overte-thingvellir/libraries/entities-renderer/src/RenderableModelEntityItem.cpp
Anthony J. Thibault 26a5b5ed91 Fix for rendering of tablet ModelEntity in desktop mode.
The Model pendingChanges.updateItem() lambda now directly calls into StaticallyNestable.  This is late enough
in the update loop to have the most up-to-date camera transform used for rendering.
2017-01-11 18:37:57 -08:00

1222 lines
50 KiB
C++

//
// RenderableModelEntityItem.cpp
// interface/src
//
// Created by Brad Hefta-Gaub on 8/6/14.
// Copyright 2014 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include <glm/gtx/quaternion.hpp>
#include <set>
#include <QJsonDocument>
#include <QtCore/QThread>
#include <glm/gtx/transform.hpp>
#include <AbstractViewStateInterface.h>
#include <CollisionRenderMeshCache.h>
#include <Model.h>
#include <PerfStat.h>
#include <render/Scene.h>
#include <DependencyManager.h>
#include "EntityTreeRenderer.h"
#include "EntitiesRendererLogging.h"
#include "RenderableEntityItem.h"
#include "RenderableModelEntityItem.h"
#include "RenderableEntityItem.h"
static CollisionRenderMeshCache collisionMeshCache;
EntityItemPointer RenderableModelEntityItem::factory(const EntityItemID& entityID, const EntityItemProperties& properties) {
EntityItemPointer entity{ new RenderableModelEntityItem(entityID, properties.getDimensionsInitialized()) };
entity->setProperties(properties);
return entity;
}
RenderableModelEntityItem::RenderableModelEntityItem(const EntityItemID& entityItemID, bool dimensionsInitialized) :
ModelEntityItem(entityItemID),
_dimensionsInitialized(dimensionsInitialized) {
}
RenderableModelEntityItem::~RenderableModelEntityItem() {
assert(_myRenderer || !_model); // if we have a model, we need to know our renderer
if (_myRenderer && _model) {
_myRenderer->releaseModel(_model);
_model = NULL;
}
}
void RenderableModelEntityItem::setModelURL(const QString& url) {
auto& currentURL = getParsedModelURL();
ModelEntityItem::setModelURL(url);
if (currentURL != getParsedModelURL()) {
_needsModelReload = true;
}
if (_needsModelReload || !_model) {
EntityTreePointer tree = getTree();
if (tree) {
QMetaObject::invokeMethod(tree.get(), "callLoader", Qt::QueuedConnection, Q_ARG(EntityItemID, getID()));
}
}
}
void RenderableModelEntityItem::loader() {
_needsModelReload = true;
auto renderer = DependencyManager::get<EntityTreeRenderer>();
assert(renderer);
{
PerformanceTimer perfTimer("getModel");
getModel(renderer);
}
}
void RenderableModelEntityItem::setDimensions(const glm::vec3& value) {
_dimensionsInitialized = true;
ModelEntityItem::setDimensions(value);
}
bool RenderableModelEntityItem::setProperties(const EntityItemProperties& properties) {
QString oldModelURL = getModelURL();
bool somethingChanged = ModelEntityItem::setProperties(properties);
if (somethingChanged && oldModelURL != getModelURL()) {
_needsModelReload = true;
}
return somethingChanged;
}
int RenderableModelEntityItem::readEntitySubclassDataFromBuffer(const unsigned char* data, int bytesLeftToRead,
ReadBitstreamToTreeParams& args,
EntityPropertyFlags& propertyFlags, bool overwriteLocalData,
bool& somethingChanged) {
QString oldModelURL = getModelURL();
int bytesRead = ModelEntityItem::readEntitySubclassDataFromBuffer(data, bytesLeftToRead,
args, propertyFlags,
overwriteLocalData, somethingChanged);
if (oldModelURL != getModelURL()) {
_needsModelReload = true;
}
return bytesRead;
}
QVariantMap RenderableModelEntityItem::parseTexturesToMap(QString textures) {
// If textures are unset, revert to original textures
if (textures.isEmpty()) {
return _originalTextures;
}
// Legacy: a ,\n-delimited list of filename:"texturepath"
if (*textures.cbegin() != '{') {
textures = "{\"" + textures.replace(":\"", "\":\"").replace(",\n", ",\"") + "}";
}
QJsonParseError error;
QJsonDocument texturesJson = QJsonDocument::fromJson(textures.toUtf8(), &error);
// If textures are invalid, revert to original textures
if (error.error != QJsonParseError::NoError) {
qCWarning(entitiesrenderer) << "Could not evaluate textures property value:" << textures;
return _originalTextures;
}
QVariantMap texturesMap = texturesJson.toVariant().toMap();
// If textures are unset, revert to original textures
if (texturesMap.isEmpty()) {
return _originalTextures;
}
return texturesJson.toVariant().toMap();
}
void RenderableModelEntityItem::remapTextures() {
if (!_model) {
return; // nothing to do if we don't have a model
}
if (!_model->isLoaded()) {
return; // nothing to do if the model has not yet loaded
}
if (!_originalTexturesRead) {
_originalTextures = _model->getTextures();
_originalTexturesRead = true;
// Default to _originalTextures to avoid remapping immediately and lagging on load
_currentTextures = _originalTextures;
}
auto textures = getTextures();
if (textures == _lastTextures) {
return;
}
_lastTextures = textures;
auto newTextures = parseTexturesToMap(textures);
if (newTextures != _currentTextures) {
_model->setTextures(newTextures);
_currentTextures = newTextures;
}
}
void RenderableModelEntityItem::doInitialModelSimulation() {
// The machinery for updateModelBounds will give existing models the opportunity to fix their
// translation/rotation/scale/registration. The first two are straightforward, but the latter two have guards to
// make sure they don't happen after they've already been set. Here we reset those guards. This doesn't cause the
// entity values to change -- it just allows the model to match once it comes in.
