overte-thingvellir/libraries/shared/src/SharedUtil.cpp
2014-01-29 12:23:06 -08:00

646 lines
22 KiB
C++

//
// SharedUtil.cpp
// hifi
//
// Created by Stephen Birarda on 2/22/13.
// Copyright (c) 2013 HighFidelity, Inc. All rights reserved.
//
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <cctype>
#include <time.h>
#ifdef _WIN32
#include "Syssocket.h"
#endif
#ifdef __APPLE__
#include <CoreFoundation/CoreFoundation.h>
#endif
#include <QtCore/QDebug>
#include "OctalCode.h"
#include "PacketHeaders.h"
#include "SharedUtil.h"
quint64 usecTimestamp(const timeval *time) {
return (time->tv_sec * 1000000 + time->tv_usec);
}
int usecTimestampNowAdjust = 0;
void usecTimestampNowForceClockSkew(int clockSkew) {
::usecTimestampNowAdjust = clockSkew;
}
quint64 usecTimestampNow() {
timeval now;
gettimeofday(&now, NULL);
return (now.tv_sec * 1000000 + now.tv_usec) + ::usecTimestampNowAdjust;
}
float randFloat () {
return (rand() % 10000)/10000.f;
}
int randIntInRange (int min, int max) {
return min + (rand() % ((max + 1) - min));
}
float randFloatInRange (float min,float max) {
return min + ((rand() % 10000)/10000.f * (max-min));
}
unsigned char randomColorValue(int miniumum) {
return miniumum + (rand() % (256 - miniumum));
}
bool randomBoolean() {
return rand() % 2;
}
bool shouldDo(float desiredInterval, float deltaTime) {
return randFloat() < deltaTime / desiredInterval;
}
void outputBufferBits(const unsigned char* buffer, int length, QDebug* continuedDebug) {
for (int i = 0; i < length; i++) {
outputBits(buffer[i], continuedDebug);
}
}
void outputBits(unsigned char byte, QDebug* continuedDebug) {
QDebug debug = qDebug().nospace();
if (continuedDebug) {
debug = *continuedDebug;
}
QString resultString;
if (isalnum(byte)) {
resultString.sprintf("[ %d (%c): ", byte, byte);
} else {
resultString.sprintf("[ %d (0x%x): ", byte, byte);
}
debug << resultString;
for (int i = 0; i < 8; i++) {
resultString.sprintf("%d", byte >> (7 - i) & 1);
}
debug << resultString;
debug << " ]";
}
int numberOfOnes(unsigned char byte) {
return (byte >> 7)
+ ((byte >> 6) & 1)
+ ((byte >> 5) & 1)
+ ((byte >> 4) & 1)
+ ((byte >> 3) & 1)
+ ((byte >> 2) & 1)
+ ((byte >> 1) & 1)
+ (byte & 1);
}
bool oneAtBit(unsigned char byte, int bitIndex) {
return (byte >> (7 - bitIndex) & 1);
}
void setAtBit(unsigned char& byte, int bitIndex) {
byte += (1 << (7 - bitIndex));
}
void clearAtBit(unsigned char& byte, int bitIndex) {
if (oneAtBit(byte, bitIndex)) {
byte -= (1 << (7 - bitIndex));
}
}
int getSemiNibbleAt(unsigned char& byte, int bitIndex) {
return (byte >> (6 - bitIndex) & 3); // semi-nibbles store 00, 01, 10, or 11
}
int getNthBit(unsigned char byte, int ordinal) {
const int ERROR_RESULT = -1;
const int MIN_ORDINAL = 1;
const int MAX_ORDINAL = 8;
if (ordinal < MIN_ORDINAL || ordinal > MAX_ORDINAL) {
return ERROR_RESULT;
}
int bitsSet = 0;
for (int bitIndex = 0; bitIndex < MAX_ORDINAL; bitIndex++) {
if (oneAtBit(byte, bitIndex)) {
bitsSet++;
}
if (bitsSet == ordinal) {
return bitIndex;
}
}
return ERROR_RESULT;
}
bool isBetween(int64_t value, int64_t max, int64_t min) {
return ((value <= max) && (value >= min));
}
void setSemiNibbleAt(unsigned char& byte, int bitIndex, int value) {
//assert(value <= 3 && value >= 0);
byte += ((value & 3) << (6 - bitIndex)); // semi-nibbles store 00, 01, 10, or 11
}
bool isInEnvironment(const char* environment) {
char* environmentString = getenv("HIFI_ENVIRONMENT");
if (environmentString && strcmp(environmentString, environment) == 0) {
return true;
} else {
return false;
}
}
void switchToResourcesParentIfRequired() {
#ifdef __APPLE__
CFBundleRef mainBundle = CFBundleGetMainBundle();
CFURLRef resourcesURL = CFBundleCopyResourcesDirectoryURL(mainBundle);
char path[PATH_MAX];
if (!CFURLGetFileSystemRepresentation(resourcesURL, TRUE, (UInt8 *)path, PATH_MAX)) {
// error!
