisionSystem::setScale(float scale) {
_scale = scale;
for (size_t j = 0; j < _collisionSpheres.size(); j++) {
_collisionSpheres[j]._radius = _collisionSpheres[j]._initialRadius * scale;
_collisionSpheres[j]._offset = _collisionSpheres[j]._initialOffset * scale;
}
};
std::vector<FlowCollisionResult> FlowCollisionSystem::checkFlowThreadCollisions(FlowThread* flowThread, bool checkSegments) {
std::vector<std::vector<FlowCollisionResult>> FlowThreadResults;
FlowThreadResults.resize(flowThread->_joints.size());
for (size_t j = 0; j < _collisionSpheres.size(); j++) {
FlowCollisionSphere &sphere = _collisionSpheres[j];
FlowCollisionResult rootCollision = sphere.computeSphereCollision(flowThread->_positions[0], flowThread->_radius);
std::vector<FlowCollisionResult> collisionData = { rootCollision };
bool tooFar = rootCollision._distance >(flowThread->_length + rootCollision._radius);
FlowCollisionResult nextCollision;
if (!tooFar) {
if (checkSegments) {
for (size_t i = 1; i < flowThread->_joints.size(); i++) {
auto prevCollision = collisionData[i - 1];
nextCollision = _collisionSpheres[j].computeSphereCollision(flowThread->_positions[i], flowThread->_radius);
collisionData.push_back(nextCollision);
if (prevCollision._offset > 0.0f) {
if (i == 1) {
FlowThreadResults[i - 1].push_back(prevCollision);
}
}
else if (nextCollision._offset > 0.0f) {
FlowThreadResults[i].push_back(nextCollision);
}
else {
FlowCollisionResult segmentCollision = _collisionSpheres[j].checkSegmentCollision(flowThread->_positions[i - 1], flowThread->_positions[i], prevCollision, nextCollision);
if (segmentCollision._offset > 0) {
FlowThreadResults[i - 1].push_back(segmentCollision);
FlowThreadResults[i].push_back(segmentCollision);
}
}
}
}
else {
if (rootCollision._offset > 0.0f) {
FlowThreadResults[0].push_back(rootCollision);
}
for (size_t i = 1; i < flowThread->_joints.size(); i++) {
nextCollision = _collisionSpheres[j].computeSphereCollision(flowThread->_positions[i], flowThread->_radius);
if (nextCollision._offset > 0.0f) {
FlowThreadResults[i].push_back(nextCollision);
}
}
}
}
}
std::vector<FlowCollisionResult> results;
for (size_t i = 0; i < flowThread->_joints.size(); i++) {
results.push_back(computeCollision(FlowThreadResults[i]));
}
return results;
};
int FlowCollisionSystem::findCollisionWithJoint(int jointIndex) {
for (size_t i = 0; i < _collisionSpheres.size(); i++) {
if (_collisionSpheres[i]._jointIndex == jointIndex) {
return (int)i;
}
}
return -1;
};
void FlowCollisionSystem::modifyCollisionRadius(int jointIndex, float radius) {
int collisionIndex = findCollisionWithJoint(jointIndex);
if (collisionIndex > -1) {
_collisionSpheres[collisionIndex]._initialRadius = radius;
_collisionSpheres[collisionIndex]._radius = _scale * radius;
}
};
void FlowCollisionSystem::modifyCollisionYOffset(int jointIndex, float offset) {
int collisionIndex = findCollisionWithJoint(jointIndex);
if (collisionIndex > -1) {
auto currentOffset = _collisionSpheres[collisionIndex]._offset;
_collisionSpheres[collisionIndex]._initialOffset = glm::vec3(currentOffset.x, offset, currentOffset.z);
_collisionSpheres[collisionIndex]._offset = _collisionSpheres[collisionIndex]._initialOffset * _scale;
}
};
void FlowCollisionSystem::modifyCollisionOffset(int jointIndex, const glm::vec3& offset) {
int collisionIndex = findCollisionWithJoint(jointIndex);
if (collisionIndex > -1) {
_collisionSpheres[collisionIndex]._initialOffset = offset;
_collisionSpheres[collisionIndex]._offset = _collisionSpheres[collisionIndex]._initialOffset * _scale;
}
};
void FlowNode::update(const glm::vec3& accelerationOffset) {
_acceleration = glm::vec3(0.0f, _settings._gravity, 0.0f);
_previousVelocity = _currentVelocity;
_currentVelocity = _currentPosition - _previousPosition;
_previousPosition = _currentPosition;
if (!_anchored) {
// Add inertia
auto deltaVelocity = _previousVelocity - _currentVelocity;
auto centrifugeVector = glm::length(deltaVelocity) != 0.0f ? glm::normalize(deltaVelocity) : glm::vec3();
_acceleration = _acceleration + centrifugeVector * _settings._inertia * glm::length(_currentVelocity);
// Add offset
_acceleration += accelerationOffset;
// Calculate new position
_currentPosition = (_currentPosition + _currentVelocity * _settings._damping) +
(_acceleration * glm::pow(_settings._delta * _scale, 2));
}
else {
_acceleration = glm::vec3(0.0f);
_currentVelocity = glm::vec3(0.0f);
}
};
void FlowNode::solve(const glm::vec3& constrainPoint, float maxDistance, const FlowCollisionResult& collision) {
solveConstraints(constrainPoint, maxDistance);
solveCollisions(collision);
};
void FlowNode::solveConstraints(const glm::vec3& constrainPoint, float maxDistance) {
glm::vec3 constrainVector = _currentPosition - constrainPoint;
float difference = maxDistance / glm::length(constrainVector);
_currentPosition = difference < 1.0 ? constrainPoint + constrainVector * difference : _currentPosition;
};
void FlowNode::solveCollisions(const FlowCollisionResult& collision) {
_colliding = collision._offset > 0.0f;
_collision = collision;
if (_colliding) {
_currentPosition = _currentPosition + collision._normal * collision._offset;
_previousCollision = collision;
}
else {
_previousCollision = FlowCollisionResult();
}
};
void FlowNode::apply(const QString& name, bool forceRendering) {
// TODO
// Render here ??
