overte-thingvellir/field.cpp

158 lines
4.1 KiB
C++

//
// field.cpp
// interface
//
// Created by Philip Rosedale on 8/23/12.
// Copyright (c) 2012 __MyCompanyName__. All rights reserved.
//
#include "field.h"
#define FIELD_SCALE 0.00050
// A vector-valued field over an array of elements arranged as a 3D lattice
struct {
glm::vec3 val;
} field[FIELD_ELEMENTS];
int field_value(float *value, float *pos)
// sets the vector value (3 floats) to field value at location pos in space.
// returns zero if the location is outside world bounds
{
int index = (int)(pos[0]/WORLD_SIZE*10.0) +
(int)(pos[1]/WORLD_SIZE*10.0)*10 +
(int)(pos[2]/WORLD_SIZE*10.0)*100;
if ((index >= 0) && (index < FIELD_ELEMENTS))
{
value[0] = field[index].val.x;
value[1] = field[index].val.y;
value[2] = field[index].val.z;
return 1;
}
else return 0;
}
void field_init()
// Initializes the field to some random values
{
int i;
for (i = 0; i < FIELD_ELEMENTS; i++)
{
field[i].val.x = (randFloat() - 0.5)*FIELD_SCALE;
field[i].val.y = (randFloat() - 0.5)*FIELD_SCALE;
field[i].val.z = (randFloat() - 0.5)*FIELD_SCALE;
}
}
void field_add(float* add, float *pos)
// At location loc, add vector add to the field values
{
int index = (int)(pos[0]/WORLD_SIZE*10.0) +
(int)(pos[1]/WORLD_SIZE*10.0)*10 +
(int)(pos[2]/WORLD_SIZE*10.0)*100;
if ((index >= 0) && (index < FIELD_ELEMENTS))
{
field[index].val.x += add[0];
field[index].val.y += add[0];
field[index].val.z += add[0];
}
}
void field_avg_neighbors(int index, glm::vec3 * result) {
// Given index to field element i, return neighbor field values
glm::vec3 neighbors(0,0,0);
int x,y,z;
x = (int)(index % 10);
y = (int)(index%100 / 10);
z = (int)(index / 100);
neighbors += field[(x+1)%10 + y*10 + z*100].val;
neighbors += field[(x-1)%10 + y*10 + z*100].val;
neighbors += field[x + ((y+1)%10)*10 + z*100].val;
neighbors += field[x + ((y-1)%10)*10 + z*100].val;
neighbors += field[x + y*10 + ((z+1)%10)*100].val;
neighbors += field[x%10 + y*10 + ((z-1)%10)*100].val;
neighbors /= 6;
result->x = neighbors.x;
result->y = neighbors.y;
result->z = neighbors.z;
}
void field_simulate(float dt) {
glm::vec3 neighbors, add;
float size;
for (int i = 0; i < FIELD_ELEMENTS; i++)
{
if (0) { //(randFloat() > 0.01) {
field_avg_neighbors(i, &neighbors);
size = powf(field[i].val.x*field[i].val.x +
field[i].val.y*field[i].val.y +
field[i].val.z*field[i].val.z, 0.5);
neighbors *= 0.0001;
// not currently in use
// glm::vec3 test = glm::normalize(glm::vec3(0,0,0));
field[i].val = glm::normalize(field[i].val);
field[i].val *= size * 0.99;
add = glm::normalize(neighbors);
add *= size * 0.01;
field[i].val += add;
}
else {
field[i].val.x += (randFloat() - 0.5)*0.01*FIELD_SCALE;
field[i].val.y += (randFloat() - 0.5)*0.01*FIELD_SCALE;
field[i].val.z += (randFloat() - 0.5)*0.01*FIELD_SCALE;
}
}
}
void field_render()
// Render the field lines
{
int i;
float fx, fy, fz;
float scale_view = 1000.0;
glDisable(GL_LIGHTING);
glColor3f(0, 1, 0);
glBegin(GL_LINES);
for (i = 0; i < FIELD_ELEMENTS; i++)
{
fx = (int)(i % 10);
fy = (int)(i%100 / 10);
fz = (int)(i / 100);
glVertex3f(fx, fy, fz);
glVertex3f(fx + field[i].val.x*scale_view,
fy + field[i].val.y*scale_view,
fz + field[i].val.z*scale_view);
}
glEnd();
glColor3f(0, 1, 0);
glPointSize(4.0);
glEnable(GL_POINT_SMOOTH);
glBegin(GL_POINTS);
for (i = 0; i < FIELD_ELEMENTS; i++)
{
fx = (int)(i % 10);
fy = (int)(i%100 / 10);
fz = (int)(i / 100);
glVertex3f(fx, fy, fz);
}
glEnd();
}