}
CFRelease(resourcesURL);
chdir(path);
chdir("..");
#endif
}
void loadRandomIdentifier(unsigned char* identifierBuffer, int numBytes) {
// seed the the random number generator
srand(time(NULL));
for (int i = 0; i < numBytes; i++) {
identifierBuffer[i] = rand() % 256;
}
}
//////////////////////////////////////////////////////////////////////////////////////////
// Function: getCmdOption()
// Description: Handy little function to tell you if a command line flag and option was
// included while launching the application, and to get the option value
// immediately following the flag. For example if you ran:
// ./app -i filename.txt
// then you're using the "-i" flag to set the input file name.
// Usage: char * inputFilename = getCmdOption(argc, argv, "-i");
// Complaints: Brad :)
const char* getCmdOption(int argc, const char * argv[],const char* option) {
// check each arg
for (int i=0; i < argc; i++) {
// if the arg matches the desired option
if (strcmp(option,argv[i])==0 && i+1 < argc) {
// then return the next option
return argv[i+1];
}
}
return NULL;
}
//////////////////////////////////////////////////////////////////////////////////////////
// Function: getCmdOption()
// Description: Handy little function to tell you if a command line option flag was
// included while launching the application. Returns bool true/false
// Usage: bool wantDump = cmdOptionExists(argc, argv, "-d");
// Complaints: Brad :)
bool cmdOptionExists(int argc, const char * argv[],const char* option) {
// check each arg
for (int i=0; i < argc; i++) {
// if the arg matches the desired option
if (strcmp(option,argv[i])==0) {
// then return the next option
return true;
}
}
return false;
}
void sharedMessageHandler(QtMsgType type, const QMessageLogContext& context, const QString &message) {
fprintf(stdout, "%s", message.toLocal8Bit().constData());
}
unsigned char* pointToOctalCode(float x, float y, float z, float s) {
return pointToVoxel(x, y, z, s);
}
/// Given a universal point with location x,y,z this will return the voxel
/// voxel code corresponding to the closest voxel which encloses a cube with
/// lower corners at x,y,z, having side of length S.
/// The input values x,y,z range 0.0 <= v < 1.0
/// IMPORTANT: The voxel is returned to you a buffer which you MUST delete when you are
/// done with it.
unsigned char* pointToVoxel(float x, float y, float z, float s, unsigned char r, unsigned char g, unsigned char b ) {
// special case for size 1, the root node
if (s >= 1.0) {
unsigned char* voxelOut = new unsigned char;
*voxelOut = 0;
return voxelOut;
}
float xTest, yTest, zTest, sTest;
xTest = yTest = zTest = sTest = 0.5f;
// First determine the voxelSize that will properly encode a
// voxel of size S.
unsigned int voxelSizeInOctets = 1;
while (sTest > s) {
sTest /= 2.0;
voxelSizeInOctets++;
}
unsigned int voxelSizeInBytes = bytesRequiredForCodeLength(voxelSizeInOctets); // (voxelSizeInBits/8)+1;
unsigned int voxelBufferSize = voxelSizeInBytes + sizeof(rgbColor); // 3 for color
// allocate our resulting buffer
unsigned char* voxelOut = new unsigned char[voxelBufferSize];
// first byte of buffer is always our size in octets
voxelOut[0]=voxelSizeInOctets;
sTest = 0.5f; // reset sTest so we can do this again.