/*
jointDebug.setDebugSphere(name, self.currentPosition, 2 * self.radius, { red: self.collision && self.collision.collisionCount > 1 ? 0 : 255,
green : self.colliding ? 0 : 255,
blue : 0 }, forceRendering);
*/
};
FlowJoint::FlowJoint(int jointIndex, int parentIndex, int childIndex, const QString& name, const QString& group, float scale, const FlowPhysicsSettings& settings) {
_index = jointIndex;
_name = name;
_group = group;
_scale = scale;
_childIndex = childIndex;
_parentIndex = parentIndex;
_node = FlowNode(glm::vec3(), settings);
};
void FlowJoint::setInitialData(const glm::vec3& initialPosition, const glm::vec3& initialTranslation, const glm::quat& initialRotation, const glm::vec3& parentPosition) {
_initialPosition = initialPosition;
_node._initialPosition = initialPosition;
_node._previousPosition = initialPosition;
_node._currentPosition = initialPosition;
_initialTranslation = initialTranslation;
_initialRotation = initialRotation;
_translationDirection = glm::normalize(_initialTranslation);
_parentPosition = parentPosition;
_length = glm::length(_initialPosition - parentPosition);
_originalLength = _length / _scale;
}
void FlowJoint::setUpdatedData(const glm::vec3& updatedPosition, const glm::vec3& updatedTranslation, const glm::quat& updatedRotation, const glm::vec3& parentPosition, const glm::quat& parentWorldRotation) {
_updatedPosition = updatedPosition;
_updatedRotation = updatedRotation;
_updatedTranslation = updatedTranslation;
_parentPosition = parentPosition;
_parentWorldRotation = parentWorldRotation;
}
void FlowJoint::setRecoveryPosition(const glm::vec3& recoveryPosition) {
_recoveryPosition = recoveryPosition;
_applyRecovery = true;
}
void FlowJoint::update() {
glm::vec3 accelerationOffset = glm::vec3(0.0f);
if (_node._settings._stiffness > 0.0f) {
glm::vec3 recoveryVector = _recoveryPosition - _node._currentPosition;
accelerationOffset = recoveryVector * glm::pow(_node._settings._stiffness, 3);
}
_node.update(accelerationOffset);
if (_node._anchored) {
if (!_isDummy) {
_node._currentPosition = _updatedPosition;
} else {
_node._currentPosition = _parentPosition;
}
}
};
void FlowJoint::solve(const FlowCollisionResult& collision) {
_node.solve(_parentPosition, _length, collision);
};
FlowDummyJoint::FlowDummyJoint(const glm::vec3& initialPosition, int index, int parentIndex, int childIndex, float scale, FlowPhysicsSettings settings) :
FlowJoint(index, parentIndex, childIndex, DUMMY_KEYWORD + "_" + index, DUMMY_KEYWORD, scale, settings) {
_isDummy = true;
_initialPosition = initialPosition;
_node = FlowNode(_initialPosition, settings);
_length = DUMMY_JOINT_DISTANCE;
}
FlowThread::FlowThread(int rootIndex, std::map<int, FlowJoint>* joints) {
_jointsPointer = joints;
computeFlowThread(rootIndex);
}
void FlowThread::resetLength() {
_length = 0.0f;
for (size_t i = 1; i < _joints.size(); i++) {
int index = _joints[i];
_length += (*_jointsPointer)[index]._length;
}
}
void FlowThread::computeFlowThread(int rootIndex) {
int parentIndex = rootIndex;
if (_jointsPointer->size() == 0) {
return;
}
int childIndex = (*_jointsPointer)[parentIndex]._childIndex;
std::vector<int> indexes = { parentIndex };
for (size_t i = 0; i < _jointsPointer->size(); i++) {
if (childIndex > -1) {
indexes.push_back(childIndex);
childIndex = (*_jointsPointer)[childIndex]._childIndex;
} else {
break;
}
}
for (size_t i = 0; i < indexes.size(); i++) {
int index = indexes[i];
_joints.push_back(index);
if (i > 0) {
_length += (*_jointsPointer)[index]._length;
}
}
};
void FlowThread::computeRecovery() {
int parentIndex = _joints[0];
auto parentJoint = (*_jointsPointer)[parentIndex];