_model->setScaleToFit(false, getDimensions());
_model->setSnapModelToRegistrationPoint(false, getRegistrationPoint());
// now recalculate the bounds and registration
_model->setScaleToFit(true, getDimensions());
_model->setSnapModelToRegistrationPoint(true, getRegistrationPoint());
_model->setRotation(getRotation());
_model->setTranslation(getPosition());
{
PerformanceTimer perfTimer("_model->simulate");
_model->simulate(0.0f);
}
_needsInitialSimulation = false;
}
class RenderableModelEntityItemMeta {
public:
RenderableModelEntityItemMeta(EntityItemPointer entity) : entity(entity){ }
typedef render::Payload<RenderableModelEntityItemMeta> Payload;
typedef Payload::DataPointer Pointer;
EntityItemPointer entity;
};
namespace render {
template <> const ItemKey payloadGetKey(const RenderableModelEntityItemMeta::Pointer& payload) {
return ItemKey::Builder::opaqueShape();
}
template <> const Item::Bound payloadGetBound(const RenderableModelEntityItemMeta::Pointer& payload) {
if (payload && payload->entity) {
bool success;
auto result = payload->entity->getAABox(success);
if (!success) {
return render::Item::Bound();
}
return result;
}
return render::Item::Bound();
}
template <> void payloadRender(const RenderableModelEntityItemMeta::Pointer& payload, RenderArgs* args) {
if (args) {
if (payload && payload->entity) {
PROFILE_RANGE(render_detail, "MetaModelRender");
payload->entity->render(args);
}
}
}
}
bool RenderableModelEntityItem::addToScene(EntityItemPointer self, std::shared_ptr<render::Scene> scene,
render::PendingChanges& pendingChanges) {
_myMetaItem = scene->allocateID();
auto renderData = std::make_shared<RenderableModelEntityItemMeta>(self);
auto renderPayload = std::make_shared<RenderableModelEntityItemMeta::Payload>(renderData);
pendingChanges.resetItem(_myMetaItem, renderPayload);
if (_model) {
render::Item::Status::Getters statusGetters;
makeEntityItemStatusGetters(getThisPointer(), statusGetters);
// note: we don't mind if the model fails to add, we'll retry (in render()) until it succeeds
_model->addToScene(scene, pendingChanges, statusGetters);
}
// we've successfully added _myMetaItem so we always return true
return true;
}
void RenderableModelEntityItem::removeFromScene(EntityItemPointer self, std::shared_ptr<render::Scene> scene,
render::PendingChanges& pendingChanges) {
pendingChanges.removeItem(_myMetaItem);
render::Item::clearID(_myMetaItem);
if (_model) {
_model->removeFromScene(scene, pendingChanges);
}
}
void RenderableModelEntityItem::resizeJointArrays(int newSize) {
if (newSize < 0) {
if (_model && _model->isActive() && _model->isLoaded() && !_needsInitialSimulation) {
newSize = _model->getJointStateCount();
}
}
ModelEntityItem::resizeJointArrays(newSize);
}
bool RenderableModelEntityItem::getAnimationFrame() {
bool newFrame = false;
if (!_model || !_model->isActive() || !_model->isLoaded() || _needsInitialSimulation) {
return false;
}
if (!hasRenderAnimation() || !_jointMappingCompleted) {
return false;
}
if (_animation && _animation->isLoaded()) {
const QVector<FBXAnimationFrame>& frames = _animation->getFramesReference(); // NOTE: getFrames() is too heavy
auto& fbxJoints = _animation->getGeometry().joints;
int frameCount = frames.size();
if (frameCount > 0) {
int animationCurrentFrame = (int)(glm::floor(getAnimationCurrentFrame())) % frameCount;
if (animationCurrentFrame < 0 || animationCurrentFrame > frameCount) {
animationCurrentFrame = 0;
}
if (animationCurrentFrame != _lastKnownCurrentFrame) {
_lastKnownCurrentFrame = animationCurrentFrame;
newFrame = true;
resizeJointArrays();
if (_jointMapping.size() != _model->getJointStateCount()) {
qCDebug(entities) << "RenderableModelEntityItem::getAnimationFrame -- joint count mismatch"
<< _jointMapping.size() << _model->getJointStateCount();
assert(false);
return false;
}
const QVector<glm::quat>& rotations = frames[animationCurrentFrame].rotations;
const QVector<glm::vec3>& translations = frames[animationCurrentFrame].translations;
for (int j = 0; j < _jointMapping.size(); j++) {
int index = _jointMapping[j];
if (index >= 0) {
glm::mat4 translationMat;
if (index < translations.size()) {
translationMat = glm::translate(translations[index]);
}
glm::mat4 rotationMat;
if (index < rotations.size()) {
rotationMat = glm::mat4_cast(fbxJoints[index].preRotation * rotations[index] * fbxJoints[index].postRotation);
} else {
rotationMat = glm::mat4_cast(fbxJoints[index].preRotation * fbxJoints[index].postRotation);
}
glm::mat4 finalMat = (translationMat * fbxJoints[index].preTransform *
rotationMat * fbxJoints[index].postTransform);
_localJointTranslations[j] = extractTranslation(finalMat);
_localJointTranslationsSet[j] = true;
_localJointTranslationsDirty[j] = true;
_localJointRotations[j] = glmExtractRotation(finalMat);
_localJointRotationsSet[j] = true;
_localJointRotationsDirty[j] = true;
}
}
}
}
}
return newFrame;
}
void RenderableModelEntityItem::updateModelBounds() {
if (!hasModel() || !_model) {
return;
}
if (!_dimensionsInitialized || !_model->isActive()) {
return;
}
bool movingOrAnimating = isMovingRelativeToParent() || isAnimatingSomething();
glm::vec3 dimensions = getDimensions();
bool success;
auto transform = getTransform(success);
if (movingOrAnimating ||
_needsInitialSimulation ||
_needsJointSimulation ||
_model->getTranslation() != transform.getTranslation() ||
_model->getScaleToFitDimensions() != dimensions ||
_model->getRotation() != transform.getRotation() ||
_model->getRegistrationPoint() != getRegistrationPoint()) {
doInitialModelSimulation();
_needsJointSimulation = false;
}
}
// NOTE: this only renders the "meta" portion of the Model, namely it renders debugging items, and it handles
// the per frame simulation/update that might be required if the models properties changed.