unsigned char byte = 0; // we will be adding coding bits here
int bitInByteNDX = 0; // keep track of where we are in byte as we go
int byteNDX = 1; // keep track of where we are in buffer of bytes as we go
unsigned int octetsDone = 0;
// Now we actually fill out the voxel code
while (octetsDone < voxelSizeInOctets) {
if (x >= xTest) {
//<write 1 bit>
byte = (byte << 1) | true;
xTest += sTest/2.0;
} else {
//<write 0 bit;>
byte = (byte << 1) | false;
xTest -= sTest/2.0;
}
bitInByteNDX++;
// If we've reached the last bit of the byte, then we want to copy this byte
// into our buffer. And get ready to start on a new byte
if (bitInByteNDX == 8) {
voxelOut[byteNDX]=byte;
byteNDX++;
bitInByteNDX=0;
byte=0;
}
if (y >= yTest) {
//<write 1 bit>
byte = (byte << 1) | true;
yTest += sTest/2.0;
} else {
//<write 0 bit;>
byte = (byte << 1) | false;
yTest -= sTest/2.0;
}
bitInByteNDX++;
// If we've reached the last bit of the byte, then we want to copy this byte
// into our buffer. And get ready to start on a new byte
if (bitInByteNDX == 8) {
voxelOut[byteNDX]=byte;
byteNDX++;
bitInByteNDX=0;
byte=0;
}
if (z >= zTest) {
//<write 1 bit>
byte = (byte << 1) | true;
zTest += sTest/2.0;
} else {
//<write 0 bit;>
byte = (byte << 1) | false;
zTest -= sTest/2.0;
}
bitInByteNDX++;
// If we've reached the last bit of the byte, then we want to copy this byte
// into our buffer. And get ready to start on a new byte
if (bitInByteNDX == 8) {
voxelOut[byteNDX]=byte;
byteNDX++;
bitInByteNDX=0;
byte=0;
}
octetsDone++;
sTest /= 2.0;
}
// If we've got here, and we didn't fill the last byte, we need to zero pad this
// byte before we copy it into our buffer.
if (bitInByteNDX > 0 && bitInByteNDX < 8) {
// Pad the last byte
while (bitInByteNDX < 8) {
byte = (byte << 1) | false;
bitInByteNDX++;
}
// Copy it into our output buffer
voxelOut[byteNDX]=byte;
byteNDX++;
}
// copy color data
voxelOut[byteNDX]=r;
voxelOut[byteNDX+1]=g;
voxelOut[byteNDX+2]=b;
return voxelOut;
}
void printVoxelCode(unsigned char* voxelCode) {
unsigned char octets = voxelCode[0];
unsigned int voxelSizeInBits = octets*3;
unsigned int voxelSizeInBytes = (voxelSizeInBits/8)+1;
unsigned int voxelSizeInOctets = (voxelSizeInBits/3);
unsigned int voxelBufferSize = voxelSizeInBytes+1+3; // 1 for size, 3 for color
qDebug("octets=%d",octets);
qDebug("voxelSizeInBits=%d",voxelSizeInBits);
qDebug("voxelSizeInBytes=%d",voxelSizeInBytes);
qDebug("voxelSizeInOctets=%d",voxelSizeInOctets);
qDebug("voxelBufferSize=%d",voxelBufferSize);
for(unsigned int i=0; i < voxelBufferSize; i++) {
QDebug voxelBufferDebug = qDebug();
voxelBufferDebug << "i =" << i;
outputBits(voxelCode[i], &voxelBufferDebug);
}
}
#ifdef _WIN32
void usleep(int waitTime) {
__int64 time1 = 0, time2 = 0, sysFreq = 0;
QueryPerformanceCounter((LARGE_INTEGER *)&time1);
QueryPerformanceFrequency((LARGE_INTEGER *)&sysFreq);
do {
QueryPerformanceCounter((LARGE_INTEGER *)&time2);
} while( (time2 - time1) < waitTime);
}
#endif
// Inserts the value and key into three arrays sorted by the key array, the first array is the value,