(*_jointsPointer)[parentIndex]._recoveryPosition = parentJoint._recoveryPosition = parentJoint._node._currentPosition;
glm::quat parentRotation = parentJoint._parentWorldRotation * parentJoint._initialRotation;
for (size_t i = 1; i < _joints.size(); i++) {
auto joint = (*_jointsPointer)[_joints[i]];
glm::quat rotation = i == 1 ? parentRotation : rotation * parentJoint._initialRotation;
(*_jointsPointer)[_joints[i]]._recoveryPosition = joint._recoveryPosition = parentJoint._recoveryPosition + (rotation * (joint._initialTranslation * 0.01f));
parentJoint = joint;
}
};
void FlowThread::update() {
if (getActive()) {
_positions.clear();
_radius = (*_jointsPointer)[_joints[0]]._node._settings._radius;
computeRecovery();
for (size_t i = 0; i < _joints.size(); i++) {
auto &joint = (*_jointsPointer)[_joints[i]];
joint.update();
_positions.push_back(joint._node._currentPosition);
}
}
};
void FlowThread::solve(bool useCollisions, FlowCollisionSystem& collisionSystem) {
if (getActive()) {
if (useCollisions) {
auto bodyCollisions = collisionSystem.checkFlowThreadCollisions(this, false);
int handTouchedJoint = -1;
for (size_t i = 0; i < _joints.size(); i++) {
int index = _joints[i];
if (bodyCollisions[i]._offset > 0.0f) {
(*_jointsPointer)[index].solve(bodyCollisions[i]);
} else {
(*_jointsPointer)[index].solve(FlowCollisionResult());
}
}
} else {
for (size_t i = 0; i < _joints.size(); i++) {
int index = _joints[i];
(*_jointsPointer)[index].solve(FlowCollisionResult());
}
}
}
};
void FlowThread::computeJointRotations() {
auto pos0 = _rootFramePositions[0];
auto pos1 = _rootFramePositions[1];
auto joint0 = (*_jointsPointer)[_joints[0]];
auto joint1 = (*_jointsPointer)[_joints[1]];
auto initial_pos1 = pos0 + (joint0._initialRotation * (joint1._initialTranslation * 0.01f));
auto vec0 = initial_pos1 - pos0;
auto vec1 = pos1 - pos0;
auto delta = rotationBetween(vec0, vec1);
joint0._currentRotation = (*_jointsPointer)[_joints[0]]._currentRotation = delta * joint0._initialRotation;
for (size_t i = 1; i < _joints.size() - 1; i++) {
auto nextJoint = (*_jointsPointer)[_joints[i + 1]];
for (size_t j = i; j < _joints.size(); j++) {
_rootFramePositions[j] = glm::inverse(joint0._currentRotation) * _rootFramePositions[j] - (joint0._initialTranslation * 0.01f);
}
pos0 = _rootFramePositions[i];
pos1 = _rootFramePositions[i + 1];
initial_pos1 = pos0 + joint1._initialRotation * (nextJoint._initialTranslation * 0.01f);
vec0 = initial_pos1 - pos0;
vec1 = pos1 - pos0;
delta = rotationBetween(vec0, vec1);
joint1._currentRotation = (*_jointsPointer)[joint1._index]._currentRotation = delta * joint1._initialRotation;
joint0 = joint1;
joint1 = nextJoint;
}
};
void FlowThread::apply() {
if (!getActive()) {
return;
}
computeJointRotations();
};
bool FlowThread::getActive() {
return (*_jointsPointer)[_joints[0]]._node._active;
};
void Flow::setRig(Rig* rig) {
_rig = rig;
};
void Flow::calculateConstraints() {
cleanUp();
if (!_rig) {
return;
}
int rightHandIndex = -1;
auto flowPrefix = FLOW_JOINT_PREFIX.toUpper();
auto simPrefix = SIM_JOINT_PREFIX.toUpper();
auto skeleton = _rig->getAnimSkeleton();
if (skeleton) {
for (int i = 0; i < skeleton->getNumJoints(); i++) {
auto name = skeleton->getJointName(i);
if (name == "RightHand") {
rightHandIndex = i;
}
auto parentIndex = skeleton->getParentIndex(i);
if (parentIndex == -1) {
continue;
}
auto jointChildren = skeleton->getChildrenOfJoint(i);
// auto childIndex = jointChildren.size() > 0 ? jointChildren[0] : -1;
auto group = QStringRef(&name, 0, 3).toString().toUpper();
auto split = name.split("_");
bool isSimJoint = (group == simPrefix);