void RenderableModelEntityItem::render(RenderArgs* args) {
PerformanceTimer perfTimer("RMEIrender");
assert(getType() == EntityTypes::Model);
// When the individual mesh parts of a model finish fading, they will mark their Model as needing updating
// we will watch for that and ask the model to update it's render items
if (_model && _model->getRenderItemsNeedUpdate()) {
_model->updateRenderItems();
}
if (hasModel()) {
// Prepare the current frame
{
if (!_model || _needsModelReload) {
// TODO: this getModel() appears to be about 3% of model render time. We should optimize
PerformanceTimer perfTimer("getModel");
auto renderer = qSharedPointerCast<EntityTreeRenderer>(args->_renderer);
getModel(renderer);
// Remap textures immediately after loading to avoid flicker
remapTextures();
}
if (_model) {
if (hasRenderAnimation()) {
if (!jointsMapped()) {
QStringList modelJointNames = _model->getJointNames();
mapJoints(modelJointNames);
}
}
_jointDataLock.withWriteLock([&] {
getAnimationFrame();
// relay any inbound joint changes from scripts/animation/network to the model/rig
for (int index = 0; index < _localJointRotations.size(); index++) {
if (_localJointRotationsDirty[index]) {
glm::quat rotation = _localJointRotations[index];
_model->setJointRotation(index, true, rotation, 1.0f);
_localJointRotationsDirty[index] = false;
}
}
for (int index = 0; index < _localJointTranslations.size(); index++) {
if (_localJointTranslationsDirty[index]) {
glm::vec3 translation = _localJointTranslations[index];
_model->setJointTranslation(index, true, translation, 1.0f);
_localJointTranslationsDirty[index] = false;
}
}
});
updateModelBounds();
}
}
// Enqueue updates for the next frame
if (_model) {
render::ScenePointer scene = AbstractViewStateInterface::instance()->getMain3DScene();
// FIXME: this seems like it could be optimized if we tracked our last known visible state in
// the renderable item. As it stands now the model checks it's visible/invisible state
// so most of the time we don't do anything in this function.
_model->setVisibleInScene(getVisible(), scene);
// Remap textures for the next frame to avoid flicker
remapTextures();
// update whether the model should be showing collision mesh (this may flag for fixupInScene)
bool showingCollisionGeometry = (bool)(args->_debugFlags & (int)RenderArgs::RENDER_DEBUG_HULLS);
if (showingCollisionGeometry != _showCollisionGeometry) {
ShapeType type = getShapeType();
_showCollisionGeometry = showingCollisionGeometry;
if (_showCollisionGeometry && type != SHAPE_TYPE_STATIC_MESH && type != SHAPE_TYPE_NONE) {
// NOTE: it is OK if _collisionMeshKey is nullptr
model::MeshPointer mesh = collisionMeshCache.getMesh(_collisionMeshKey);
// NOTE: the model will render the collisionGeometry if it has one
_model->setCollisionMesh(mesh);
} else {
// release mesh
if (_collisionMeshKey) {
collisionMeshCache.releaseMesh(_collisionMeshKey);
}
// clear model's collision geometry
model::MeshPointer mesh = nullptr;
_model->setCollisionMesh(mesh);
}
}
if (_model->needsFixupInScene()) {
render::PendingChanges pendingChanges;
_model->removeFromScene(scene, pendingChanges);
render::Item::Status::Getters statusGetters;
makeEntityItemStatusGetters(getThisPointer(), statusGetters);
_model->addToScene(scene, pendingChanges, statusGetters);
scene->enqueuePendingChanges(pendingChanges);
}
auto& currentURL = getParsedModelURL();
if (currentURL != _model->getURL()) {
// Defer setting the url to the render thread
getModel(_myRenderer);
}
}
} else {
static glm::vec4 greenColor(0.0f, 1.0f, 0.0f, 1.0f);
gpu::Batch& batch = *args->_batch;
bool success;
auto shapeTransform = getTransformToCenter(success);
if (success) {
batch.setModelTransform(shapeTransform); // we want to include the scale as well
DependencyManager::get<GeometryCache>()->renderWireCubeInstance(batch, greenColor);
}
}
}
ModelPointer RenderableModelEntityItem::getModel(QSharedPointer<EntityTreeRenderer> renderer) {
if (!renderer) {
return nullptr;
}
// make sure our renderer is setup
if (!_myRenderer) {
_myRenderer = renderer;
}
assert(_myRenderer == renderer); // you should only ever render on one renderer
if (!_myRenderer || QThread::currentThread() != _myRenderer->thread()) {
return _model;
}
_needsModelReload = false; // this is the reload
// If we have a URL, then we will want to end up returning a model...
if (!getModelURL().isEmpty()) {
// If we don't have a model, allocate one *immediately*
if (!_model) {
_model = _myRenderer->allocateModel(getModelURL(), renderer->getEntityLoadingPriority(*this));
_model->setSpatiallyNestableOverride(shared_from_this());
_needsInitialSimulation = true;
// If we need to change URLs, update it *after rendering* (to avoid access violations)
} else if (QUrl(getModelURL()) != _model->getURL()) {
QMetaObject::invokeMethod(_myRenderer.data(), "updateModel", Qt::QueuedConnection,
Q_ARG(ModelPointer, _model),
Q_ARG(const QString&, getModelURL()));
_needsInitialSimulation = true;
}
// Else we can just return the _model
// If we have no URL, then we can delete any model we do have...