// the second array is a sorted key for the value, the third array is the index for the value in it original
// non-sorted array
// returns -1 if size exceeded
// originalIndexArray is optional
int insertIntoSortedArrays(void* value, float key, int originalIndex,
void** valueArray, float* keyArray, int* originalIndexArray,
int currentCount, int maxCount) {
if (currentCount < maxCount) {
int i = 0;
if (currentCount > 0) {
while (i < currentCount && key > keyArray[i]) {
i++;
}
// i is our desired location
// shift array elements to the right
if (i < currentCount && i+1 < maxCount) {
memmove(&valueArray[i + 1], &valueArray[i], sizeof(void*) * (currentCount - i));
memmove(&keyArray[i + 1], &keyArray[i], sizeof(float) * (currentCount - i));
if (originalIndexArray) {
memmove(&originalIndexArray[i + 1], &originalIndexArray[i], sizeof(int) * (currentCount - i));
}
}
}
// place new element at i
valueArray[i] = value;
keyArray[i] = key;
if (originalIndexArray) {
originalIndexArray[i] = originalIndex;
}
return currentCount + 1;
}
return -1; // error case
}
int removeFromSortedArrays(void* value, void** valueArray, float* keyArray, int* originalIndexArray,
int currentCount, int maxCount) {
int i = 0;
if (currentCount > 0) {
while (i < currentCount && value != valueArray[i]) {
i++;
}
if (value == valueArray[i] && i < currentCount) {
// i is the location of the item we were looking for
// shift array elements to the left
memmove(&valueArray[i], &valueArray[i + 1], sizeof(void*) * ((currentCount-1) - i));
memmove(&keyArray[i], &keyArray[i + 1], sizeof(float) * ((currentCount-1) - i));
if (originalIndexArray) {
memmove(&originalIndexArray[i], &originalIndexArray[i + 1], sizeof(int) * ((currentCount-1) - i));
}
return currentCount-1;
}
}
return -1; // error case
}
// Allows sending of fixed-point numbers: radix 1 makes 15.1 number, radix 8 makes 8.8 number, etc
int packFloatScalarToSignedTwoByteFixed(unsigned char* buffer, float scalar, int radix) {
int16_t outVal = (int16_t)(scalar * (float)(1 << radix));
memcpy(buffer, &outVal, sizeof(uint16_t));
return sizeof(uint16_t);
}
int unpackFloatScalarFromSignedTwoByteFixed(int16_t* byteFixedPointer, float* destinationPointer, int radix) {
*destinationPointer = *byteFixedPointer / (float)(1 << radix);
return sizeof(int16_t);
}
int packFloatVec3ToSignedTwoByteFixed(unsigned char* destBuffer, const glm::vec3& srcVector, int radix) {
const unsigned char* startPosition = destBuffer;
destBuffer += packFloatScalarToSignedTwoByteFixed(destBuffer, srcVector.x, radix);
destBuffer += packFloatScalarToSignedTwoByteFixed(destBuffer, srcVector.y, radix);
destBuffer += packFloatScalarToSignedTwoByteFixed(destBuffer, srcVector.z, radix);
return destBuffer - startPosition;
}
int unpackFloatVec3FromSignedTwoByteFixed(const unsigned char* sourceBuffer, glm::vec3& destination, int radix) {
const unsigned char* startPosition = sourceBuffer;
sourceBuffer += unpackFloatScalarFromSignedTwoByteFixed((int16_t*) sourceBuffer, &(destination.x), radix);
sourceBuffer += unpackFloatScalarFromSignedTwoByteFixed((int16_t*) sourceBuffer, &(destination.y), radix);