bool isFlowJoint = split.size() > 2 && split[0].toUpper() == flowPrefix;
if (isFlowJoint || isSimJoint) {
group = "";
if (isSimJoint) {
qDebug() << "FLOW is sim: " << name;
for (size_t j = 1; j < name.size() - 1; j++) {
bool toFloatSuccess;
auto subname = (QStringRef(&name, (int)(name.size() - j), 1)).toString().toFloat(&toFloatSuccess);
if (!toFloatSuccess && (name.size() - j) > simPrefix.size()) {
group = QStringRef(&name, simPrefix.size(), (int)(name.size() - j + 1)).toString();
break;
}
}
if (group.isEmpty()) {
group = QStringRef(&name, simPrefix.size(), name.size() - 1).toString();
}
} else {
group = split[1];
}
if (!group.isEmpty()) {
_flowJointKeywords.push_back(group);
FlowPhysicsSettings jointSettings;
if (PRESET_FLOW_DATA.find(group) != PRESET_FLOW_DATA.end()) {
jointSettings = PRESET_FLOW_DATA.at(group);
} else {
jointSettings = DEFAULT_JOINT_SETTINGS;
}
if (_flowJointData.find(i) == _flowJointData.end()) {
auto flowJoint = FlowJoint(i, parentIndex, -1, name, group, _scale, jointSettings);
_flowJointData.insert(std::pair<int, FlowJoint>(i, flowJoint));
}
}
} else {
if (PRESET_COLLISION_DATA.find(name) != PRESET_COLLISION_DATA.end()) {
_collisionSystem.addCollisionShape(i, PRESET_COLLISION_DATA.at(name));
}
}
if (isFlowJoint || isSimJoint) {
auto jointInfo = FlowJointInfo(i, parentIndex, -1, name);
_flowJointInfos.push_back(jointInfo);
}
}
}
for (auto &jointData : _flowJointData) {
int jointIndex = jointData.first;
glm::vec3 jointPosition, parentPosition, jointTranslation;
glm::quat jointRotation;
_rig->getJointPositionInWorldFrame(jointIndex, jointPosition, _entityPosition, _entityRotation);
_rig->getJointPositionInWorldFrame(jointData.second._parentIndex, parentPosition, _entityPosition, _entityRotation);
_rig->getJointTranslation(jointIndex, jointTranslation);
_rig->getJointRotation(jointIndex, jointRotation);
jointData.second.setInitialData(jointPosition, jointTranslation, jointRotation, parentPosition);
}
std::vector<int> roots;
for (auto& itr = _flowJointData.begin(); itr != _flowJointData.end(); itr++) {
if (_flowJointData.find(itr->second._parentIndex) == _flowJointData.end()) {
itr->second._node._anchored = true;
roots.push_back(itr->first);
} else {
_flowJointData[itr->second._parentIndex]._childIndex = itr->first;
}
}
for (size_t i = 0; i < roots.size(); i++) {
FlowThread thread = FlowThread(roots[i], &_flowJointData);
// add threads with at least 2 joints
if (thread._joints.size() > 0) {
if (thread._joints.size() == 1) {
int jointIndex = roots[i];
auto joint = _flowJointData[jointIndex];
auto jointPosition = joint._updatedPosition;
auto newSettings = FlowPhysicsSettings(joint._node._settings);
newSettings._stiffness = ISOLATED_JOINT_STIFFNESS;
int extraIndex = (int)_flowJointData.size();
auto newJoint = FlowDummyJoint(jointPosition, extraIndex, jointIndex, -1, _scale, newSettings);
newJoint._isDummy = false;
newJoint._length = ISOLATED_JOINT_LENGTH;
newJoint._childIndex = extraIndex;
newJoint._group = _flowJointData[jointIndex]._group;
thread = FlowThread(jointIndex, &_flowJointData);
}
_jointThreads.push_back(thread);
}
}
if (_jointThreads.size() == 0) {
_rig->clearJointStates();
}
if (SHOW_DUMMY_JOINTS && rightHandIndex > -1) {
int jointCount = (int)_flowJointData.size();
int extraIndex = (int)_flowJointData.size();
glm::vec3 rightHandPosition;
_rig->getJointPositionInWorldFrame(rightHandIndex, rightHandPosition, _entityPosition, _entityRotation);
int parentIndex = rightHandIndex;
for (int i = 0; i < DUMMY_JOINT_COUNT; i++) {
int childIndex = (i == (DUMMY_JOINT_COUNT - 1)) ? -1 : extraIndex + 1;