} else if (_model) {
// remove from scene
render::ScenePointer scene = AbstractViewStateInterface::instance()->getMain3DScene();
render::PendingChanges pendingChanges;
_model->removeFromScene(scene, pendingChanges);
scene->enqueuePendingChanges(pendingChanges);
// release interest
_myRenderer->releaseModel(_model);
_model = nullptr;
_needsInitialSimulation = true;
}
return _model;
}
bool RenderableModelEntityItem::needsToCallUpdate() const {
return !_dimensionsInitialized || _needsInitialSimulation || ModelEntityItem::needsToCallUpdate();
}
void RenderableModelEntityItem::update(const quint64& now) {
if (!_dimensionsInitialized) {
if (_model) {
if (_model->isActive() && _model->isLoaded()) {
EntityItemProperties properties;
properties.setLastEdited(usecTimestampNow()); // we must set the edit time since we're editing it
auto extents = _model->getMeshExtents();
properties.setDimensions(extents.maximum - extents.minimum);
qCDebug(entitiesrenderer) << "Autoresizing" << (!getName().isEmpty() ? getName() : getModelURL())
<< "from mesh extents";
QMetaObject::invokeMethod(DependencyManager::get<EntityScriptingInterface>().data(), "editEntity",
Qt::QueuedConnection,
Q_ARG(QUuid, getEntityItemID()),
Q_ARG(EntityItemProperties, properties));
}
} else if (_needsModelReload) {
EntityTreePointer tree = getTree();
if (tree) {
QMetaObject::invokeMethod(tree.get(), "callLoader", Qt::QueuedConnection, Q_ARG(EntityItemID, getID()));
}
}
}
// make a copy of the animation properites
_renderAnimationProperties = _animationProperties;
ModelEntityItem::update(now);
}
EntityItemProperties RenderableModelEntityItem::getProperties(EntityPropertyFlags desiredProperties) const {
EntityItemProperties properties = ModelEntityItem::getProperties(desiredProperties); // get the properties from our base class
if (_originalTexturesRead) {
properties.setTextureNames(_originalTextures);
}
if (_model) {
properties.setRenderInfoVertexCount(_model->getRenderInfoVertexCount());
properties.setRenderInfoTextureCount(_model->getRenderInfoTextureCount());
properties.setRenderInfoTextureSize(_model->getRenderInfoTextureSize());
properties.setRenderInfoDrawCalls(_model->getRenderInfoDrawCalls());
properties.setRenderInfoHasTransparent(_model->getRenderInfoHasTransparent());
}
return properties;
}
bool RenderableModelEntityItem::findDetailedRayIntersection(const glm::vec3& origin, const glm::vec3& direction,
bool& keepSearching, OctreeElementPointer& element, float& distance, BoxFace& face,
glm::vec3& surfaceNormal, void** intersectedObject, bool precisionPicking) const {
if (!_model) {
return true;
}
// qCDebug(entitiesrenderer) << "RenderableModelEntityItem::findDetailedRayIntersection() precisionPicking:"
// << precisionPicking;
QString extraInfo;
return _model->findRayIntersectionAgainstSubMeshes(origin, direction, distance,
face, surfaceNormal, extraInfo, precisionPicking);
}
void RenderableModelEntityItem::setShapeType(ShapeType type) {
ModelEntityItem::setShapeType(type);
if (_shapeType == SHAPE_TYPE_COMPOUND) {
if (!_compoundShapeResource && !_compoundShapeURL.isEmpty()) {
_compoundShapeResource = DependencyManager::get<ModelCache>()->getGeometryResource(getCompoundShapeURL());
}
} else if (_compoundShapeResource && !_compoundShapeURL.isEmpty()) {
// the compoundURL has been set but the shapeType does not agree
_compoundShapeResource.reset();
}
}
void RenderableModelEntityItem::setCompoundShapeURL(const QString& url) {
auto currentCompoundShapeURL = getCompoundShapeURL();
ModelEntityItem::setCompoundShapeURL(url);
if (getCompoundShapeURL() != currentCompoundShapeURL || !_model) {
EntityTreePointer tree = getTree();
if (tree) {
QMetaObject::invokeMethod(tree.get(), "callLoader", Qt::QueuedConnection, Q_ARG(EntityItemID, getID()));
}
if (_shapeType == SHAPE_TYPE_COMPOUND) {
_compoundShapeResource = DependencyManager::get<ModelCache>()->getGeometryResource(url);
}
}
}
bool RenderableModelEntityItem::isReadyToComputeShape() {
ShapeType type = getShapeType();
if (type == SHAPE_TYPE_COMPOUND) {
if (!_model || _compoundShapeURL.isEmpty()) {
EntityTreePointer tree = getTree();
if (tree) {
QMetaObject::invokeMethod(tree.get(), "callLoader", Qt::QueuedConnection, Q_ARG(EntityItemID, getID()));
}
return false;
}
if (_model->getURL().isEmpty()) {
// we need a render geometry with a scale to proceed, so give up.
return false;
}
if (_model->isLoaded()) {
if (_compoundShapeResource && _compoundShapeResource->isLoaded()) {
// we have both URLs AND both geometries AND they are both fully loaded.