sourceBuffer += unpackFloatScalarFromSignedTwoByteFixed((int16_t*) sourceBuffer, &(destination.z), radix);
return sourceBuffer - startPosition;
}
int packFloatAngleToTwoByte(unsigned char* buffer, float angle) {
const float ANGLE_CONVERSION_RATIO = (std::numeric_limits<uint16_t>::max() / 360.0);
uint16_t angleHolder = floorf((angle + 180) * ANGLE_CONVERSION_RATIO);
memcpy(buffer, &angleHolder, sizeof(uint16_t));
return sizeof(uint16_t);
}
int unpackFloatAngleFromTwoByte(const uint16_t* byteAnglePointer, float* destinationPointer) {
*destinationPointer = (*byteAnglePointer / (float) std::numeric_limits<uint16_t>::max()) * 360.0 - 180;
return sizeof(uint16_t);
}
int packOrientationQuatToBytes(unsigned char* buffer, const glm::quat& quatInput) {
const float QUAT_PART_CONVERSION_RATIO = (std::numeric_limits<uint16_t>::max() / 2.0);
uint16_t quatParts[4];
quatParts[0] = floorf((quatInput.x + 1.0) * QUAT_PART_CONVERSION_RATIO);
quatParts[1] = floorf((quatInput.y + 1.0) * QUAT_PART_CONVERSION_RATIO);
quatParts[2] = floorf((quatInput.z + 1.0) * QUAT_PART_CONVERSION_RATIO);
quatParts[3] = floorf((quatInput.w + 1.0) * QUAT_PART_CONVERSION_RATIO);
memcpy(buffer, &quatParts, sizeof(quatParts));
return sizeof(quatParts);
}
int unpackOrientationQuatFromBytes(const unsigned char* buffer, glm::quat& quatOutput) {
uint16_t quatParts[4];
memcpy(&quatParts, buffer, sizeof(quatParts));
quatOutput.x = ((quatParts[0] / (float) std::numeric_limits<uint16_t>::max()) * 2.0) - 1.0;
quatOutput.y = ((quatParts[1] / (float) std::numeric_limits<uint16_t>::max()) * 2.0) - 1.0;
quatOutput.z = ((quatParts[2] / (float) std::numeric_limits<uint16_t>::max()) * 2.0) - 1.0;
quatOutput.w = ((quatParts[3] / (float) std::numeric_limits<uint16_t>::max()) * 2.0) - 1.0;
return sizeof(quatParts);
}
float SMALL_LIMIT = 10.0;
float LARGE_LIMIT = 1000.0;
int packFloatRatioToTwoByte(unsigned char* buffer, float ratio) {
// if the ratio is less than 10, then encode it as a positive number scaled from 0 to int16::max()
int16_t ratioHolder;
if (ratio < SMALL_LIMIT) {
const float SMALL_RATIO_CONVERSION_RATIO = (std::numeric_limits<int16_t>::max() / SMALL_LIMIT);
ratioHolder = floorf(ratio * SMALL_RATIO_CONVERSION_RATIO);
} else {
const float LARGE_RATIO_CONVERSION_RATIO = std::numeric_limits<int16_t>::min() / LARGE_LIMIT;
ratioHolder = floorf((std::min(ratio,LARGE_LIMIT) - SMALL_LIMIT) * LARGE_RATIO_CONVERSION_RATIO);
}
memcpy(buffer, &ratioHolder, sizeof(ratioHolder));
return sizeof(ratioHolder);
}
int unpackFloatRatioFromTwoByte(const unsigned char* buffer, float& ratio) {
int16_t ratioHolder;
memcpy(&ratioHolder, buffer, sizeof(ratioHolder));
// If it's positive, than the original ratio was less than SMALL_LIMIT
if (ratioHolder > 0) {
ratio = (ratioHolder / (float) std::numeric_limits<int16_t>::max()) * SMALL_LIMIT;
} else {
// If it's negative, than the original ratio was between SMALL_LIMIT and LARGE_LIMIT
ratio = ((ratioHolder / (float) std::numeric_limits<int16_t>::min()) * LARGE_LIMIT) + SMALL_LIMIT;
}
return sizeof(ratioHolder);
}
int packClipValueToTwoByte(unsigned char* buffer, float clipValue) {