auto newJoint = FlowDummyJoint(rightHandPosition, extraIndex, parentIndex, childIndex, _scale, DEFAULT_JOINT_SETTINGS);
_flowJointData.insert(std::pair<int, FlowJoint>(extraIndex, newJoint));
parentIndex = extraIndex;
extraIndex++;
}
_flowJointData[jointCount]._node._anchored = true;
auto extraThread = FlowThread(jointCount, &_flowJointData);
_jointThreads.push_back(extraThread);
}
_initialized = _jointThreads.size() > 0;
}
void Flow::cleanUp() {
_flowJointData.clear();
_jointThreads.clear();
_flowJointKeywords.clear();
_flowJointInfos.clear();
}
void Flow::setTransform(float scale, const glm::vec3& position, const glm::quat& rotation) {
_scale = scale;
for (auto &joint : _flowJointData) {
joint.second._scale = scale;
joint.second._node._scale = scale;
}
_entityPosition = position;
_entityRotation = rotation;
_active = true;
}
void Flow::update() {
_timer.start();
if (_initialized && _active) {
updateJoints();
if (USE_COLLISIONS) {
_collisionSystem.update();
}
int count = 0;
for (auto &thread : _jointThreads) {
thread.update();
thread.solve(USE_COLLISIONS, _collisionSystem);
if (!updateRootFramePositions(count++)) {
return;
}
thread.apply();
}
setJoints();
}
_elapsedTime = ((1.0 - _tau) * _elapsedTime + _tau * _timer.nsecsElapsed());
_deltaTime += _elapsedTime;
if (_deltaTime > _deltaTimeLimit) {
qDebug() << "Flow C++ update" << _elapsedTime;
_deltaTime = 0.0;
}
}
bool Flow::worldToJointPoint(const glm::vec3& position, const int jointIndex, glm::vec3& jointSpacePosition) const {
glm::vec3 jointPos;
glm::quat jointRot;
if (_rig->getJointPositionInWorldFrame(jointIndex, jointPos, _entityPosition, _entityRotation) && _rig->getJointRotationInWorldFrame(jointIndex, jointRot, _entityRotation)) {
glm::vec3 modelOffset = position - jointPos;
jointSpacePosition = glm::inverse(jointRot) * modelOffset;
return true;
}
return false;
}
bool Flow::updateRootFramePositions(int threadIndex) {
auto &joints = _jointThreads[threadIndex]._joints;
int rootIndex = _flowJointData[joints[0]]._parentIndex;
_jointThreads[threadIndex]._rootFramePositions.clear();
for (size_t j = 0; j < joints.size(); j++) {
glm::vec3 jointPos;
if (worldToJointPoint(_flowJointData[joints[j]]._node._currentPosition, rootIndex, jointPos)) {
_jointThreads[threadIndex]._rootFramePositions.push_back(jointPos);
} else {
return false;
}
}
return true;
}
void Flow::updateJoints() {
for (auto &jointData : _flowJointData) {
int jointIndex = jointData.first;
glm::vec3 jointPosition, parentPosition, jointTranslation;
glm::quat jointRotation, parentWorldRotation;
_rig->getJointPositionInWorldFrame(jointIndex, jointPosition, _entityPosition, _entityRotation);
_rig->getJointPositionInWorldFrame(jointData.second._parentIndex, parentPosition, _entityPosition, _entityRotation);
_rig->getJointTranslation(jointIndex, jointTranslation);
_rig->getJointRotation(jointIndex, jointRotation);
_rig->getJointRotationInWorldFrame(jointData.second._parentIndex, parentWorldRotation, _entityRotation);
jointData.second.setUpdatedData(jointPosition, jointTranslation, jointRotation, parentPosition, parentWorldRotation);
}
auto &collisions = _collisionSystem.getCollisions();
for (auto &collision : collisions) {
_rig->getJointPositionInWorldFrame(collision._jointIndex, collision._position, _entityPosition, _entityRotation);
}
}
void Flow::setJoints() {
for (auto &thread : _jointThreads) {
auto &joints = thread._joints;
for (int jointIndex : joints) {
auto &joint = _flowJointData[jointIndex];
_rig->setJointRotation(jointIndex, true, joint._currentRotation, 2.0f);
}
}
}

View file

@ -0,0 +1,315 @@
//
// Flow.h
//
// Created by Luis Cuenca on 1/21/2019.