if (_needsInitialSimulation) {
// the _model's offset will be wrong until _needsInitialSimulation is false
PerformanceTimer perfTimer("_model->simulate");
doInitialModelSimulation();
}
return true;
} else if (!_compoundShapeURL.isEmpty()) {
_compoundShapeResource = DependencyManager::get<ModelCache>()->getGeometryResource(_compoundShapeURL);
}
}
// the model is still being downloaded.
return false;
} else if (type >= SHAPE_TYPE_SIMPLE_HULL && type <= SHAPE_TYPE_STATIC_MESH) {
return (_model && _model->isLoaded());
}
return true;
}
void RenderableModelEntityItem::computeShapeInfo(ShapeInfo& shapeInfo) {
const uint32_t TRIANGLE_STRIDE = 3;
const uint32_t QUAD_STRIDE = 4;
ShapeType type = getShapeType();
glm::vec3 dimensions = getDimensions();
if (type == SHAPE_TYPE_COMPOUND) {
updateModelBounds();
// should never fall in here when collision model not fully loaded
// hence we assert that all geometries exist and are loaded
assert(_model && _model->isLoaded() && _compoundShapeResource && _compoundShapeResource->isLoaded());
const FBXGeometry& collisionGeometry = _compoundShapeResource->getFBXGeometry();
ShapeInfo::PointCollection& pointCollection = shapeInfo.getPointCollection();
pointCollection.clear();
uint32_t i = 0;
// the way OBJ files get read, each section under a "g" line is its own meshPart. We only expect
// to find one actual "mesh" (with one or more meshParts in it), but we loop over the meshes, just in case.
foreach (const FBXMesh& mesh, collisionGeometry.meshes) {
// each meshPart is a convex hull
foreach (const FBXMeshPart &meshPart, mesh.parts) {
pointCollection.push_back(QVector<glm::vec3>());
ShapeInfo::PointList& pointsInPart = pointCollection[i];
// run through all the triangles and (uniquely) add each point to the hull
uint32_t numIndices = (uint32_t)meshPart.triangleIndices.size();
// TODO: assert rather than workaround after we start sanitizing FBXMesh higher up
//assert(numIndices % TRIANGLE_STRIDE == 0);
numIndices -= numIndices % TRIANGLE_STRIDE; // WORKAROUND lack of sanity checking in FBXReader
for (uint32_t j = 0; j < numIndices; j += TRIANGLE_STRIDE) {
glm::vec3 p0 = mesh.vertices[meshPart.triangleIndices[j]];
glm::vec3 p1 = mesh.vertices[meshPart.triangleIndices[j + 1]];
glm::vec3 p2 = mesh.vertices[meshPart.triangleIndices[j + 2]];
if (!pointsInPart.contains(p0)) {
pointsInPart << p0;
}
if (!pointsInPart.contains(p1)) {
pointsInPart << p1;
}
if (!pointsInPart.contains(p2)) {
pointsInPart << p2;
}
}
// run through all the quads and (uniquely) add each point to the hull
numIndices = (uint32_t)meshPart.quadIndices.size();
// TODO: assert rather than workaround after we start sanitizing FBXMesh higher up
//assert(numIndices % QUAD_STRIDE == 0);
numIndices -= numIndices % QUAD_STRIDE; // WORKAROUND lack of sanity checking in FBXReader
for (uint32_t j = 0; j < numIndices; j += QUAD_STRIDE) {
glm::vec3 p0 = mesh.vertices[meshPart.quadIndices[j]];
glm::vec3 p1 = mesh.vertices[meshPart.quadIndices[j + 1]];
glm::vec3 p2 = mesh.vertices[meshPart.quadIndices[j + 2]];
glm::vec3 p3 = mesh.vertices[meshPart.quadIndices[j + 3]];
if (!pointsInPart.contains(p0)) {
pointsInPart << p0;
}
if (!pointsInPart.contains(p1)) {
pointsInPart << p1;
}
if (!pointsInPart.contains(p2)) {
pointsInPart << p2;
}
if (!pointsInPart.contains(p3)) {
pointsInPart << p3;
}
}
if (pointsInPart.size() == 0) {
qCDebug(entitiesrenderer) << "Warning -- meshPart has no faces";
pointCollection.pop_back();
continue;
}
++i;
}
}
// We expect that the collision model will have the same units and will be displaced
// from its origin in the same way the visual model is. The visual model has
// been centered and probably scaled. We take the scaling and offset which were applied
// to the visual model and apply them to the collision model (without regard for the
// collision model's extents).
glm::vec3 scaleToFit = dimensions / _model->getFBXGeometry().getUnscaledMeshExtents().size();
// multiply each point by scale before handing the point-set off to the physics engine.
// also determine the extents of the collision model.