// Clip values must be less than max signed 16bit integers
assert(clipValue < std::numeric_limits<int16_t>::max());
int16_t holder;
// if the clip is less than 10, then encode it as a positive number scaled from 0 to int16::max()
if (clipValue < SMALL_LIMIT) {
const float SMALL_RATIO_CONVERSION_RATIO = (std::numeric_limits<int16_t>::max() / SMALL_LIMIT);
holder = floorf(clipValue * SMALL_RATIO_CONVERSION_RATIO);
} else {
// otherwise we store it as a negative integer
holder = -1 * floorf(clipValue);
}
memcpy(buffer, &holder, sizeof(holder));
return sizeof(holder);
}
int unpackClipValueFromTwoByte(const unsigned char* buffer, float& clipValue) {
int16_t holder;
memcpy(&holder, buffer, sizeof(holder));
// If it's positive, than the original clipValue was less than SMALL_LIMIT
if (holder > 0) {
clipValue = (holder / (float) std::numeric_limits<int16_t>::max()) * SMALL_LIMIT;
} else {
// If it's negative, than the original holder can be found as the opposite sign of holder
clipValue = -1.0f * holder;
}
return sizeof(holder);
}
int packFloatToByte(unsigned char* buffer, float value, float scaleBy) {
unsigned char holder;
const float CONVERSION_RATIO = (255 / scaleBy);
holder = floorf(value * CONVERSION_RATIO);
memcpy(buffer, &holder, sizeof(holder));
return sizeof(holder);
}
int unpackFloatFromByte(const unsigned char* buffer, float& value, float scaleBy) {
unsigned char holder;
memcpy(&holder, buffer, sizeof(holder));
value = ((float)holder / (float) 255) * scaleBy;
return sizeof(holder);
}
unsigned char debug::DEADBEEF[] = { 0xDE, 0xAD, 0xBE, 0xEF };
int debug::DEADBEEF_SIZE = sizeof(DEADBEEF);
void debug::setDeadBeef(void* memoryVoid, int size) {
unsigned char* memoryAt = (unsigned char*)memoryVoid;
int deadBeefSet = 0;
int chunks = size / DEADBEEF_SIZE;
for (int i = 0; i < chunks; i++) {
memcpy(memoryAt + (i * DEADBEEF_SIZE), DEADBEEF, DEADBEEF_SIZE);
deadBeefSet += DEADBEEF_SIZE;
}
memcpy(memoryAt + deadBeefSet, DEADBEEF, size - deadBeefSet);
}
void debug::checkDeadBeef(void* memoryVoid, int size) {
unsigned char* memoryAt = (unsigned char*)memoryVoid;
assert(memcmp(memoryAt, DEADBEEF, std::min(size, DEADBEEF_SIZE)) != 0);
}
// Safe version of glm::eulerAngles; uses the factorization method described in David Eberly's
// http://www.geometrictools.com/Documentation/EulerAngles.pdf (via Clyde,
// https://github.com/threerings/clyde/blob/master/src/main/java/com/threerings/math/Quaternion.java)
glm::vec3 safeEulerAngles(const glm::quat& q) {
float sy = 2.0f * (q.y * q.w - q.x * q.z);
if (sy < 1.0f - EPSILON) {
if (sy > -1.0f + EPSILON) {
return glm::degrees(glm::vec3(
atan2f(q.y * q.z + q.x * q.w, 0.5f - (q.x * q.x + q.y * q.y)),
asinf(sy),
atan2f(q.x * q.y + q.z * q.w, 0.5f - (q.y * q.y + q.z * q.z))));
} else {
// not a unique solution; x + z = atan2(-m21, m11)
return glm::degrees(glm::vec3(
0.0f,
PIf * -0.5f,
atan2f(q.x * q.w - q.y * q.z, 0.5f - (q.x * q.x + q.z * q.z))));
}
} else {
// not a unique solution; x - z = atan2(-m21, m11)
return glm::degrees(glm::vec3(
0.0f,
PIf * 0.5f,
-atan2f(q.x * q.w - q.y * q.z, 0.5f - (q.x * q.x + q.z * q.z))));
}
}