// Copyright 2019 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#ifndef hifi_Flow_h
#define hifi_Flow_h
#include <qelapsedtimer.h>
#include <qstring.h>
#include <glm/glm.hpp>
#include <glm/gtx/quaternion.hpp>
#include <vector>
#include <map>
#include <quuid.h>
class Rig;
class AnimSkeleton;
const bool SHOW_AVATAR = true;
const bool SHOW_DEBUG_SHAPES = false;
const bool SHOW_SOLID_SHAPES = false;
const bool SHOW_DUMMY_JOINTS = false;
const bool USE_COLLISIONS = true;
const int LEFT_HAND = 0;
const int RIGHT_HAND = 1;
const float HAPTIC_TOUCH_STRENGTH = 0.25f;
const float HAPTIC_TOUCH_DURATION = 10.0f;
const float HAPTIC_SLOPE = 0.18f;
const float HAPTIC_THRESHOLD = 40.0f;
const QString FLOW_JOINT_PREFIX = "flow";
const QString SIM_JOINT_PREFIX = "sim";
const QString JOINT_COLLISION_PREFIX = "joint_";
const QString HAND_COLLISION_PREFIX = "hand_";
const float HAND_COLLISION_RADIUS = 0.03f;
const float HAND_TOUCHING_DISTANCE = 2.0f;
const int COLLISION_SHAPES_LIMIT = 4;
const QString DUMMY_KEYWORD = "Extra";
const int DUMMY_JOINT_COUNT = 8;
const float DUMMY_JOINT_DISTANCE = 0.05f;
const float ISOLATED_JOINT_STIFFNESS = 0.0f;
const float ISOLATED_JOINT_LENGTH = 0.05f;
const float DEFAULT_STIFFNESS = 0.8f;
const float DEFAULT_GRAVITY = -0.0096f;
const float DEFAULT_DAMPING = 0.85f;
const float DEFAULT_INERTIA = 0.8f;
const float DEFAULT_DELTA = 0.55f;
const float DEFAULT_RADIUS = 0.01f;
struct FlowPhysicsSettings {
FlowPhysicsSettings() {};
FlowPhysicsSettings(bool active, float stiffness, float gravity, float damping, float inertia, float delta, float radius) {
_active = active;
_stiffness = stiffness;
_gravity = gravity;
_damping = damping;
_inertia = inertia;
_delta = delta;
_radius = radius;
}
bool _active{ true };
float _stiffness{ 0.0f };
float _gravity{ DEFAULT_GRAVITY };
float _damping{ DEFAULT_DAMPING };
float _inertia{ DEFAULT_INERTIA };
float _delta{ DEFAULT_DELTA };
float _radius{ DEFAULT_RADIUS };
};
enum FlowCollisionType {
CollisionSphere = 0
};
struct FlowCollisionSettings {
FlowCollisionSettings() {};
FlowCollisionSettings(const QUuid& id, const FlowCollisionType& type, const glm::vec3& offset, float radius) {
_entityID = id;
_type = type;
_offset = offset;
_radius = radius;
};
QUuid _entityID;
FlowCollisionType _type { FlowCollisionType::CollisionSphere };
float _radius { 0.05f };
glm::vec3 _offset;
};
const FlowPhysicsSettings DEFAULT_JOINT_SETTINGS;
const std::map<QString, FlowPhysicsSettings> PRESET_FLOW_DATA = { {"hair", FlowPhysicsSettings()},
{"skirt", FlowPhysicsSettings(true, 1.0f, DEFAULT_GRAVITY, 0.65f, 0.8f, 0.45f, 0.01f)},
{"breast", FlowPhysicsSettings(true, 1.0f, DEFAULT_GRAVITY, 0.65f, 0.8f, 0.45f, 0.01f)} };
const std::map<QString, FlowCollisionSettings> PRESET_COLLISION_DATA = {
{ "Head", FlowCollisionSettings(QUuid(), FlowCollisionType::CollisionSphere, glm::vec3(0.0f, 0.06f, 0.0f), 0.08f)},
{ "LeftArm", FlowCollisionSettings(QUuid(), FlowCollisionType::CollisionSphere, glm::vec3(0.0f, 0.02f, 0.0f), 0.05f) },
{ "Head", FlowCollisionSettings(QUuid(), FlowCollisionType::CollisionSphere, glm::vec3(0.0f, 0.04f, 0.0f), 0.0f) }
};
const std::vector<QString> HAND_COLLISION_JOINTS = { "RightHandMiddle1", "RightHandThumb3", "LeftHandMiddle1", "LeftHandThumb3", "RightHandMiddle3", "LeftHandMiddle3" };
struct FlowJointInfo {
FlowJointInfo() {};
FlowJointInfo(int index, int parentIndex, int childIndex, const QString& name) {
_index = index;
_parentIndex = parentIndex;
_childIndex = childIndex;
_name = name;
}
int _index { -1 };
QString _name;
int _parentIndex { -1 };
int _childIndex { -1 };
};
struct FlowCollisionResult {
int _count { 0 };
float _offset { 0.0f };
glm::vec3 _position;
float _radius { 0.0f };
glm::vec3 _normal;
float _distance { 0.0f };
};
class FlowCollisionSphere {
public:
FlowCollisionSphere() {};
FlowCollisionSphere(const int& jointIndex, const FlowCollisionSettings& settings);
void setPosition(const glm::vec3& position) { _position = position; }