glm::vec3 registrationOffset = dimensions * (ENTITY_ITEM_DEFAULT_REGISTRATION_POINT - getRegistrationPoint());
for (int32_t i = 0; i < pointCollection.size(); i++) {
for (int32_t j = 0; j < pointCollection[i].size(); j++) {
// back compensate for registration so we can apply that offset to the shapeInfo later
pointCollection[i][j] = scaleToFit * (pointCollection[i][j] + _model->getOffset()) - registrationOffset;
}
}
shapeInfo.setParams(type, dimensions, _compoundShapeURL);
} else if (type >= SHAPE_TYPE_SIMPLE_HULL && type <= SHAPE_TYPE_STATIC_MESH) {
// should never fall in here when model not fully loaded
assert(_model && _model->isLoaded());
updateModelBounds();
_model->updateGeometry();
// compute meshPart local transforms
QVector<glm::mat4> localTransforms;
const FBXGeometry& fbxGeometry = _model->getFBXGeometry();
int numFbxMeshes = fbxGeometry.meshes.size();
int totalNumVertices = 0;
glm::mat4 invRegistraionOffset = glm::translate(dimensions * (getRegistrationPoint() - ENTITY_ITEM_DEFAULT_REGISTRATION_POINT));
for (int i = 0; i < numFbxMeshes; i++) {
const FBXMesh& mesh = fbxGeometry.meshes.at(i);
if (mesh.clusters.size() > 0) {
const FBXCluster& cluster = mesh.clusters.at(0);
auto jointMatrix = _model->getRig()->getJointTransform(cluster.jointIndex);
// we backtranslate by the registration offset so we can apply that offset to the shapeInfo later
localTransforms.push_back(invRegistraionOffset * jointMatrix * cluster.inverseBindMatrix);
} else {
glm::mat4 identity;
localTransforms.push_back(invRegistraionOffset);
}
totalNumVertices += mesh.vertices.size();
}
const int32_t MAX_VERTICES_PER_STATIC_MESH = 1e6;
if (totalNumVertices > MAX_VERTICES_PER_STATIC_MESH) {
qWarning() << "model" << getModelURL() << "has too many vertices" << totalNumVertices << "and will collide as a box.";
shapeInfo.setParams(SHAPE_TYPE_BOX, 0.5f * dimensions);
return;
}
auto& meshes = _model->getGeometry()->getMeshes();
int32_t numMeshes = (int32_t)(meshes.size());
ShapeInfo::PointCollection& pointCollection = shapeInfo.getPointCollection();
pointCollection.clear();
if (type == SHAPE_TYPE_SIMPLE_COMPOUND) {
pointCollection.resize(numMeshes);
} else {
pointCollection.resize(1);
}
ShapeInfo::TriangleIndices& triangleIndices = shapeInfo.getTriangleIndices();
triangleIndices.clear();
Extents extents;
int32_t meshCount = 0;
int32_t pointListIndex = 0;
for (auto& mesh : meshes) {
if (!mesh) {
continue;
}
const gpu::BufferView& vertices = mesh->getVertexBuffer();
const gpu::BufferView& indices = mesh->getIndexBuffer();
const gpu::BufferView& parts = mesh->getPartBuffer();
ShapeInfo::PointList& points = pointCollection[pointListIndex];
// reserve room
int32_t sizeToReserve = (int32_t)(vertices.getNumElements());
if (type == SHAPE_TYPE_SIMPLE_COMPOUND) {
// a list of points for each mesh
pointListIndex++;
} else {
// only one list of points
sizeToReserve += (int32_t)((gpu::Size)points.size());
}
points.reserve(sizeToReserve);
// copy points
uint32_t meshIndexOffset = (uint32_t)points.size();
const glm::mat4& localTransform = localTransforms[meshCount];
gpu::BufferView::Iterator<const glm::vec3> vertexItr = vertices.cbegin<const glm::vec3>();
while (vertexItr != vertices.cend<const glm::vec3>()) {
glm::vec3 point = extractTranslation(localTransform * glm::translate(*vertexItr));
points.push_back(point);
extents.addPoint(point);
++vertexItr;
}
if (type == SHAPE_TYPE_STATIC_MESH) {
// copy into triangleIndices
triangleIndices.reserve((int32_t)((gpu::Size)(triangleIndices.size()) + indices.getNumElements()));
gpu::BufferView::Iterator<const model::Mesh::Part> partItr = parts.cbegin<const model::Mesh::Part>();
while (partItr != parts.cend<const model::Mesh::Part>()) {
auto numIndices = partItr->_numIndices;
if (partItr->_topology == model::Mesh::TRIANGLES) {
// TODO: assert rather than workaround after we start sanitizing FBXMesh higher up
//assert(numIndices % TRIANGLE_STRIDE == 0);
numIndices -= numIndices % TRIANGLE_STRIDE; // WORKAROUND lack of sanity checking in FBXReader
auto indexItr = indices.cbegin<const gpu::BufferView::Index>() + partItr->_startIndex;
auto indexEnd = indexItr + numIndices;
while (indexItr != indexEnd) {
triangleIndices.push_back(*indexItr + meshIndexOffset);
++indexItr;
}
} else if (partItr->_topology == model::Mesh::TRIANGLE_STRIP) {
// TODO: resurrect assert after we start sanitizing FBXMesh higher up
//assert(numIndices > 2);
uint32_t approxNumIndices = TRIANGLE_STRIDE * numIndices;
if (approxNumIndices > (uint32_t)(triangleIndices.capacity() - triangleIndices.size())) {
// we underestimated the final size of triangleIndices so we pre-emptively expand it
triangleIndices.reserve(triangleIndices.size() + approxNumIndices);
}