FlowCollisionResult computeSphereCollision(const glm::vec3& point, float radius) const;
FlowCollisionResult checkSegmentCollision(const glm::vec3& point1, const glm::vec3& point2, const FlowCollisionResult& collisionResult1, const FlowCollisionResult& collisionResult2);
void update();
QUuid _entityID;
int _jointIndex { -1 };
float _radius { 0.0f };
float _initialRadius{ 0.0f };
glm::vec3 _offset;
glm::vec3 _initialOffset;
glm::vec3 _position;
};
class FlowThread;
class FlowCollisionSystem {
public:
FlowCollisionSystem() {};
void addCollisionSphere(int jointIndex, const FlowCollisionSettings& settings);
void addCollisionShape(int jointIndex, const FlowCollisionSettings& settings);
bool addCollisionToJoint(int jointIndex);
void removeCollisionFromJoint(int jointIndex);
void update();
FlowCollisionResult computeCollision(const std::vector<FlowCollisionResult> collisions);
void setScale(float scale);
std::vector<FlowCollisionResult> checkFlowThreadCollisions(FlowThread* flowThread, bool checkSegments);
int findCollisionWithJoint(int jointIndex);
void modifyCollisionRadius(int jointIndex, float radius);
void modifyCollisionYOffset(int jointIndex, float offset);
void modifyCollisionOffset(int jointIndex, const glm::vec3& offset);
std::vector<FlowCollisionSphere>& getCollisions() { return _collisionSpheres; };
private:
std::vector<FlowCollisionSphere> _collisionSpheres;
float _scale{ 1.0f };
};
class FlowNode {
public:
FlowNode() {};
FlowNode(const glm::vec3& initialPosition, FlowPhysicsSettings settings) :
_initialPosition(initialPosition), _previousPosition(initialPosition), _currentPosition(initialPosition){};
FlowPhysicsSettings _settings;
glm::vec3 _initialPosition;
glm::vec3 _previousPosition;
glm::vec3 _currentPosition;
glm::vec3 _currentVelocity;
glm::vec3 _previousVelocity;
glm::vec3 _acceleration;
FlowCollisionResult _collision;
FlowCollisionResult _previousCollision;
float _initialRadius { 0.0f };
float _scale{ 1.0f };
bool _anchored { false };
bool _colliding { false };
bool _active { true };
void update(const glm::vec3& accelerationOffset);
void solve(const glm::vec3& constrainPoint, float maxDistance, const FlowCollisionResult& collision);
void solveConstraints(const glm::vec3& constrainPoint, float maxDistance);
void solveCollisions(const FlowCollisionResult& collision);
void apply(const QString& name, bool forceRendering);
};
class FlowJoint {
public:
FlowJoint() {};
FlowJoint(int jointIndex, int parentIndex, int childIndex, const QString& name, const QString& group, float scale, const FlowPhysicsSettings& settings);
void setInitialData(const glm::vec3& initialPosition, const glm::vec3& initialTranslation, const glm::quat& initialRotation, const glm::vec3& parentPosition);
void setUpdatedData(const glm::vec3& updatedPosition, const glm::vec3& updatedTranslation, const glm::quat& updatedRotation, const glm::vec3& parentPosition, const glm::quat& parentWorldRotation);
void setRecoveryPosition(const glm::vec3& recoveryPosition);
void update();
void solve(const FlowCollisionResult& collision);
int _index{ -1 };
int _parentIndex{ -1 };
int _childIndex{ -1 };
QString _name;
QString _group;
bool _isDummy{ false };
glm::vec3 _initialPosition;
glm::vec3 _initialTranslation;
glm::quat _initialRotation;
glm::vec3 _updatedPosition;
glm::vec3 _updatedTranslation;
glm::quat _updatedRotation;
glm::quat _currentRotation;
glm::vec3 _recoveryPosition;
glm::vec3 _parentPosition;
glm::quat _parentWorldRotation;
FlowNode _node;
glm::vec3 _translationDirection;
float _scale { 1.0f };
float _length { 0.0f };
float _originalLength { 0.0f };
bool _applyRecovery { false };
};
class FlowDummyJoint : public FlowJoint {
public:
FlowDummyJoint(const glm::vec3& initialPosition, int index, int parentIndex, int childIndex, float scale, FlowPhysicsSettings settings);
};
class FlowThread {
public:
FlowThread() {};
FlowThread(int rootIndex, std::map<int, FlowJoint>* joints);
void resetLength();
void computeFlowThread(int rootIndex);
void computeRecovery();
void update();
void solve(bool useCollisions, FlowCollisionSystem& collisionSystem);
void computeJointRotations();
void apply();
bool getActive();
void setRootFramePositions(const std::vector<glm::vec3>& rootFramePositions) { _rootFramePositions = rootFramePositions; };
std::vector<int> _joints;
std::vector<glm::vec3> _positions;
float _radius{ 0.0f };
float _length{ 0.0f };
std::map<int, FlowJoint>* _jointsPointer;
std::vector<glm::vec3> _rootFramePositions;
};
class Flow {
public:
Flow() {};
void setRig(Rig* rig);
void calculateConstraints();
void update();
void setTransform(float scale, const glm::vec3& position, const glm::quat& rotation);
const std::map<int, FlowJoint>& getJoints() const { return _flowJointData; }
const std::vector<FlowThread>& getThreads() const { return _jointThreads; }
private:
void setJoints();
void cleanUp();
void updateJoints();
bool updateRootFramePositions(int threadIndex);
bool worldToJointPoint(const glm::vec3& position, const int jointIndex, glm::vec3& jointSpacePosition) const;
Rig* _rig;
float _scale { 1.0f };
glm::vec3 _entityPosition;
glm::quat _entityRotation;
std::map<int, FlowJoint> _flowJointData;
std::vector<FlowThread> _jointThreads;
std::vector<QString> _flowJointKeywords;
std::vector<FlowJointInfo> _flowJointInfos;
FlowCollisionSystem _collisionSystem;
bool _initialized { false };
bool _active { false };
int _deltaTime{ 0 };
int _deltaTimeLimit{ 4000 };
int _elapsedTime{ 0 };
float _tau = 0.1f;
QElapsedTimer _timer;
};
#endif // hifi_Flow_h

View file

@ -748,7 +748,7 @@ void Rig::computeMotionAnimationState(float deltaTime, const glm::vec3& worldPos
glm::vec3 forward = worldRotation * IDENTITY_FORWARD;
glm::vec3 workingVelocity = worldVelocity;
_flow.setTransform(sensorToWorldScale, worldPosition, worldRotation * Quaternions::Y_180);
{
glm::vec3 localVel = glm::inverse(worldRotation) * workingVelocity;
@ -1212,12 +1212,15 @@ void Rig::updateAnimations(float deltaTime, const glm::mat4& rootTransform, cons
_networkVars = networkTriggersOut;
_lastContext = context;
}
applyOverridePoses();
buildAbsoluteRigPoses(_internalPoseSet._relativePoses, _internalPoseSet._absolutePoses);
buildAbsoluteRigPoses(_networkPoseSet._relativePoses, _networkPoseSet._absolutePoses);
// copy internal poses to external poses
_flow.update();
{
QWriteLocker writeLock(&_externalPoseSetLock);
_externalPoseSet = _internalPoseSet;
}
}

View file

@ -235,6 +235,7 @@ public:
const AnimVariantMap& getAnimVars() const { return _lastAnimVars; }
const AnimContext::DebugStateMachineMap& getStateMachineMap() const { return _lastContext.getStateMachineMap(); }
void computeFlowSkeleton() { _flow.calculateConstraints(); }
const Flow& getFlow() const { return _flow; }
signals:
void onLoadComplete();

View file

@ -722,6 +722,24 @@ void Avatar::postUpdate(float deltaTime, const render::ScenePointer& scene) {
DebugDraw::getInstance().drawRay(rightEyePosition, rightEyePosition + rightEyeRotation * Vectors::UNIT_Z * EYE_RAY_LENGTH, RED);
}
}
const bool DEBUG_FLOW = true;
if (_skeletonModel->isLoaded() && DEBUG_FLOW) {
auto flow = _skeletonModel->getRig().getFlow();
auto joints = flow.getJoints();
auto threads = flow.getThreads();
for (auto &thread : threads) {
auto& jointIndexes = thread._joints;
for (size_t i = 1; i < jointIndexes.size(); i++) {
auto index1 = jointIndexes[i - 1];
auto index2 = jointIndexes[i];
// glm::vec3 pos1 = joint.second._node._currentPosition;
// glm::vec3 pos2 = joints.find(joint.second._parentIndex) != joints.end() ? joints[joint.second._parentIndex]._node._currentPosition : getJointPosition(joint.second._parentIndex);
// DebugDraw::getInstance().drawRay(pos1, pos2, glm::vec4(1.0f, 1.0f, 1.0f, 1.0f));
DebugDraw::getInstance().drawRay(joints[index1]._node._currentPosition, joints[index2]._node._currentPosition, glm::vec4(1.0f, 1.0f, 1.0f, 1.0f));
}
}
}
fixupModelsInScene(scene);
updateFitBoundingBox();