auto indexItr = indices.cbegin<const gpu::BufferView::Index>() + partItr->_startIndex;
auto indexEnd = indexItr + (numIndices - 2);
// first triangle uses the first three indices
triangleIndices.push_back(*(indexItr++) + meshIndexOffset);
triangleIndices.push_back(*(indexItr++) + meshIndexOffset);
triangleIndices.push_back(*(indexItr++) + meshIndexOffset);
// the rest use previous and next index
uint32_t triangleCount = 1;
while (indexItr != indexEnd) {
if ((*indexItr) != model::Mesh::PRIMITIVE_RESTART_INDEX) {
if (triangleCount % 2 == 0) {
// even triangles use first two indices in order
triangleIndices.push_back(*(indexItr - 2) + meshIndexOffset);
triangleIndices.push_back(*(indexItr - 1) + meshIndexOffset);
} else {
// odd triangles swap order of first two indices
triangleIndices.push_back(*(indexItr - 1) + meshIndexOffset);
triangleIndices.push_back(*(indexItr - 2) + meshIndexOffset);
}
triangleIndices.push_back(*indexItr + meshIndexOffset);
++triangleCount;
}
++indexItr;
}
}
++partItr;
}
} else if (type == SHAPE_TYPE_SIMPLE_COMPOUND) {
// for each mesh copy unique part indices, separated by special bogus (flag) index values
gpu::BufferView::Iterator<const model::Mesh::Part> partItr = parts.cbegin<const model::Mesh::Part>();
while (partItr != parts.cend<const model::Mesh::Part>()) {
// collect unique list of indices for this part
std::set<int32_t> uniqueIndices;
auto numIndices = partItr->_numIndices;
if (partItr->_topology == model::Mesh::TRIANGLES) {
// TODO: assert rather than workaround after we start sanitizing FBXMesh higher up
//assert(numIndices% TRIANGLE_STRIDE == 0);
numIndices -= numIndices % TRIANGLE_STRIDE; // WORKAROUND lack of sanity checking in FBXReader
auto indexItr = indices.cbegin<const gpu::BufferView::Index>() + partItr->_startIndex;
auto indexEnd = indexItr + numIndices;
while (indexItr != indexEnd) {
uniqueIndices.insert(*indexItr);
++indexItr;
}
} else if (partItr->_topology == model::Mesh::TRIANGLE_STRIP) {
// TODO: resurrect assert after we start sanitizing FBXMesh higher up
//assert(numIndices > TRIANGLE_STRIDE - 1);
auto indexItr = indices.cbegin<const gpu::BufferView::Index>() + partItr->_startIndex;
auto indexEnd = indexItr + (numIndices - 2);
// first triangle uses the first three indices
uniqueIndices.insert(*(indexItr++));
uniqueIndices.insert(*(indexItr++));
uniqueIndices.insert(*(indexItr++));
// the rest use previous and next index
uint32_t triangleCount = 1;
while (indexItr != indexEnd) {
if ((*indexItr) != model::Mesh::PRIMITIVE_RESTART_INDEX) {
if (triangleCount % 2 == 0) {
// EVEN triangles use first two indices in order
uniqueIndices.insert(*(indexItr - 2));
uniqueIndices.insert(*(indexItr - 1));
} else {
// ODD triangles swap order of first two indices
uniqueIndices.insert(*(indexItr - 1));
uniqueIndices.insert(*(indexItr - 2));
}
uniqueIndices.insert(*indexItr);
++triangleCount;
}
++indexItr;
}
}
// store uniqueIndices in triangleIndices
triangleIndices.reserve(triangleIndices.size() + (int32_t)uniqueIndices.size());
for (auto index : uniqueIndices) {
triangleIndices.push_back(index);
}
// flag end of part
triangleIndices.push_back(END_OF_MESH_PART);
++partItr;
}
// flag end of mesh
triangleIndices.push_back(END_OF_MESH);
}
++meshCount;
}
// scale and shift
glm::vec3 extentsSize = extents.size();
glm::vec3 scaleToFit = dimensions / extentsSize;
for (int32_t i = 0; i < 3; ++i) {
if (extentsSize[i] < 1.0e-6f) {
scaleToFit[i] = 1.0f;
}
}
for (auto points : pointCollection) {
for (int32_t i = 0; i < points.size(); ++i) {
points[i] = (points[i] * scaleToFit);
}
}
shapeInfo.setParams(type, 0.5f * dimensions, _modelURL);
} else {
ModelEntityItem::computeShapeInfo(shapeInfo);
shapeInfo.setParams(type, 0.5f * dimensions);
}
// finally apply the registration offset to the shapeInfo
adjustShapeInfoByRegistration(shapeInfo);
}
void RenderableModelEntityItem::setCollisionShape(const btCollisionShape* shape) {
const void* key = static_cast<const void*>(shape);
if (_collisionMeshKey != key) {
if (_collisionMeshKey) {
collisionMeshCache.releaseMesh(_collisionMeshKey);
}
_collisionMeshKey = key;
// toggle _showCollisionGeometry forces re-evaluation later
_showCollisionGeometry = !_showCollisionGeometry;
}
}
bool RenderableModelEntityItem::contains(const glm::vec3& point) const {
if (EntityItem::contains(point) && _model && _compoundShapeResource && _compoundShapeResource->isLoaded()) {
return _compoundShapeResource->getFBXGeometry().convexHullContains(worldToEntity(point));
}
return false;
}
bool RenderableModelEntityItem::shouldBePhysical() const {
// If we have a model, make sure it hasn't failed to download.
// If it has, we'll report back that we shouldn't be physical so that physics aren't held waiting for us to be ready.
if (_model && getShapeType() == SHAPE_TYPE_COMPOUND && _model->didCollisionGeometryRequestFail()) {
return false;
} else if (_model && getShapeType() != SHAPE_TYPE_NONE && _model->didVisualGeometryRequestFail()) {
return false;
} else {
return ModelEntityItem::shouldBePhysical();
}
}
glm::quat RenderableModelEntityItem::getAbsoluteJointRotationInObjectFrame(int index) const {
if (_model) {
glm::quat result;
if (_model->getAbsoluteJointRotationInRigFrame(index, result)) {
return result;
}
}
return glm::quat();
}
glm::vec3 RenderableModelEntityItem::getAbsoluteJointTranslationInObjectFrame(int index) const {
if (_model) {
glm::vec3 result;
if (_model->getAbsoluteJointTranslationInRigFrame(index, result)) {
return result;
}
}
return glm::vec3(0.0f);
}
bool RenderableModelEntityItem::setAbsoluteJointRotationInObjectFrame(int index, const glm::quat& rotation) {
if (!_model) {
return false;
}
RigPointer rig = _model->getRig();
if (!rig) {
return false;
}
int jointParentIndex = rig->getJointParentIndex(index);
if (jointParentIndex == -1) {
return setLocalJointRotation(index, rotation);
}
bool success;
AnimPose jointParentPose;
success = rig->getAbsoluteJointPoseInRigFrame(jointParentIndex, jointParentPose);
if (!success) {
return false;
}
AnimPose jointParentInversePose = jointParentPose.inverse();
AnimPose jointAbsolutePose; // in rig frame
success = rig->getAbsoluteJointPoseInRigFrame(index, jointAbsolutePose);
if (!success) {
return false;
}
jointAbsolutePose.rot() = rotation;
AnimPose jointRelativePose = jointParentInversePose * jointAbsolutePose;
return setLocalJointRotation(index, jointRelativePose.rot());
}
bool RenderableModelEntityItem::setAbsoluteJointTranslationInObjectFrame(int index, const glm::vec3& translation) {
if (!_model) {
return false;
}
RigPointer rig = _model->getRig();
if (!rig) {
return false;
}
int jointParentIndex = rig->getJointParentIndex(index);
if (jointParentIndex == -1) {
return setLocalJointTranslation(index, translation);
}
bool success;
AnimPose jointParentPose;
success = rig->getAbsoluteJointPoseInRigFrame(jointParentIndex, jointParentPose);
if (!success) {
return false;
}
AnimPose jointParentInversePose = jointParentPose.inverse();
AnimPose jointAbsolutePose; // in rig frame
success = rig->getAbsoluteJointPoseInRigFrame(index, jointAbsolutePose);
if (!success) {
return false;
}
jointAbsolutePose.trans() = translation;
AnimPose jointRelativePose = jointParentInversePose * jointAbsolutePose;
return setLocalJointTranslation(index, jointRelativePose.trans());
}
glm::quat RenderableModelEntityItem::getLocalJointRotation(int index) const {
if (_model) {
glm::quat result;
if (_model->getJointRotation(index, result)) {
return result;
}
}
return glm::quat();
}
glm::vec3 RenderableModelEntityItem::getLocalJointTranslation(int index) const {
if (_model) {
glm::vec3 result;
if (_model->getJointTranslation(index, result)) {
return result;
}
}
return glm::vec3();
}
bool RenderableModelEntityItem::setLocalJointRotation(int index, const glm::quat& rotation) {
bool result = false;
_jointDataLock.withWriteLock([&] {
_jointRotationsExplicitlySet = true;
resizeJointArrays();
if (index >= 0 && index < _localJointRotations.size() &&
_localJointRotations[index] != rotation) {
_localJointRotations[index] = rotation;
_localJointRotationsSet[index] = true;
_localJointRotationsDirty[index] = true;
result = true;
_needsJointSimulation = true;
}
});
return result;
}
bool RenderableModelEntityItem::setLocalJointTranslation(int index, const glm::vec3& translation) {
bool result = false;
_jointDataLock.withWriteLock([&] {
_jointTranslationsExplicitlySet = true;
resizeJointArrays();
if (index >= 0 && index < _localJointTranslations.size() &&
_localJointTranslations[index] != translation) {
_localJointTranslations[index] = translation;
_localJointTranslationsSet[index] = true;
_localJointTranslationsDirty[index] = true;
result = true;
_needsJointSimulation = true;
}
});
return result;
}
void RenderableModelEntityItem::setJointRotations(const QVector<glm::quat>& rotations) {
ModelEntityItem::setJointRotations(rotations);
_needsJointSimulation = true;
}
void RenderableModelEntityItem::setJointRotationsSet(const QVector<bool>& rotationsSet) {
ModelEntityItem::setJointRotationsSet(rotationsSet);
_needsJointSimulation = true;
}
void RenderableModelEntityItem::setJointTranslations(const QVector<glm::vec3>& translations) {
ModelEntityItem::setJointTranslations(translations);
_needsJointSimulation = true;
}
void RenderableModelEntityItem::setJointTranslationsSet(const QVector<bool>& translationsSet) {
ModelEntityItem::setJointTranslationsSet(translationsSet);
_needsJointSimulation = true;
}
void RenderableModelEntityItem::locationChanged(bool tellPhysics) {
PerformanceTimer pertTimer("locationChanged");
EntityItem::locationChanged(tellPhysics);
if (_model && _model->isActive()) {
_model->updateRenderItems();
void* key = (void*)this;
std::weak_ptr<RenderableModelEntityItem> weakSelf =
std::static_pointer_cast<RenderableModelEntityItem>(getThisPointer());
AbstractViewStateInterface::instance()->pushPostUpdateLambda(key, [weakSelf]() {
auto self = weakSelf.lock();
if (!self) {
return;
}
render::ItemID myMetaItem = self->getMetaRenderItem();
if (myMetaItem == render::Item::INVALID_ITEM_ID) {
return;
}
render::ScenePointer scene = AbstractViewStateInterface::instance()->getMain3DScene();
render::PendingChanges pendingChanges;
pendingChanges.updateItem(myMetaItem);
scene->enqueuePendingChanges(pendingChanges);
});
}
}
int RenderableModelEntityItem::getJointIndex(const QString& name) const {
if (_model && _model->isActive()) {
RigPointer rig = _model->getRig();
return rig->indexOfJoint(name);
}
return -1;
}
QStringList RenderableModelEntityItem::getJointNames() const {
QStringList result;
if (_model && _model->isActive()) {
RigPointer rig = _model->getRig();
int jointCount = rig->getJointStateCount();
for (int jointIndex = 0; jointIndex < jointCount; jointIndex++) {
result << rig->nameOfJoint(jointIndex);
}
}
return result;
}